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Abstract: The structure and biochemical properties of protease inhibitors from the thyropin family
are poorly understood in parasites and pathogens. Here, we introduce a novel family member,
Ir-thyropin (IrThy), which is secreted in the saliva of Ixodes ricinus ticks, vectors of Lyme borreliosis
and tick-borne encephalitis. The IrThy molecule consists of two consecutive thyroglobulin type-1
(Tg1) domains with an unusual disulfide pattern. Recombinant IrThy was found to inhibit human
host-derived cathepsin proteases with a high specificity for cathepsins V, K, and L among a wide
range of screened cathepsins exhibiting diverse endo- and exopeptidase activities. Both Tg1 domains
displayed inhibitory activities, but with distinct specificity profiles. We determined the spatial
structure of one of the Tg1 domains by solution NMR spectroscopy and described its reactive center
to elucidate the unique inhibitory specificity. Furthermore, we found that the inhibitory potency of
IrThy was modulated in a complex manner by various glycosaminoglycans from host tissues. IrThy
was additionally regulated by pH and proteolytic degradation. This study provides a comprehensive
structure–function characterization of IrThy—the first investigated thyropin of parasite origin—and
suggests its potential role in host–parasite interactions at the tick bite site.

Keywords: cathepsin; cysteine protease; tick; parasite; saliva; thyropin; protease inhibitor; pro-
tein structure

1. Introduction

The thyroglobulin type-1 (Tg1) domain is typically a 7 kDa protein module found in a
variety of unrelated multidomain proteins in the animal kingdom. It was first identified
in thyroglobulin, which carries eleven Tg1 repeats [1]. The Tg1 domains, which feature a
conserved pattern of cysteine residues, are divided into subgroups 1A and 1B based on
the number of cysteines [1]. The variable loops in the molecular architecture of the Tg1
domain make it highly adaptive and account for the multiple functions it has acquired
through evolution, including protease inhibition. Tg1 domain-containing proteins with
antiproteolytic activity are known as thyropins [2], classified as protease inhibitor family
I31 by the Merops database [3]. While Tg1 domains have been shown to directly inhibit
cysteine and aspartic proteases, mainly those of the cathepsin type, individual thyropins
differ greatly in their inhibitory specificities [4].
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Most of our knowledge about thyropins and their inhibitory activity derives from the
following members: the p41 invariant chain fragment, involved in major histocompatibility
complex (MHC) class II maturation and antigen processing [5,6]; saxiphilin, a neurotoxin-
binding protein from bullfrogs [7,8]; equistatin, derived from sea anemones, which contains
domains that selectively inhibit cysteine or aspartic cathepsins [9,10]; human testican-1, a
multi-domain proteoglycan from the brain [11,12]; human epithelial cell adhesion molecule
(EpCAM), a carcinoma cell marker [13]; and the cysteine protease inhibitor ECI from chum
salmon eggs [14]. Additionally, Tg1 domains in insulin-like growth factor binding proteins
(IGFBPs) have been proposed as proteolysis regulators [15,16].

Of the thyropins whose inhibitory properties have been demonstrated, only two have
been characterized at the structural level. These include crystal structures of saxiphilin,
which has two Tg1 domains embedded in a large transferrin architecture [8], and the p41
fragment, a single Tg1 domain thyropin, in complex with cathepsin L [6]. This complex
identified the reactive center on the Tg1 domain, which is formed by three loops that
bind to the active site of cathepsin L. In addition to their inhibitory effects, Tg1 domains
may establish more complex relationships with the target cathepsin. For instance, as
demonstrated for cathepsin L complexed with the p41 fragment, the Tg1 domain may
stabilize the protease at a neutral pH [17]. Another example is the proteolytic degradation
of testican-1, an inhibitor of cathepsin L, by the same protease at high concentrations [12].

There is very little information on the structure–function relationships of thyropins in
invertebrates, particularly those found in parasites. To address this gap, we performed a
molecular characterization of thyropin from the hard tick Ixodes ricinus, a well-known vector
of Lyme borreliosis and tick-borne encephalitis. Although thyropins have been recently
identified by transcriptomic and proteomic analyses in several tick species [18–21], their
biological roles remain unknown. Our interest in thyropins builds upon successful research
into another family of protease inhibitors targeting cysteine cathepsins, the cystatins. These
proteins found in tick saliva act as powerful immunomodulators of the host response, while
those in the tick gut regulate blood digestion [22–25].

In this study, we provide a comprehensive functional and structural characterization
of Ir-thyropin (IrThy), an unusual thyropin secreted in the saliva of I. ricinus ticks. Its small
molecule consists of only two Tg1 domains, which are atypically disulfide-bonded. The
narrow inhibitory specificity of IrThy was explained by NMR structural analysis and was
further shown to be modulated by glycosaminoglycans (GAGs). Finally, we propose a role
for IrThy in the initial stages of host–parasite interactions at the tick bite site.

2. Results
2.1. IrThy—A Salivary Protein Secreted by the I. ricinus Tick

Based on the analysis of the salivary gland transcriptome (sialome) of the hard tick
I. ricinus [26], we identified a set of homologous sequences belonging to the I31 family of
thyropin proteins. Using a consensus sequence, we designed primers for PCR amplification
from the cDNA of salivary glands of half-fed I. ricinus females. The resulting amplicon
was cloned and sequenced, yielding a sequence with an open reading frame of 501 bp
(Figure S1). This sequence was deposited in GenBank under accession number PP107940.
The encoded sequence of the protein, named IrThy, exhibited ~97% and ~96% identity to
GenBank accessions JAA67758.1 and JAP74612.1, respectively, from I. ricinus [26,27].

