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Abstract: Metastasis is the leading cause of death in breast cancer patients due to the lack of effective
therapies. Elevated levels of paxillin expression have been observed in various cancer types, with
tyrosine phosphorylation shown to play a critical role in driving cancer cell migration. However,
the specific impact of the distinct tyrosine phosphorylation events of paxillin in the progression
of breast cancer remains to be fully elucidated. Here, we found that paxillin overexpression in
breast cancer tissue is associated with a patient’s poor prognosis. Paxillin knockdown inhibited
the migration and invasion of breast cancer cells. Furthermore, the phosphorylation of paxillin
tyrosine residue 31 (Tyr31) was significantly increased upon the TGF-β1-induced migration and
invasion of breast cancer cells. Inhibiting Fyn activity or silencing Fyn decreases paxillin Tyr31
phosphorylation. The wild-type and constitutively active Fyn directly phosphorylate paxillin Tyr31
in an in vitro system, indicating that Fyn directly phosphorylates paxillin Tyr31. Additionally, the
non-phosphorylatable mutant of paxillin at Tyr31 reduces actin stress fiber formation, migration, and
invasion of breast cancer cells. Taken together, our results provide direct evidence that Fyn-mediated
paxillin Tyr31 phosphorylation is required for breast cancer migration and invasion, suggesting that
targeting paxillin Tyr31 phosphorylation could be a potential therapeutic strategy for mitigating
breast cancer metastasis.
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1. Introduction

Distant metastasis is the leading cause of death in breast cancer patients and so
far, the mechanism of metastasis in breast cancer has not been fully clarified. Key steps
in breast cancer metastasis are tumor cell migration and invasion, and these processes
require cytoskeleton rearrangement [1–3]. Actin stress fibers are a higher-order cytoskeletal
structure composed of cross-linked actin filament bundles which play a vital role in cell
migration and invasion [4–6]. Actin stress fibers connect to focal adhesions and focal
adhesion-associated proteins, such as paxillin and focal adhesion kinase, which are key
regulators of actin cytoskeleton dynamics [7]. In addition, the RhoA/Rho-kinase signaling
pathway is involved in actin stress fiber formation [8–10]. Fyn tyrosine kinase has also
been demonstrated to be involved in actin stress fiber formation through the activation of
Rho-kinase [11]. Recently, we identified paxillin as a novel signaling molecule that mediates
SPC-induced actin stress fiber formation and cell migration by direct binding to the active
Fyn [12].

Paxillin, one of the critical focal adhesion proteins, has multiple cell functions, such as
migration and invasion [13,14], apoptosis [15,16], and autophagy [17,18]. Paxillin function
is regulated by tyrosine phosphorylation and serine phosphorylation [19,20]. Activation of
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the corresponding tyrosine kinase or serine kinase by different stimuli and growth factors
leads to the phosphorylation of paxillin and the initiation of related cellular functions.
Cytoplasmic cyclin D1 together with its partner Cdk4 regulates cell invasion and metastasis
through paxillin serine 83 phosphorylation [21]. Paxillin Tyr31 and Tyr118 phosphorylation
are involved in EphB1-induced cell migration [22]; they also regulate HGF- or S1P-mediated
lamellipodia formation [23] and LPS-mediated pulmonary vascular permeability and
injury [24]. Recently, a study demonstrated the essential role of paxillin in promoting
breast tumor collective cell invasion in breast cancer metastasis [25]. Although the multiple
tyrosine phosphorylation of paxillin is important in controlling cell migration and invasion,
the precise role of the single tyrosine phosphorylation of paxillin is unclear. Additionally,
the underlying molecular mechanism by which paxillin tyrosine phosphorylation occurs
has also not been completely clarified.

Fyn tyrosine kinase, a member of the Src family of protein tyrosine kinases (Src-TK), is
overexpressed in breast cancer and promotes breast cancer cell proliferation, migration, and
invasion [26,27]. Fyn promotes the mesenchymal phenotypes of basal-type breast cancer
cells through the STAT5/NOTCH2 signaling node [27]. The tyrosine phosphorylation
analysis of Src-TK revealed signaling network signatures in basal breast cancer cells and
highlighted multiple kinases and their substrates as therapeutic targets and biomarkers [28].
Furthermore, a recent study suggested the involvement of the Fyn/paxillin signaling
pathway in breast cancer cell migration [29]. While the roles of Fyn and paxillin in cancer
cell migration have been reported, the exact mechanism through which Fyn influences
paxillin function remains unclear. Specifically, the Fyn-mediated tyrosine phosphorylation
of paxillin remains largely unexplored.

