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Dear Colleagues,
The purpose of this Special Issue was to attract the attention of researchers to the fea-

tures of the synthesis and physico-chemical and biological investigation of spiro-conjugated
organic compounds and to show the possibilities and advantages that the introduction of a
spiro-conjugated fragment into small organic molecules provides. One of these advantages
is the development of new experimental methods in organic chemistry, which can be easily
transferred to the preparation of molecules of other structural types and may prove useful
in the development of new effective synthetic methodologies.

The second most important feature of spiro-jointed organic molecules is the unique
chemical, physical, and biological properties that the resulting spiro-compounds can pos-
sess. Among these advantages is, first of all, high biological activity. It is known that the
effectiveness of the interaction between drug molecules and a biotarget is directly related
to the side effects of drugs. This means that the higher the selectivity of the molecule with
respect to the active center, the fewer body functions that are not targeted for treatment will
be affected. The most important factor in the development of drugs is the limitation of the
conformational mobility of the synthesized molecules, which makes it possible to fix the
required spatial position of important substituents that bind to biological targets. From this
point of view, molecules containing a spiro junction of two or more carbo- or heterocycles
are of significant interest. The rigidity of spiro junctions in molecular frameworks makes
it possible to fix the required spatial arrangement of exocyclic substituents, which are
important for interaction with biological targets and the properties of developed materials.
The correct selection of substituents in molecules containing the same pharmacophore
fragment allows fine tuning of the compound structures, making it possible to use them in
drugs with different types of actions. For example, molecules containing spiro-membered
heterocyclic fragments are capable of exerting a selective effect on AKT1 kinase through
the PI3K pathway [1], on the protein-protein interaction of p53-MDM2 [2,3], and so forth.

Due to their wide range of prominent physiological activities, heterocyclic spiro-
compounds have always been among the most attractive and privileged organic scaffolds
in modern medicinal chemistry [4,5]. For example, spiro-jointed nitrogen-containing
heterocyclic derivatives have emerged as attractive synthetic templates because of their
prevalence in a significant number of natural-like products [6]. Some alkaloids containing
spiro-motifs were first isolated from plants of the Apocynaceae and Rubiacae families [7].
The basic structural feature of this type of compound is the spiro point at position 3
of the oxindole fragment. This joint can be formed by the attachment of heterocyclic
motifs, thereby providing a significant degree of diversity. As a result, spiro-oxindoles are
reasonably regarded as appropriate templates for drug design and development. They can
also be readily used as convenient starting points or intermediates in the synthesis of a
wide range of structurally diverse natural-like products.

The design and development of novel potent anticancer therapeutics are the most
important tasks of synthetic organic and medicinal chemistry. Among the compounds with
antitumor action, an important place is occupied by the spiro and dispiro derivatives of
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indolinones, because the indolinone fragment simulates the tryptophan moiety and is in
many cases involved in interactions with biological targets [8–11]. Hence, spiro-oxindole
alkaloids have shown significant anticancer activity [4,12,13]. Several manuscripts [14,15]
support the potential of spiro-linked indolinones as highly cytotoxic as well as antibacterial
active compounds. Some spiro-indolinones may be also a poliovirus and human rhinovirus
3C-proteinase inhibitors [16]. Significant cytotoxic activity with high selectivity was also
found for other heterocyclic derivatives with a spiro junction [17,18].

The scope of biological activity of spiro-linked small molecules is, however, not
limited to antitumor activity. Thus, the potential of spiro heterocyclic compounds
to treat Alzheimer disease was proven in the work of T. Ben Hadda et al. [19] The
manuscript by B. Bennani et al. [20] gives an idea to use some di-substituted-4′H-spiro
[isothiochromene-3,5′-isoxazol]-4(1H)-ones as potential drugs against Mycobacterium
tuberculosis and HIV-1 inhibitors.

The interesting charge-transport properties of molecules with a spiro junction are
demonstrated by the work of U. Bach et al. [21], describing a family of spiro-conjugates
carbocycles combining the high morphological stability with commonly only observed
in polymeric systems with the high charge mobility of low molecular weight charge
transport materials.

Organic spiro derivatives can also be used as photochromic molecules. Thus, in the
article by J.-M.A. Castán and co-authors [22] the interesting photophysical properties of the
spiro-indoline naphthoxazines and naphthopyrans were described; such molecules demon-
strate an acidochromic behavior and lead to the formation of protonated merocyanines
absorbing in the visible range under acidic conditions. When the compounds are studied
in acidic conditions under illumination, they show different behaviors. The spiro-indoline
naphthoxazines keep a positive photochromism while the spiro-indoline naphthopyrans
show a negative photochromism.

It is also very important that spiro-linked carbo- and heterocyclic compounds can be
obtained by various types of cyclization reactions with high regio- and stereoselectivity
and atomic precision. Such reactions are atom-economical and make it possible to signifi-
cantly complicate the molecular structure in one synthetic step. From the point of view of
synthetic organic chemistry, I also cannot help but note that spiro-jointed derivatives are
very attractive molecules from the point of view of the green chemistry paradigm, since
their syntheses by concerted addition reactions require a minimum number of synthetic
steps and all atoms of the initial compounds are included in the target products without
the formation of additional reaction products. In this case, the targeted synthetic steps can
be carried out with high stereoselectivity [23,24].

It is our earnest hope that this Special Issue will provide some insight into the current
state of research into the synthesis and practical application of small organic molecules
containing the spiro-junction moiety and will assist in ongoing efforts to more efficiently
develop and potentially utilize such molecules in chemistry, physics, and biology.

Conflicts of Interest: The author declares no conflict of interest.
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