To demonstrate the specific localization of IrThy, we applied an LC–MS/MS strategy
based on enzymatic digestion of a complex proteome in conjunction with MS/MS peptide
sequencing. Based on our analysis of salivary gland extract and saliva from I. ricinus
females (Table S1), we identified IrThy in both materials, indicating that IrThy was a
secreted salivary protein.

Next, we compared the mRNA transcript levels of IrThy in two tissues that play a
key role in the tick feeding process (Figure 1A). Specifically, we observed substantially
higher expression in the salivary glands of half-fed females than in the midgut, which
is responsible for blood digestion. Figure 1B shows the dynamics of IrThy expression
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during tick feeding on the host. Unfed females displayed the highest level of expression,
which then gradually decreased to reach an expression level approximately one order of
magnitude lower than in fed females.
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Figure 1. Transcriptional profiling of IrThy. Expression of IrThy was evaluated by qRT-PCR in adult
female Ixodes ricinus ticks in (A) salivary glands and midgut from half-fed ticks and (B) whole-body
homogenates at different stages of blood feeding. The mRNA transcript levels were normalized to
the housekeeping gene ferritin1. Results represent the mean ± SD of biological triplicates (pooled
samples), expressed relative to the highest measured value (100%); * p < 0.05, ** p < 0.005.

In summary, we cloned IrThy from I. ricinus as a new member of the thyropin family.
It is predominantly expressed in the salivary glands of unfed female ticks and is secreted
into the tick saliva, suggesting its involvement in the early stages of tick–host interaction.

2.2. IrThy Is a Two-Domain Thyropin: Sequence Analysis, Evolutionary Distribution, and
Recombinant Production

IrThy cDNA contains an open reading frame encoding a protein of 166 amino acid
residues. It contains a 19-residue signal peptide followed by a mature IrThy sequence
of 147 residues consisting of two consecutive Tg1 domains from the I31 thyropin family
(Figure 2A). The N- and C-terminal domains have 79 and 68 residues, respectively, and share
26% sequence identity. Both domains belong to Tg1 subtype 1A [1], which features three
disulfide bonds. By evaluating the connectivity of the disulfides by LC–MS/MS peptide
mapping (Table S2), we found that all of the cysteines formed disulfide bridges. The con-
nectivity is as follows: Cys17–Cys37, Cys48–Cys59, and Cys61–Cys81 in the N-domain, and
Cys79–Cys103, Cys115–Cys139, and Cys122–Cys147 in the C-domain (Figure 2A). Two of
them are associated with the central sequence Cys79(N-domain)–Lys80–Cys81(C-domain),
where Cys79 is cross-linked to the C-domain and Cys81 to the N-domain; therefore, they
can be classified as interdomain disulfide bridges (Figure 2A). Sequence comparison shows
that the N-domain of IrThy shares the disulfide pattern with the prototype thyropin, the
human p41 fragment, while the pattern in the C-domain is modified (Figure S2).

Given that IrThy consists of two Tg1 domains, we decided to investigate the phylo-
genetic distribution of IrThy homologs with analogous domain compositions. The Pfam
database (hosted by InterPro) [28] lists over 20,000 proteins containing the Tg1 domain
(Pfam entry: PF00086). These proteins are typically multi-domain, with up to more than
a dozen Tg1 repeats, often combined with domains of other types. Figure 2C shows the
distribution of Tg1 domain-containing proteins for three different search parameters. Selec-
tion I presents all sequences that have two Tg1 domains along with other Pfam domains.
Most of them, 77%, belong to vertebrates, and 23% are mammalian. Selection II differs
from Selection I in that it excludes proteins containing other Pfam domains. This resulted
in a predominance of invertebrate sequences (70%), with over half coming from arthropods
(57%). In Selection III, we restricted the sequence length to 180 residues spanning two
consecutive Tg1 domains; this is consistent with the domain pattern of IrThy. These short
two-domain thyropins were mostly found in invertebrates (63%), including ticks; none
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were found in mammals. This indicated that IrThy-like thyropins from ticks have no
analogs in mammalian hosts.
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Figure 2. Sequence, evolution, and recombinant production of IrThy. (A) Amino acid sequence
of IrThy featuring a signal peptide (italics), an unstructured N-terminal region (dotted), an N-
terminal thyroglobulin-type 1 (Tg1) domain (blue), and a C-terminal Tg1 domain (purple). Residue
numbering is according to the mature protein. The connectivity of cysteine residues (highlighted)
is indicated by pairs of black symbols below the sequence. The predicted N-glycosylation site is
underlined. The schematic diagram shows the organization of the domains (N- and C-domains)
with six disulfide bridges (the black lines indicate cysteine residue connectivity). The signal peptide,
the unstructured region, and the two Tg1 domains were predicted using SignalP 6.0, PrDOS, and
InterPro, respectively. (B) Purified recombinant full-length IrThy and its individual N- and C-terminal
domains (IrThy-Nd and IrThy-Cd), produced in the insect cell system, were resolved by SDS–PAGE
and visualized by protein staining. (C) Phylogenetic distribution of proteins containing two Tg1
domains in invertebrates (including ticks and other arthropods) and vertebrates (including mammals).
The sequences from three searches in the InterPro-hosted Pfam database are specified as follows:
Selections I and II—the sequence length is not restricted, and other domain types may (Selection I) or
may not (Selection II) be present in the molecules; Selection III—the sequence length is restricted to
180 residues, corresponding to proteins with only two consecutive Tg1 domains, such as IrThy.