In the present study, we investigated the role of paxillin Tyr31 phosphorylation in
the migration and invasion of breast cancer cells. Furthermore, we found that paxillin
Tyr31 phosphorylation is mediated by Fyn. We provide evidence that paxillin Tyr31
phosphorylation is involved in the migration and invasion of breast cancer cells, suggesting
that paxillin Tyr31 phosphorylation could be a potential therapeutic target for mitigating
breast cancer metastasis.

2. Results
2.1. High Paxillin Expression Is Correlated with Poor Prognosis of Breast Cancer Patients

To examine the correlation between paxillin and a patient’s prognosis, we assessed
the paxillin expression in clinical samples from 91 breast cancer patients (Supplementary
Table S1). After confirmation by a professional pathologist, we assessed the paxillin
expression levels in all breast cancer tissues and defined four levels as shown in Figure 1A.
Subsequently, we divided patients into two groups according to their H-score: a paxillin-
high group and a paxillin-low group, and compared the overall survival and recurrence-free
survival of the two groups. Our results showed that a patient’s overall survival (Figure 1B)
and recurrence-free survival (Figure 1C) in the paxillin-high group were significantly lower
than those in the paxillin-low group. These results indicate that high paxillin expression is
associated with a patient’s poor prognosis.

2.2. Paxillin Is Involved in TGF-β1 Induced Migration and Invasion of Breast Cancer Cells

Migration and invasion are indicators of tumor malignancy [30]. To investigate the
role of paxillin in the migration and invasion of breast cancer cells, we conducted a loss-of-
function experiment. We first transfected paxillin shRNA particles to obtain the paxillin
knockdown MDA-MB-231 cells (Figure 2A,B) and then assessed the TGF-β1-induced
migration and invasion. As shown in Figure 2C,D, paxillin knockdown significantly
inhibited TGF-β1-induced migration compared to control cells by a wound healing assay.
Similarly, a transwell assay revealed that paxillin knockdown inhibited the TGF-β1-induced
invasion of MDA-MB-231 cells (Figure 2E,F). These results suggest that paxillin plays a
vital role in the TGF-β1-induced migration and invasion of breast cancer cells.
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Figure 1. High paxillin expression is correlated with the poor prognosis of breast cancer patients.
(A) Representative images of an immunohistochemistry analysis of paxillin in 91 breast cancer tissue
samples (scale bars, 100 µm). (B,C) Kaplan–Meier overall survival curves (B) and recurrence-free
survival (RFS) curves (C) for breast cancer patients in the paxillin-high group and paxillin-low group.

2.3. Paxillin Tyr31 Phosphorylation Increases in TGF-β1-Induced Migration and Invasion

Previous studies have reported that paxillin tyrosine phosphorylation is linked to
cancer metastasis [31–33]. Hence, we investigated paxillin tyrosine phosphorylation in
the presence of TGF-β1 stimulation. However, multiple tyrosine sites on paxillin can be
phosphorylated during cell migration [13,34]. In this study, we examined the tyrosine
phosphorylation levels of paxillin at the Tyr31, Tyr88, Tyr118, and Tyr181 sites in the MDA-
MB-231 cell line and MCF7 cell line. As shown in Figure 3A,B, TGF-β1 stimulation induced
a time-dependent increase in paxillin Tyr31 phosphorylation in the MDA-MB-231 cell
line. While paxillin Tyr88 phosphorylation slightly increased after TGF-β1 stimulation for
60 min, no changes were observed in paxillin Tyr118 and Tyr181 phosphorylation. Similar
results were also observed in the MCF7 cell line (Figure 3C,D). These results suggest that
paxillin Tyr31 and Tyr88 phosphorylation may play a crucial role in the TGF-β1-induced
migration and invasion of breast cancer cells.
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Figure 2. Paxillin knockdown inhibits the TGF-β1-induced migration and invasion of MDA-MB-231
cells. (A,B) Representative Western blot (A) and statistical analysis (B) showing the expression of
paxillin in the control shRNA and paxillin shRNA transfected MDA-MB-231 cells. (C) Representative
images showing the wound width in control shRNA and paxillin shRNA transfected MDA-MB-
231 cells after stimulation with TGF-β1 for 24 h by wound healing assay, as indicated by the red
lines. (D) Statistical analysis showing that paxillin knockdown inhibits the TGF-β1-induced mi-
gration of MDA-MB-231 cells. (E) Representative images showing the invasion of control shRNA
and paxillin shRNA transfected MDA-MB-231 cells in the presence of TGF-β1 by transwell assay.
Scale bar = 100 µm. (F) Statistical analysis showing that paxillin knockdown inhibits the TGF-β1-
induced invasion of MDA-MB-231 cells. Data shown are the mean ± SEM. ** p < 0.01.
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Figure 3. TGF-β1 stimulation increases paxillin Tyr31 phosphorylation. (A,B) Representative Western
blot (A) and statistical analysis (B) showing the levels of Tyr31 phosphorylation (pY31), Tyr88
phosphorylation (pY88), Tyr118 phosphorylation (pY118), and Tyr181 phosphorylation (pY181) of
paxillin after TGF-β1 stimulation in MDA-MB-231 cells. (C,D) Representative Western blot (C) and
statistical analysis (D) showing the pY31, pY88, pY118, and pY181 levels of paxillin after TGF-β1
stimulation in MCF7 cells. Data shown are the mean ± SEM. n = 3, * p < 0.05 vs. corresponding 0 min
in each group.