Recombinant full-length IrThy was prepared as a mature protein with a removable
oligohistidine tag (ultimately cleaved by a TEV protease) and expressed using the S2
insect cell system. The same procedure was used to produce individual single domains
of IrThy, namely the N-domain protein IrThy-Nd and the C-domain protein IrThy-Cd.
For simplicity, interdomain disulfides linked to the central sequence Cys79–Lys80–Cys81
were replaced by intradomain disulfides spanning a sequence two amino acids shorter,
namely Cys61–Cys79 in IrThy-Nd and Cys81–Cys103 in IrThy-Cd. These disulfides formed
correctly in the expressed single-domain proteins, as confirmed by LC–MS/MS peptide
mapping (Table S2). All three recombinants were purified to homogeneity from expression
media (see Section 4). They migrated on SDS–PAGE as single bands corresponding to the
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predicted molecular masses of 16.9, 9.6, and 7.9 kDa for IrThy, IrThy-Nd, and IrThy-Cd,
respectively (Figure 2B). To increase the homogeneity of the recombinants for structural
analysis, the N-glycosylation motif on the C-domain was mutated (Figure 2A); this motif is
located on the opposite side of the domain from the predicted reactive center for protease
binding (see Section 2.6.).

2.3. The Unique, Narrow Inhibitory Specificity of IrThy

Purified recombinant IrThy and its individual domains, IrThy-Nd and IrThy-Cd,
were screened in vitro for inhibitory activity against two panels of proteases, including
archetypal representatives of major protease classes and relevant cysteine cathepsins of
the mammalian host. The latter panel, selected to cover a wide range of endo- and ex-
opeptidase cleavage specificities of cysteine cathepsins, consisted of cathepsins F, K, L,
S, and V (endopeptidases), cathepsins B and X (a carboxydipeptidase/endopeptidase
and carboxypeptidase, respectively), and cathepsins C and H (an aminodipeptidase and
aminopeptidase, respectively).

Inhibition constants (Ki) were determined using a fluorescence activity assay; the
specificity profiles are compared in Table 1. No inhibition was observed for members
of aspartic and serine proteases or for cysteine proteases of the CD clan. Inhibition was
observed only for certain cysteine cathepsins with endopeptidase activities from the CA
clan of cysteine proteases. In general, IrThy and its two individual domains selectively
inhibited cathepsins V, K, and L as follows: Ki values were within the range of 27–41 nM
and 44–57 nM for cathepsin V and cathepsin K, respectively; cathepsin L was more sensitive
to inhibition by IrThy and IrThy-Nd (Ki of 201 and 179 nM, respectively) than by IrThy-
Cd (Ki of 795 nM). However, IrThy-Nd exhibited a broader inhibitory specificity and,
in addition to the three cathepsins mentioned above, it effectively inhibited two other
proteases with endopeptidase activities from the CA clan, namely cathepsin F and the
archetypal plant protease papain, with Ki values of 207 and 153 nM, respectively.

Table 1. Inhibitory specificity of IrThy and its individual domains. The inhibitory potency of full-
length IrThy and its N- and C-terminal domains (IrThy-Nd and IrThy-Cd) was screened against
mammalian host-derived cysteine cathepsins of the CA clan and archetypal representatives of
protease clans. Ki values (mean ± SD) were determined by a kinetic activity assay using specific
fluorogenic peptide substrates (see Section 4). The Merops database classification of the tested
proteases (class/clan) and their mode of action are given. n.i.—no significant inhibition at 2 µM
inhibitor concentration.

Enzymes Enzyme Specificity,
Protease Class/Clan

Ki (nM)
IrThy IrThy-Nd IrThy-Cd

Host cathepsin proteases

Cathepsin V Endopeptidase, Cys/CA 34.7 ± 2.9 27.2 ± 3.1 40.7 ± 3.8
Cathepsin K Endopeptidase, Cys/CA 56.9 ± 4.3 43.7 ± 5.4 53.1 ± 7.7
Cathepsin L Endopeptidase, Cys/CA 201.4 ± 15.8 178.6 ± 6.7 795.1 ± 19.8
Cathepsin F Endopeptidase, Cys/CA n.i. 207.2 ± 14.2 n.i.
Cathepsin S Endopeptidase, Cys/CA n.i. n.i. n.i.
Cathepsin B Endo- and carboxydipeptidase, Cys/CA n.i. n.i. n.i.
Cathepsin X Carboxypeptidase, Cys/CA n.i. n.i. n.i.
Cathepsin C Aminodipeptidase, Cys/CA n.i. n.i. n.i.
Cathepsin H Aminopeptidase, Cys/CA n.i. n.i. n.i.

Model proteases

Papain Endopeptidase, Cys/CA n.i. 153.4 ± 11.1 n.i.
Legumain Endopeptidase, Cys/CD n.i. n.i. n.i.

Cathepsin D Endopeptidase, Asp/AA n.i. n.i. n.i.
Chymotrypsin Endopeptidase, Ser/PA n.i. n.i. n.i.