2.4. Fyn Directly Phosphorylates Paxillin Tyr31

To investigate the mechanism of paxillin Tyr31 and Tyr88 phosphorylation, we utilized
the STRING database to analyze paxillin-interacting proteins. As shown in Figure 4D, the
protein–protein interaction map of paxillin revealed its association with the Src family ki-
nases, including Src, Fyn, and Yes. We recently reported that the direct interaction between
active Fyn and paxillin regulates the migration of vascular smooth muscle cells [12]. This
led us to ask whether Fyn could phosphorylate paxillin. Subsequent immunofluorescent
results showed that the constitutively active Fyn colocalized with paxillin at the ends
of actin stress fibers (Figure 4A–C), suggesting that Fyn may phosphorylate paxillin. To
further explore this, we pretreated the cells with Src family kinase inhibitors, PP1 and
PP2, and evaluated the TGF-β1-induced paxillin tyrosine phosphorylation. As shown
in Figure 4E–G, PP1 and PP2 reduced TGF-β1-induced paxillin Tyr31 phosphorylation,
but not Tyr88 phosphorylation. Additionally, the Fyn tyrosine kinase inhibitor EPA [35]
strongly inhibited the TGF-β1-induced paxillin Tyr31 phosphorylation, but not Tyr88 phos-
phorylation. In contrast, PP3, the inactive control analog of PP1 and PP2, showed no
effect on TGF-β1-induced paxillin Tyr31 phosphorylation or Tyr88 phosphorylation. These
results suggest that Fyn is involved in TGF-β1-induced paxillin Tyr31 phosphorylation.
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Figure 4. Exploration of Fyn-mediating TGF-β1-induced paxillin Tyr31 phosphorylation. (A) Im-
munofluorescent staining showing that the HaloTag constitutively active Fyn (HaloTag-CA-Fyn) and
paxillin colocalize at the ends of actin stress fibers. Scale bar = 20 µm. (B) The enlarged image of the
area outlined with a yellow line in (A). (C) Histogram showing the fluorescence intensity in each
channel for HaloTag-CA-Fyn (green line), F-actin (red line), or paxillin (blue line) along the line (from
a to b) indicated in (B). (D) The core network of the protein–protein interaction map of paxillin, Src,
Fyn, and Yes. (E) Representative Western blot showing the effects of tyrosine kinase inhibitors on the
TGF-β1-induced paxillin Tyr31 (pY31) and paxillin Tyr88 (pY88) phosphorylation in MDA-MB-231
cells. (F,G) Statistical analysis showing the effect of tyrosine kinase inhibitors on TGF-β1-induced
pY31 (F) and pY88 (G) phosphorylation in MDA-MB-231 cells. Data shown are the mean ± SEM.
n = 3, * p < 0.05; ** p < 0.01; ns, no significant.

To further confirm whether Fyn phosphorylates paxillin Tyr31 or not, we examined
the effect of Fyn knockdown on paxillin tyrosine phosphorylation. Our results showed that
Fyn knockdown inhibited paxillin Tyr31 phosphorylation, but not Tyr88 phosphorylation
(Figure 5A,B). Additionally, immunofluorescent staining also revealed that paxillin Tyr31
phosphorylation was almost completely inhibited in Fyn siRNA transfected cells (Figure 5C)
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while paxillin Tyr88 phosphorylation remained unchanged (Figure 5D). These results
indicate that Fyn phosphorylates paxillin Tyr31. In addition, as shown in Figure 6A,B,
wild-type Fyn (WT-Fyn) and constitutively active Fyn (CA-Fyn), but not dominant negative
Fyn (DN-Fyn), significantly increased paxillin Tyr31 phosphorylation in the presence of
ATP in vitro. However, no significant changes in paxillin Tyr88 phosphorylation were
observed (Figure 6C,D). These results indicate that Fyn directly phosphorylates paxillin
Tyr31 but not Tyr88.
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Figure 5. Fyn knockdown inhibits paxillin Tyr31 phosphorylation. (A,B) Representative Western
blot (A) and statistical analysis (B) showing that Fyn knockdown inhibits TGF-β1-induced pax-
illin Tyr31 phosphorylation (pY31) but not paxillin Tyr88 phosphorylation (pY88) in MDA-MB-231
cells. Data shown are the mean ± SEM. n = 3, ** p < 0.01 vs. corresponding control siRNA group.
(C,D) Immunofluorescent images showing that Fyn knockdown inhibits paxillin Tyr31 (C) but not
paxillin Tyr88 (D) phosphorylation in MDA-MB-231 cells. The yellow dotted lines show that paxillin
Tyr31 phosphorylation cannot be observed in cells. Scale bar = 20 µm.
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Figure 6. Fyn directly phosphorylates paxillin Tyr31 in vitro assay. Representative Western blot and
statistical analysis showing that wild-type Fyn (WT-Fyn) and constitutively active Fyn (CA-Fyn)
directly phosphorylate the Tyr31 (A,B) but not Tyr88 (C,D) of paxillin in the presence of ATP-γ-s. Data
shown are the mean ± SEM. n = 3, ** p < 0.01; ns: no significant. DN-Fyn, dominant negative Fyn.