Trypsin Endopeptidase, Ser/PA n.i. n.i. n.i.

We demonstrated that IrThy is capable of inhibiting the activity of model target
proteases across the entire pH activity range and, moreover, that the degree of inhibition is
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pH-dependent (Figure 3A). The most effective inhibition was observed at a mildly acidic
pH of ~6, with reduced inhibitory potency at more acidic and neutral/alkaline pH values.
The regulatory effect of pH was more pronounced for cathepsin V than for cathepsin K. We
also analyzed the inhibition mode of IrThy, classifying it as competitive, which suggests
that IrThy binds in the protease active site as previously described for the p41 fragment [6].
The inhibition mode was determined using a Lineweaver–Burk plot with a series of straight
lines intersecting on the 1/v axis (Figure 3B, C).
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Figure 3. Characteristics of cysteine cathepsin inhibition by IrThy. (A) Effect of pH on the inhibitory
potency of IrThy. The kinetic activity assay for cathepsins K and V with fluorogenic peptide substrates
was performed at different pH values in the presence and absence of IrThy. The inhibitor was applied
at a concentration providing ~50% inhibition at pH 6.0, and the % inhibition was calculated relative
to an uninhibited control (0%) at the pH values indicated; means ± SD are given. Note that the pH
value of 8.0 is outside the functional range of cathepsin V (n.a.). (B,C) Competitive mode of inhibition
by IrThy. Lineweaver–Burk plots are presented together with secondary plots of the same data (inset)
for (B) cathepsin V and (C) cathepsin K. The kinetic activity assay with fluorogenic peptide substrates
was performed at pH 5.5. Means ± SD are given for triplicates.

In summary, we demonstrated that IrThy is a thyropin with a unique and narrow
inhibitory specificity toward mammalian cysteine cathepsins. It targeted only the en-
dopeptidase cathepsins V and K within nanomolar range, followed by cathepsin L; the
other cathepsins with the spectrum of endopeptidase and exopeptidase activities proved
insensitive to IrThy.

2.4. IrThy Is Prone to Proteolytic Degradation by Target Proteases at High Concentrations

The Tg1 domains proved susceptible to cleavage by cysteine cathepsins, as reported
in [29]. Human testican, a cathepsin L inhibitor from the thyropin family, undergoes
degradation by its target protease, cathepsin L, at high concentrations [12]. In this context,
we chose to examine the sensitivity of IrThy to the proteolytic activity of cathepsins V, K,
and L, which are selectively inhibited by IrThy (see Section 2.3). For comparison, we also
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included an experiment with cathepsin B as a model endopeptidase/exopeptidase, which
is not targeted by IrThy.

First, we applied the concentration conditions used in the kinetic assay for measuring
the inhibitory potency of IrThy (Figure 4). No apparent degradation of IrThy was observed
using these catalytic concentrations of cathepsins, with an enzyme:inhibitor ratio of 1:20,000
(w/w) (corresponding to 0.2 nM:6 µM concentrations). On the contrary, incubation of
IrThy with cathepsin concentrations increased by three orders of magnitude (1:5 ratio,
w/w) (corresponding to 0.8 µM:6 µM concentrations) led to the substantial degradation
of IrThy by all tested cathepsins. The time course of the degradation reaction is shown in
Figure S3, which illustrates the generation of IrThy fragments. Furthermore, we used mass
spectrometry for mapping the cleavage sites, which were found to be widely distributed
on the IrThy molecule (Figure S4).
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Figure 4. Proteolytic degradation of IrThy by target cathepsins V, K, and L, and a model non-target
cathepsin B. IrThy was treated with high concentrations of cathepsins (an enzyme:inhibitor ratio of
1:5, w/w) or with catalytic concentrations of these cathepsins, corresponding to conditions in a kinetic
inhibition assay (an enzyme:inhibitor ratio of 1:20,000, w/w). The reaction mixture was incubated at
pH 5.5; the aliquots at time points 0 and 1 h were resolved by SDS–PAGE and visualized by protein
staining. The positions of IrThy and cathepsins (Caths) are indicated.

To conclude, we provide evidence that IrThy can be proteolytically degraded by
both its target and non-target cysteine cathepsins. We speculate that this may represent a
concentration-dependent regulatory mechanism that controls the physiological inhibitory
effect of IrThy.

2.5. Complex Glycosaminoglycan Modulation of IrThy Inhibitory Activity

As previously reported, GAGs, which are widely distributed in tissues, modulate
interactions between several protease inhibitors of proteinaceous character and their target
proteases, including cathepsins [30,31]. However, this relationship has not been investi-
gated in thyropins. To address this shortcoming, we tested the effect of GAGs on IrThy
action against cathepsins V, K, and L, which proved sensitive to IrThy inhibition (Table 1).
For the screening, we used a panel of GAGs that included (i) heparin (17–19 kDa) and its
disaccharide fragment (0.7 kDa), (ii) chondroitin-4-sulfate, chondroitin-6-sulfate, dermatan
sulfate (all in the 20–60 kDa range), and (iii) dextran sulfate (9–20 kDa), which served
as a model sulfated polysaccharide GAG analog. Individual GAGs at a concentration of
10 µg/mL were incubated with IrThy and a target cathepsin. The resulting change in
cathepsin activity was measured using a fluorescence activity assay and compared to the
control experiment without GAG.

The results in Figure 5A show the dramatic effects of GAGs on the inhibition of
cathepsins K and V. The inhibitory potency of IrThy against cathepsin K was substantially
reduced from ~50% inhibition to ~7, 16, and 23% in the presence of heparin, chondroitin-4-
sulfate, and chondroitin-6-sulfate, respectively, and was completely abolished by dermatan
and dextran sulfates. The opposite effect was observed for cathepsin V, whose inhibitory
potency was greatly enhanced from ~25% to within an inhibitory range of 55–70% in the
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presence of all tested GAGs. The only exception was the heparin disaccharide fragment,
which had no significant effect on IrThy inhibition of cathepsin V or the other cathepsins. In
contrast to cathepsins K and V, the inhibition of cathepsin L by IrThy was not substantially
affected by GAGs in general; changes in inhibitory potency were within 15% (Figure 5A).
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Figure 5. Effect of glycosaminoglycans (GAGs) on the inhibitory potency of IrThy. IrThy was applied
at a concentration providing ~50% or ~25% inhibition in the absence of heparin. The kinetic activity
assay with fluorogenic peptide substrates was performed at pH 5.5. The % inhibition was calculated
relative to uninhibited controls (0%) with the same GAG concentrations (Figure S5); means ± SD
are given. Comparative experiments without GAG are indicated as No GAG and 0 heparin. (A) The
inhibitory potency of IrThy against human cathepsins V, K, and L in the presence of different GAGs,
including heparin (Hep 17-19) and its disaccharide fragment (Hep 0.7), chondroitin-4-sulfate (C4S),
chondroitin-6-sulfate (C6S), dermatan sulfate (DerS), and the GAG analog dextran sulfate (DexS).
GAGs were applied at 10 µg/mL. (B) The inhibitory potency of IrThy against human cathepsins
V, K, and L in the presence of various concentrations of heparin (0–10 µg/mL) and 0.3 M NaCl
(where indicated).

Figure 5B shows the dependence of the modulatory effect on the GAG concentration
as demonstrated by heparin. For the inhibition of cathepsins K and V by IrThy, heparin
was highly effective at concentrations of 1 µg/mL and above, where the inhibitory potency
of IrThy reached its minimum value against cathepsin K and its maximum value against
cathepsin V. Heparin concentrations at and below 0.1 µg/mL had a much less pronounced
effect (<17% compared to the control without heparin). Inhibition of cathepsin L by IrThy,
which exhibited low sensitivity to heparin, was associated with a decrease in inhibition of
up to ~10%.

The electrostatic character of the heparin interactions involved in the modulatory
effect was examined by increasing the ionic strength in the inhibition assay (Figure 5B). The
presence of 0.3 M NaCl either substantially or completely suppressed the heparin-induced
changes observed in the inhibitory potency of IrThy. In addition, the control experiment
with NaCl and without heparin suggests that electrostatic interactions also contributed
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to the interactions between IrThy and cathepsin K, as indicated by the ~20% reduction
in inhibition.

In conclusion, GAGs modulate the inhibitory potency of IrThy against cysteine cathep-
sins in a complex manner. This modulatory effect is highly variable and depends on the
type of target cathepsin, GAG, and GAG concentration employed. Most notably, IrThy
inhibition of cathepsins K and V, both of which contain GAG-binding sites [32–35], was
down- and upregulated by GAGs in opposite ways.

2.6. Spatial Structure of the IrThy C-Domain Determined by NMR Spectroscopy

To investigate the spatial structure of IrThy by NMR spectroscopy, we prepared full-
length IrThy and its individual domains, IrThy-Nd and IrThy-Cd, in an Escherichia coli
expression system for 13C and 15N isotope labeling. Correct protein folding was confirmed
by comparing their 1D NMR spectra and inhibitory activity with recombinants produced
in insect cells used in functional studies.

For IrThy and IrThy-Nd, the poor quality of all standard 3D spectra indicated that the
internal dynamics of both proteins contributed to a faster relaxation of the NH resonances,
preventing the acquisition of reliable data. In contrast, the 3D spectra of IrThy-Cd were of
sufficient quality to enable the assignment of ~85% of the backbone atoms and ~64% of
all the atoms. Of the 68 IrThy-Cd residues, resonances for 17 residues were not detected.
These included a stretch of Lys88−Val96, which is probably flexible and lacks contacts
with more rigid structural elements. The other residues without backbone assignment
were found in the proximity of cysteines Cys115 (Thr117), Cys139 (Ser136, Gly137, and
Thr140), and Cys147 (Arg144, Asp145, His146, and Cys147 itself); this can be attributed to
the dynamics of disulfide conformation on a millisecond timescale, resulting in a decrease
in signal intensities.

Interproton distance restraints were obtained from NOESY spectra (see Section 4).
A dense network of inter-residue restraints was observed within the β-sheet-containing
region Tyr109−Ala130; 18, 15, and 10 restraints were generated for residues Val123, Asp124,
and Pro125, respectively. This points to a significant stabilization of this region, includ-
ing the L2 loop (Figure 6B). As additional restraints, we also incorporated experimental
mass spectrometry data on the pairing of cysteines in IrThy-Cd, namely Cys81–Cys103,
Cys115–Cys139, and Cys122–Cys147, into the structure calculation protocol (Table S2).
The final refinement yielded 30 solution structures of IrThy-Cd selected on the basis of
low overall energy and minimal constraint violations (Figure 6C). Atomic coordinates and
experimental constraints were deposited in the Protein Data Bank (accession code: 8R6T)
and the Biological Magnetic Resonance Data Bank (BMRB) (accession code: 34883).