2.5. Non-Phosphorylatable Paxillin Tyr31 Mutant Attenuates TGF-β1-Induced Migration
and Invasion

To clarify the role of paxillin Tyr31 phosphorylation in the migration and invasion of
breast cancer cells, we generated a non-phosphorylatable paxillin Tyr31 mutant by replacing
the tyrosine residue with phenylalanine (Y31F). We then examined the effect of paxillin Y31F
overexpression on the migration and invasion of breast cancer cells. Our results showed
that paxillin Y31F overexpression inhibited the TGF-β1-induced migration (Figure 7A,C,D)
and invasion (Figure 7B–D) of both MDA-MB-231 and MCF7 cells, suggesting that paxillin
Tyr31 phosphorylation plays an important role in the migration and invasion of breast
cancer cells.

2.6. Non-Phosphorylatable Paxillin Tyr31 Mutant Attenuates TGF-β1-Induced Actin Stress
Fiber Formation

Actin cytoskeleton remodeling has a fundamental role in cancer cell dynamics, such
as migration and invasion [2,36]. To investigate whether paxillin Tyr31 phosphorylation
impacts actin cytoskeleton remodeling, we observed the actin stress fiber formation in
MDA-MB-231 cells overexpressed with paxillin Y31F. As shown in Figure 8A,B, TGF-β1
induced a remarkable actin stress fiber formation in control cells. However, paxillin Y31F
overexpression inhibited TGF-β1-induced actin stress fiber formation. These findings
demonstrate that paxillin Tyr31 phosphorylation is involved in actin stress fiber formation,
leading to the subsequent migration and invasion of breast cancer cells.
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Figure 7. Paxillin Y31F overexpression attenuates TGF-β1-induced migration and invasion.
(A) Representative images showing wound width by wound healing assay in paxillin Y31F-
transfected MDA-MB-231 cells and MCF7 cells at 24 h, as indicated by the red lines. Scale bar
= 100 µm. (B) Representative images showing invasion cells in paxillin Y31F-transfected MDA-MB-
231 cells and MCF7 cells by transwell assay. Scale bar = 100 µm. (C) Statistical analysis showing the
effects of paxillin Y31F on the TGF-β1-induced migration and invasion of MDA-MB-231 cells. Data
shown are the mean ± SEM. ** p < 0.01. (D) Statistical analysis showing the effects of paxillin Y31F
on TGF-β1-induced migration and invasion of MCF7 cells. Data shown are the mean ± SEM. n = 3 or
4, ** p < 0.01.
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Figure 8. Paxillin Y31F overexpression inhibits TGF-β1-induced actin stress fiber formation.
(A) Representative images showing the TGF-β1-induced actin stress fiber formation in paxillin Y31F-
transfected MDA-MB-231 cells and control cells. Scale bar = 20 µm. (B) Statistical analysis showing
the effect of paxillin Y31F on the TGF-β1-induced actin stress fiber formation in MDA-MB-231 cells.
Ten fields of view from three independent experiments were randomly selected and then the ratio of
the cells with actin stress fiber formation in each field was calculated. At least 30 cells were counted.
Data shown are the mean ± SEM. ** p < 0.01.

3. Discussion

In the present study, we sought to understand the mechanism by which paxillin is
involved in the migration and invasion of breast cancer cells and to determine the critical
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role of paxillin Tyr31 phosphorylation on the migration and invasion of breast cancer cells.
We provide direct evidence that Fyn tyrosine kinase phosphorylates paxillin Tyr31. Our
findings suggest that paxillin Tyr31 phosphorylation mediated by Fyn plays an important
role in the migration and invasion of breast cancer cells by participating in the formation of
actin stress fibers. Paxillin Tyr31 phosphorylation could be a potential target site for the
treatment of breast cancer metastasis.

Paxillin has been shown to be highly expressed in many malignant tumors and is
frequently associated with progression and poor patient outcomes, as seen in gastric can-
cer [37], lung cancer [38,39], esophageal cancer [40], and colorectal cancer [41]. Src family
tyrosine kinases phosphorylate paxillin and a broad-spectrum Src family tyrosine kinase
inhibitor is currently used in the clinic to treat cancer [42]. However, paxillin has many
tyrosine phosphorylation sites and which site is phosphorylated by the special kinase
has not been completely identified. Iwasaki T et al. reported that lysophosphatidic acid
(LPA) stimulation induced the paxillin Tyr31 phosphorylation involved in the migration
of rat ascites hepatoma MM1 cells [43]. Fu P et al. found that LPS-induced paxillin Tyr31
phosphorylation is mediated by c-Abl tyrosine kinase but not by Src and focal adhesion
kinase [24]. In our recent study, we found that active Fyn binds directly to paxillin, and
this direct Fyn-paxillin binding further activates Rho-kinase, ultimately leading to the
formation of actin stress fibers that contribute to cell migration [12]. Here, we further
elucidated the physiological significance of Fyn binding to paxillin, which is to directly
phosphorylate paxillin Tyr31, thereby regulating actin stress fiber formation and partic-
ipating in the migration and invasion of breast cancer cells. Our findings demonstrate
that the overexpression of paxillin Y31F inhibits actin stress fiber formation, indicating
that Fyn-mediated paxillin Tyr31 phosphorylation plays a crucial role in actin stress fiber
formation through the activation of Rho-kinase (Figure 9). Consistently with our results,
Azuma K et al. suggested that the enhanced activity of Src family tyrosine kinases and
paxillin overexpression synergistically contribute to the high metastatic potential of human
osteosarcoma through the hyperphosphorylation of paxillin [32]. These findings, together
with our present data and previous reports, show the importance of paxillin and paxillin
Tyr31 phosphorylation in breast cancer metastasis.

TGF-β1, a cytokine, regulates diverse cellular biological processes. TGF-β1 has been
reported to act as a tumor suppressor in early-stage tumors but paradoxically functions
as a potent tumor promoter in advanced cancers [44]. Many studies have demonstrated
that TGF-β1 induces the migration and invasion of breast cancer cells [45–48]. However,
the precise mechanism underlying the TGF-β1-induced migration and invasion in breast
cancer cells has not been fully elucidated. Fyn tyrosine kinase has been reported to be
involved in many TGF-β1-induced cellular biological processes. TGF-β1 rapidly induces
Fyn activation and subsequently induces mitochondrial ROS (mtROS) production and
genetic damage in human bronchial epithelial cells [49]. Fyn kinase plays an important role
in the modulation of actin cytoskeletal dynamics and the TGF-β-induced migration of mast
cells [50]. Additionally, paxillin has been demonstrated to be involved in actin stress fiber
formation and the migration of vascular smooth muscle cells as an upstreaming molecule of
Rho-kinase [12]. Based on these reports, we speculate that paxillin Tyr31 phosphorylation is
involved in the actin stress fiber formation through the TGF-β1/Fyn/paxillin/Rho-kinase
signaling pathway, thereby leading to the migration and invasion of breast cancer cells
(Figure 9).

Previous studies have revealed the important role of the simultaneous phosphorylation
of multiple tyrosine sites of paxillin in facilitating tumor cell migration and invasion.
Specifically, paxillin Tyr31 and Tyr118 phosphorylation induced by activated integrins have
been shown to promote the migration of cancer cells [43,51,52]. Additionally, a recent study
demonstrated that hesperetin inhibits the migration and invasion of breast cancer cells by
suppressing the phosphorylation of paxillin at Tyr31, Tyr88, and Tyr118 [29]. Despite these
insights linking paxillin tyrosine phosphorylation to cell migration, the relative importance
of each phosphorylation site remains unclear. To the best of our knowledge, it is unclear
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whether individual tyrosine residues hold distinct functional roles when phosphorylated.
Our recent research established that the direct interaction between Fyn and paxillin is
crucial for cell migration [12,53]. However, the precise details of how this interaction leads
to the tyrosine phosphorylation of paxillin, and specifically which site is phosphorylated,
remain unresolved. In this study, we provide the initial evidence that Fyn directly mediates
paxillin Tyr31 phosphorylation, promoting breast cancer cell migration. The expression of
non-phosphorylatable paxillin Y31F leads to the inhibition of actin stress fiber formation,
as well as impairs cell migration and invasion. These findings indicate the significance of
the Tyr31 phosphorylation of paxillin, establishing it as a pivotal event in the regulation of
cell migration.
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In summary, our study provides important new insights into the role of Fyn in govern-
ing paxillin activity during breast cancer cell migration. The phosphorylation of paxillin at
Tyr31 by Fyn plays a pivotal role in driving the migration and invasion of breast cancer
cells. These findings provide a new theoretical foundation for the treatment of breast
cancer metastasis.