A representative spatial structure of IrThy-Cd is presented in Figure 6A. The molecule
adopts a wedge-shaped fold typical of thyropins and similar to those of the human p41
fragment (PDB code: 1ICF [6]) and bullfrog saxiphilin (PDB code: 6O0F [8]), the only
thyropins whose structures are known. Figure 6B,D shows the structure-based sequence
alignment and structural comparison of IrThy-Cd with p41 and the saxiphilin domains 1
and 2; the Cα RMSD values are within the range of 4.9−5.6 Å, and the sequence identities
are within the range of 26−32%. While the architecture of IrThy-Cd is clearly similar to
that of the other thyropins (Figure 6D), the high RMSD values can be attributed to the
considerable flexibility of the loops and orientation of the structural regions. The fold
is characterized by a conserved N-terminal α-helix (α1), an antiparallel β-sheet (β1–β2),
and three loops (L1–L3), which are involved in the protease interaction (Figure 6A). In
addition, IrThy-Cd incorporates another short C-terminal α-helix (α2). In terms of spatial
arrangement, these segments constitute two subdomains: the first subdomain contains α1
and L1, and the second the rest of the thyropin molecule [6].
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Figure 6. NMR solution structure of the IrThy C-domain (IrThy-Cd) and its comparison with other
structurally characterized thyropins. (A) Representative three-dimensional structure of IrThy-Cd
(PDB code: 8R6T) is depicted in a cartoon representation colored by secondary structural elements
(α1–2 helixes, cyan; β1–2 strands, magenta). The N- and C-termini (N, C) and the three disulfide
bridges (yellow sticks and balls) Cys81–Cys103 (D1), Cys115–Cys139 (D2), and Cys122–Cys147
(D3) are indicated. The L1, L2, and L3 loops are involved in the binding of the thyropin inhibitors
to cysteine cathepsins [6]. (B) Structure-based sequence alignment of IrThy-Cd with structurally
characterized thyropins, human p41 fragment (p41), and bullfrog saxiphilin domains (Sxph_Tg1 and
Sxph_Tg2). Residues identical to those of IrThy-Cd are shaded in grey; fully conserved residues are
in bold. Residue numbering is according to IrThy-Cd. Cysteine residues forming disulfide bridges
are shaded in black and labeled D1–3 for IrThy-Cd; disulfide connectivity for the other thyropins is
indicated by black circles, triangles, and squares below the alignment; note changes in the pairings
compared to D2 of IrThy-Cd. The secondary structural elements of IrThy-Cd are depicted in cyan or
magenta above the sequence and labeled the same as in (A). Three regions topped with the L1, L2,
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and L3 loops, which are responsible for the protease interaction, are indicated by horizontal black
lines below the alignment based on the structure of the p41 complex with cathepsin L [6]. The
alignment was generated using ClustalQ [36] and edited based on the structural superposition.
(C) An ensemble of the 30 lowest-energy solution structures of IrThy-Cd in the ribbon representation
is superimposed. The orientation of the molecule is the same as in (A) (left panel); the binding loops
L1 to L3 are marked. (D) Overlay of IrThy-Cd (magenta) with structurally characterized thyropins
in a ribbon representation, including the p41 fragment (orange, PDB code: 1ICF) and the saxiphilin
domains 1 and 2 (cyan and green, respectively, PDB code: 6O0F). The positions of the disulfides are
compared for IrThy-Cd (yellow sticks and balls) and p41 (black sticks and balls). The orientation of
the molecules is the same as in (A) (left panel); the binding loops L1 to L3 are marked.

The disulfide bridges are critical to the overall fold of IrThy-Cd, considering the
absence of a hydrophobic core, low content of secondary structures, and substantial con-
formational flexibility. Both IrThy-Cd subdomains are stabilized by the disulfide bridges
Cys81–Cys103, Cys115–Cys139, and Cys122–Cys147, designated D1 through D3, respec-
tively, in Figure 6A. Thus, IrThy-Cd conforms to the thyroglobulin subtype 1A domain,
which has three disulfides [1]. In the first subdomain, the conserved D1 disulfide bridge
near the N-terminus supports the formation of the L1 loop. The D2 and D3 bridges of
IrThy-Cd, located in the second subdomain, connect the L2-containing segment with the
L3-containing segment. Interestingly, the interloop disulfide bond D2 in IrThy-Cd is re-
placed by an intraloop disulfide in p41 and saxiphilin domain 1, where it forms a clamp
within the L2 loop; this bridge is absent in saxiphilin domain 2. The higher number of
interloop disulfides may provide greater rigidity for the second subdomain of IrThy-Cd.