4. Materials and Methods
4.1. Reagents and Antibodies

The following reagents were used in this study. Rhodamine phalloidin (Life technolo-
gies, Tokyo, Japan), Src family tyrosine kinase inhibitors PP1 and PP2, and the inactive
analog PP3 were purchased from Sigma; EPA was purchased from Santa Cruz Biotech-
nology. Transforming growth factor-β1 (TGF-β1) was purchased from Wako (209-16544,
Osaka, Japan). It was made as 40-µg/mL stock and stored at −80 ◦C before use. A final
concentration of 20 ng/mL of TGF-β1 was used in the present study. All other reagents
were purchased from Sigma (Sigma-Aldrich, St. Louis, MO, USA).

The following antibodies were used in this study. Primary antibodies including anti-
Fyn (BD Biosciences, San Jose, CA, USA), anti-paxillin (BD Biosciences, San Jose, CA,
USA or Abcam, Cambridge, UK), anti-pY31-paxillin (Abcam, Cambridge, UK), anti-pY88-
paxillin (Bioss, Woburn, MA, USA), anti-pY118-paxillin (BD Biosciences, San Jose, CA,
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USA), anti-pY181-paxillin (Abcam, Cambridge, UK), anti-glyceraldehyde 3 phosphate
dehydrogenase (GAPDH) (FujiFilm, Tokyo, Japan), anti-HaloTag (Promega, Madison,
WI, USA), and secondary antibodies against anti-mouse HRP-conjugated IgG (Promega,
Madison, WI, USA) and anti-rabbit HRP-conjugated IgG (Promega, Madison, WI, USA)
were used.

4.2. Human Breast Cancer Tissue Samples

Paraffin-embedded breast cancer tissues from 91 female patients were included in this
study. All patients received cancer therapy at the Yamaguchi University Hospital (Ube,
Yamaguchi, Japan) between September 1995 and December 2019. The study protocols were
approved by the Institutional Review Board of Yamaguchi University/Graduate School of
Medicine (H2022-177), and the study was conducted in accordance with the Declaration of
Helsinki. Each patient provided written informed consent to participate in this study.

4.3. Immunohistochemical (IHC) Staining and Data Analysis

Paxillin expression in breast cancer tissues was detected by immunohistochemical
(IHC) staining as described below. The staining was performed on 4 µm formalin-fixed
paraffin-embedded slides. The samples were deparaffinized in xylene and hydrated in
graded alcohols; antigen retrieval was performed in EDTA buffer (pH 9.0) and heated in
a microwave at 95 ◦C for 40 min. After endogenous peroxidase and nonspecific protein
blocking, the slides were applied with monoclonal anti-paxillin antibody (1:600, Abcam,
ab32115) and incubated at 4 ◦C overnight. The next day, after washing with PBS three times,
the slides were applied with the corresponding secondary antibody for 30 min. Finally, the
samples were visualized with 3,3′-diaminobenzidine chromogen and counterstained with
Mayer’s hematoxylin.

The histochemical scoring (H-score) assessment method was used to assess the paxillin
expression level. In brief, the method focused on both the staining intensity and the
percentage (P) of stained cells at each intensity level. The intensity values are indicated as 0
(no evidence of staining), 1 (weak staining), 2 (moderate staining), and 3 (strong staining).
The percentage values vary from 0% to 100%. The final H-score = 0× P0 + 1× P1 + 2× P2 +
3 × P3 (range from 1 to 300). Immunohistochemical staining was visualized by KEYENCE
microscope (KEYENCE, Osaka, Japan) and confirmed by a professional pathologist. To
verify the association between survival or the recurrence-free survival rate and paxillin
expression, patients were divided into two groups (paxillin-low and paxillin-high) based
on their H-score. The median value of paxillin expression data was used as the cutoff value
(H-score = 145).

4.4. Cell Culture and Paxillin shRNA Transfection

Cells from the human breast cancer cell line MDA-MB-231 from DS Pharma Biomed-
ical (Osaka, Japan) were cultured in L-15 medium supplemented with 15% FBS, 2 mM
glutamine, 50 U/mL penicillin, and 50 µg/mL streptomycin at 37 ◦C in a humidified
atmosphere of 5% CO2 and 95% air. Cells from the human breast cancer cell line MCF7
were provided from Yamaguchi University Center for Gene Research and cultured at 37 ◦C
in Dulbecco’s Modified Eagle’s Medium (DMEM, Thermo Fisher Scientific, Waltham, MA,
USA) supplemented with 10% FBS, 50 U/mL penicillin, and 50 µg/mL streptomycin.