Loops L1, L2, and L3 form the reactive centers of the thyropins (Figure 6A). The
tripartite wedge-shaped edge fills the active site cleft of the target proteases, as previously
reported for the crystal structure of the p41 fragment complex with cathepsin L [6]. As
the lowest-energy NMR structures of IrThy-Cd demonstrate, the L1- and L3-containing
segments are the most flexible parts of the unbound thyropin molecule in solution
(Figure 6C). The large L1 loop of IrThy-Cd features the conserved residues Gly101 and
Pro105 (Figure 6B), which may be important for protease recognition specificity, as previ-
ously proposed for the L1 loops of thyropins [8]. The L2 loop, rather rigid in IrThy-Cd,
is stabilized by the β1–β2 sheet and two disulfides. The β2 strand contains a part of the
Trp–Cys–Val sequence motif conserved in the Tg1 domains (Figure 6B), which form the core
of the second subdomain. The L3 loop is flanked by the D2 interloop disulfide followed by
the C-terminal α2 helix; both of these features are unique to IrThy-Cd among the known
thyropin structures.

3. Discussion

In this study, we provide a comprehensive structural and functional analysis of IrThy,
an unusual member of the thyropin family of protease inhibitors that is expressed and
secreted by the salivary glands of the hard tick I. ricinus. In general, the scientific un-
derstanding of thyropins in invertebrates is limited. To our knowledge, this is the first
study to characterize parasite-derived thyropin at the molecular level. The IrThy molecule
consists of two consecutive Tg1 domains, the N-domain and the C-domain. We identi-
fied an atypical disulfide pattern within the C-domain and also between both domains,
forming an interdomain linkage. Intriguingly, the IrThy molecule lacks the complexity of
structural modules common to many other multidomain Tg1-containing proteins. Our
phylogenetic distribution analysis revealed that these notably short thyropin molecules (up
to 180 residues), containing only two tandem Tg1 domains, are widespread in arthropods
(including ticks) and entirely absent in mammals.

IrThy is a potent inhibitor of only three human cysteine cathepsins, namely V, K, and
L, which belong to the cathepsin L subfamily of endopeptidases. IrThy does not inhibit
other related cathepsins that possess diverse endo- and exopeptidase activities. Therefore,
IrThy possesses a unique, narrow inhibitory specificity compared to other thyropins. In
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general, thyropins can be effective against endopeptidases, but also against exopeptidases.
A wide range of cysteine cathepsins with endopeptidase activities, including cathepsins
V, K, L, F, and S, are inhibited by the p41 fragment [5]. Inhibition of exopeptidases, such
as cathepsins B and H, has been reported for the p41 fragment, equistatin, saxiphilin, and
salmon egg thyropin [7,14,37,38].

The recombinant C-domain of IrThy (IrThy-Cd) exhibits the same inhibitory profile as
full-length IrThy. We determined the spatial structure of IrThy-Cd by NMR spectroscopy,
which allowed us to analyze the structural basis of the inhibitory specificity by comparing
the IrThy-Cd structure with that of the p41 fragment complexed with cathepsin L [6]. The
binding mode of the p41 fragment, which carries three inhibitory loops (L1, L2, and L3),
enables important interactions with the S2–S1 subsite area as well as the surrounding loops
located on the protease R-domain [6]. These interactions are understood to be negatively
affected by two structural changes in IrThy-Cd, including the increased size of the L1 loop
in the first subdomain and the shape of the second subdomain induced by the unique
disulfide D2 (Figure 6B,D). In particular, these changes prevent binding to exopeptidases
such as cathepsin H (an aminopeptidase) and cathepsin B (a carboxydipeptidase), whose
partially obstructed active sites restrict access [39,40].

We observed that the recombinant N-domain (IrThy-Nd) displayed a broader selec-
tivity pattern compared to the narrow inhibitory specificity of IrThy-Cd and the parental
IrThy. In addition to cathepsins V, K and L, IrThy-Nd inhibited two other homologous
proteases with endopeptidase activities, cathepsin F and papain. This suggests that the
binding interactions of the N-domain are somewhat restricted by the closely positioned
C-domain in the full-length IrThy scaffold. Nevertheless, our AlphaFold-derived model
of IrThy (Figure S6) revealed that the two reactive centers of the N- and C-domains are
oriented in opposite directions and can function simultaneously. A similar arrangement
has been previously documented in the tandem Tg1 domains of saxiphilin, which bind two
protease molecules with different inhibitory specificities [7].

Furthermore, we performed a preliminary cross-linking mass spectrometry (XL-MS)
experiment with IrThy and cathepsin V to identify proximal structural regions in the
inhibitor−protease complex (Table S3). Our results indicated that IrThy preferentially
binds to the active site of cathepsin V (added in an equimolar amount) through the reactive
center on the N-domain, which exhibits a lower Ki value than the C-domain. However,
further comparative XL-MS data collected under different concentration conditions and
with other target cathepsins is required in order to better understand the IrThy binding
process and the discrimination between domains.

Our results show that several GAGs in their macromolecular forms modulated the in-
hibitory potency of IrThy in a complex manner. Widely distributed in host tissues, these
sulfated polysaccharides regulate cysteine cathepsins, particularly their autocatalytic process-
ing, pH stability, and interactions with specific macromolecular substrates [32,35,41–45]. In
the presence of GAGs, the inhibitory potency of IrThy generally decreased against cathepsin
K, increased against cathepsin V, and remained relatively unaffected against cathepsin L. As
previously reported, GAGs participate in a variety of functional interactions with cathepsins
K and V. For example, while the collagenolytic activity of cathepsin K requires interaction
with chondroitin-4-sulfate, GAGs suppress the elastinolytic activities of both cathepsins K
and V [32,35,46]. The molecular surfaces of cathepsins K and V contain positively charged
patches for GAG binding [32–34,45]; however, these regions are less distributed in cathepsin
L, leading to reduced interactions with GAGs [33]. We hypothesize that GAGs regulate IrThy
inhibition by interacting with distinct GAG-binding sites on the target cathepsins, and that
GAGs may also interact with positively charged regions found on the predicted surface model
of IrThy, particularly on its N-domain (Figure S6). The arrangement of these intermolecular
interactions can either facilitate or hinder IrThy binding.