The lentivirus containing paxillin short hairpin RNA (shRNA) or non-target oligonu-
cleotides was obtained from Santa Cruz (Dallas, CA, USA). Paxillin shRNA lentiviral
particles (sc-29439-V, Santa Cruz, Dallas, CA, USA) or control shRNA lentiviral particles (sc-
108080, Santa Cruz, Dallas, CA, USA) were transfected into MDA-MB-231 cells according
to the manufacturer’s instructions as described in our previous report [12].

Fyn1 and Fyn2 siRNAs were synthesized as previously described [9,11]. Control (non-
silencing) siRNA was obtained from Qiagen. Cells were transfected with 40 nM siRNA
using a siRNA transfection reagent (sc-29528, Santa Cruz, Dallas, CA, USA) according to
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the manufacturer’s instructions. After the siRNA transfection, stimulation with TGF-β1
and the determination of knockdown efficiency by Western blot analysis followed.

4.5. Plasmid Constructs and Transfection

Human cDNA encoding constitutively active Fyn (CA-Fyn, Y530F) subcloned into the
pFC14AHaloTag vector (Promega, Madison, WI, USA) was used for transfection [12]. The
HaloTag full-length paxillin (FHC10852, 1–1671 bp) plasmid was purchased from Promega.
A non-phosphorylated mutant of HaloTag paxillin Y31F was obtained by Promega mutating
tyrosine to phenylalanine at Tyr31 of the HaloTag full-length paxillin.

For HaloTag paxillin Y31F transfection, the Lipofectamine™ LTX Reagent with PLUS™
Reagent (Thermo Fisher Scientific, Waltham, MA, USA) was used according to the man-
ufacturer’s protocol. Briefly, 3 × 105 cells were seeded into a six-well plate in a medium
without penicillin and streptomycin. After 24 h, MDA-MB-231 cells or MCF7 cells were
transfected with Lipofectamine™ LTX Reagent (6 µL) and the paxillin Y31F plasmid (2 µg)
in the presence of PLUS™ Reagent (2 µL). The cell transfection efficiency was analyzed
with HaloTag TMR Direct Ligand (Promega, Madison, WI, USA) after 24 h transfection.

4.6. Protein Expression and Purification

The baculovirus expression system was used to express recombinant Fyn protein as
previously described [12]. In brief, after Sf9 cells (Invitrogen, Carlsbad, CA, USA) were
infected with viruses carrying the recombinant Fyn for 72 h, the cells were pelleted by
centrifugation and suspended in a buffer containing 25 mM Tris-HCl (pH 7.4), 10% glycerol,
150 mM NaCl, 40 mM imidazole (pH 7.4), 1% NP-40, 10 µg/mL aprotinin, 5 µg/mL
leupeptin, 7 mM β-mercaptoethanol, and His-Tag protein protease inhibitor cocktail (Sigma-
Aldrich, St. Louis, MA, USA). After the suspension was sonicated and centrifuged, the
supernatant was filtered with a 0.22 µm filter (Millipore, Burlington, MA, USA) and then
applied to the His-Trap HP affinity column chromatography (Qiagen, Hilden, Germany) to
separate and purify the recombinant Fyn.

HaloTag fusion full-length paxillin (1–1671 bp) was cloned into the pFN18AHaloTag
T7 Flexi vector (Promega, Madison, WI, USA) and expressed and purified as described in
our previous report [12]. Briefly, after the lysis of harvested Single Step (KRX) Competent
Cells by sonication in the HaloTag purification buffer (50 mM HEPES pH 7.5, 150 mM
NaCl, 1 mM DTT, and 0.05% IGEPAL-CA-630), ATP (final concentration: 2 mM) and MgCl2
(final concentration: 10 mM) were added to remove the chaperones bound to the HaloTag
fusion protein. Lysates were then centrifuged at 10,000× g for 20 min. The supernatant
was then mixed with HaloLinkTM resin (Promega, Madison, WI, USA) for 1 h at 4 ◦C on a
rotating wheel. HaloTag was removed by adding a TEV protease lysis solution (Promega,
Madison, WI, USA) to the settled resin. Finally, the HisLinkTM resin was used to remove
TEV protease, and paxillin was obtained after centrifugation.

4.7. In Vitro Paxillin TYROSINE Phosphorylation by Fyn

Wild-type Fyn (WT-Fyn), CA-Fyn, or dominant negative Fyn (DN-Fyn) (10 ng) was
incubated with recombinant paxillin (1 µg) in a kinase buffer (50 mM HEPES {pH 7.4},
15 mM MgCl2, and 200 µM sodium vanadate) containing 100 µM ATP-γ-s (ab138911,
Abcam, Cambridge, UK) at 30 ◦C for 30 min. Phosphorylated proteins were separated
by SDS-PAGE and analyzed by Western blot with the corresponding antibody. A control
experiment was performed under the same conditions in which ATP-γ-s was omitted.

4.8. Western Blotting

Cell samples were lysed in lysis buffer (50 mM Tris-HCl, pH 7.4; 150 mM NaCl;
0.5% NP-40; 0.1% Triton X-100; 1 mM DTT; 0.2 mM Na3VO4; 10 mM NaF; 1 mg/mL
aprotinin; and protease inhibitor cocktail (Sigma)) and then kept at 95 ◦C for 5 min for
Western blot analysis. Cell samples were separated by 10% SDS-PAGE, then proteins were
transferred to a PVDF membrane (Hybond-P, GE Healthcare Bioscience, Piscataway, NJ,
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USA) and to carry out the Western blot [12,54] with the appropriate primary antibodies
and appropriate secondary antibodies. All antibodies were diluted with Tris-buffered
saline with 0.05% Tween-20 (TBS-T). GAPDH was used as a loading control. The protein
bands were visualized with the Super Signal West Pico chemiluminescence substrates
(Thermo Fisher Scientific, Waltham, MA, USA) and evaluated using Quantity One 4.6.2
with ChemiDoc XRS-J software (Bio-Rad, Hercules, CA, USA).

4.9. Immunofluorescent Staining

Immunofluorescence staining was carried out according to our previous report [12,54].
Briefly, cells were fixed in 4% paraformaldehyde for 10 min, permeabilized with 0.1% Triton
X-100 for 2 min, and blocked with a Blocking One Histo Solution (Nacalai, Kyoto, Japan)
for 60 min. After treatment with primary antibodies or rhodamine-conjugated phalloidin
(1:100, Thermo Fisher Scientific, Waltham, MA, USA) for staining F-actin and fluorescently
labeled secondary antibodies (anti-rabbit or anti-mouse Alexa Fluor 488, 1:100, Thermo
Fisher Scientific, Waltham, MA, USA), cells were mounted with PermaFluor aqueous
mounting medium (Thermo Fisher Scientific, Waltham, MA, USA). Cells were observed
using a fluorescence microscope (KEYENCE Biorevo BZ-9000, Osaka, Japan). Actin stress
fiber formation was observed and quantified as described previously [12].

4.10. Wound-Healing Assay

A wound-healing assay was performed as described previously [55]. MDA-MB-231
cells or MCF7 cells were grown in 35-mm glass-based dishes (Iwaki, Tokyo, Japan). When
cell confluence reached 90–100%, the cells were starved with FBS-free medium for 24 h.
Then, the cells were wounded using 200 µL micropipette tips and then TGF-β1 (20 ng/mL)
was added. Cell migration was recorded under a fluorescence microscope with a phase
contrast model (KEYENCE, Osaka, Japan). The data were used for quantitative analyses
of cell migration using NIH Image J software 1.53t. The migration rate was calculated as
follows: The migration rate (%) = (scratch width at 0 h − scratch width at 24 h)/scratch
width at 0 h × 100%.

4.11. Transwell Invasion Assay

The invasion of MDA-MB-231 cells or MCF7 cells was determined using a corning
invasion chamber 24-well plate (354480, Corning BioCoat, Manassas, VA, USA) as described
previously [51]. A total of 1 × 106 cells were placed into the upper chamber coated with
an extracellular matrigel matrix (BD Biosciences, San Jose, CA, USA). The medium with
TGF-β1 (20 ng/mL) added was filled in the lower compartment. After culturing for 24 h
(for MDA-MB-231 cells) or 48 h (for MCF7 cells), the invading cells on the underside of the
membrane were fixed with formaldehyde (4%) for 10 min and stained with crystal violet
(0.1%) for 30 min. Cells were visualized under a bright-field microscope at a magnification
of 10× (KEYENCE, Osaka, Japan) and counted by NIH Image J software 1.53t.

4.12. Statistical Analysis

All statistical analyses were carried out using GraphPad Prism 8.0.2. The data shown
represent the mean ± SEM. For comparisons between the two groups, the significance of
differences was determined using a Student’s t-test. For comparisons of multiple groups, an
ANOVA assay was used to determine the significance of differences. p < 0.05 was regarded
as statistically significant.

5. Conclusions

Our study showed that paxillin Tyr31 phosphorylation plays an important role in the
migration and invasion of breast cancer cells. Thus, targeting paxillin Tyr31 phosphoryla-
tion could be a promising therapeutic strategy for the treatment of breast cancer metastasis.
Future studies will focus on understanding how paxillin tyrosine phosphorylation is able to
coordinate and integrate the activity of Rho-kinase to optimize actin stress fiber formation.
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