Protease inhibitors from tick saliva injected into the host have been shown to modulate
the host immune response and suppress blood clotting at the site of tick attachment and
blood feeding [47]. To date, the only studied tick salivary inhibitors of cysteine cathepsins
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are members of the cystatin family, which exert immunosuppressive and anti-inflammatory
effects on the host [23–25]. A recent comparative analysis of inhibitory specificity revealed
that tick salivary cystatins differ from other family members in their high affinity for
endopeptidases and limited effect on exopeptidases [24]. This biochemical feature makes
tick salivary cystatins functionally similar to IrThy, exhibiting narrow inhibitory specificity
against cysteine cathepsins with endopeptidase activities. It is therefore reasonable to
assume that IrThy may play a role in immunomodulation and, based on the expression
dynamics, that it acts in the initial phases of the tick–host interaction. In this context,
cathepsins V, K, and L targeted by IrThy are known to be involved in the immune response
and inflammation and are also present in the host skin [48–53]. Another clue to the
potential physiological function of IrThy comes from a recent report on U24-ctenitoxin-
Pn1a, a neurotoxin found in spider venom, that targets voltage-gated sodium channels
(VGSCs) [54]. Interestingly, this protein contains two tandem Tg1 domains and is a close
homolog of IrThy. The spider VGSC toxins are generally antinociceptive in an animal
model [55], and it is tempting to speculate about the potential analgesic effect of IrThy at
the tick bite site. Our future research will focus on identifying the exact physiological role
of IrThy in tick–host interactions.

4. Materials and Methods
4.1. Materials

All protease substrates were purchased from Bachem (Bubendorf, Switzerland) with
the exception of Abz-Phe-Arg-Phe(NO2)-OH from MP Biomedicals (Irvine, CA, USA).
Human cathepsins L, K, and V were produced in the Pichia pastoris expression system as
described previously [12,56,57]. Bovine cathepsins C and H were prepared as described
in [58,59]; human cathepsin D was prepared as described in [60]. Bovine trypsin, chy-
motrypsin, and Carica papaya papain were purchased from Merck (Kenilworth, NJ, USA);
human cathepsins F, B, and S were obtained from Enzo Life Sciences (New York, NY, USA);
and human cathepsin X and legumain were obtained from R&D Systems (Minneapolis,
MN, USA). GAGs were purchased from Sigma-Aldrich (St Louis, MO, USA), including
heparin (H3393), chondroitin-4-sulfate (C9819), chondroitin-6-sulfate (C4384), dermatan
sulfate (C3788), and dextran sulfate (D6924); heparin disaccharide (H1002) was purchased
from Dextra (Reading, UK).

Ticks and Tick-Derived Materials

Adult I. ricinus ticks were collected in a forest near České Budějovice, Czech Republic.
Ticks were kept at 24 ◦C and 95% humidity under a 15/9 h day/night regime. Adult I.
ricinus females were fed on guinea pigs and either forcibly removed on the sixth day of
feeding (half-fed) or allowed to fully feed (days 7 to 8). Saliva was collected from half-fed
adult I. ricinus females as previously described [61]. Salivation was induced by applying
pilocarpine solution to the tick scutum. Saliva was collected in 10-µL capillaries for 2 h
in a wet chamber kept at 30 ◦C, pooled, and stored at −80 ◦C. The salivary glands were
carefully removed without disrupting the epithelium and washed in phosphate-buffered
saline (PBS). Tissue extracts (150 mg protein/mL) were prepared by homogenizing pooled
tissues in 0.1 M sodium acetate pH 4.5, 1% CHAPS on ice. The extract was cleared by
centrifugation (16,000× g, 10 min, 4 ◦C), filtered through Ultrafree MC 0.22 µm (Millipore,
Bedford, MA, USA), and stored at −80 ◦C.

4.2. IrThy Cloning and Sequencing

Total RNA was isolated from the salivary glands of five adult I. ricinus females fed
for six days, as previously described [62]. The RNA was reverse-transcribed into cDNA
(0.5 µg RNA per 20 µL reaction) using the Transcriptor High-Fidelity cDNA Synthesis
Kit (Roche Applied Science, Penzberg, Germany) with random hexamers and diluted
20 times in water. A 501 bp long fragment encoding IrThy was amplified from cDNA using
specific forward 5′-atgctgaagtcaagtatagtagtg-3′ and reverse 5′-ctttcttgattagcagtggtcgc-3′
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primers, which were designed based on a consensus sequence of thyropin homologs from
I. ricinus sialome [26,63]. The sequence was deposited in GenBank under accession number
PP107940. The resulting amplicon was isolated from the gel and cloned into the pCR4-
TOPO vector (TOPO TA Cloning Kit, Thermo Fisher Scientific, Waltham, MA, USA). The
isolated plasmid DNA was sequenced using the sequencing primers provided in the kit;
the IrThy coding sequence resulted from the sequencing of seven individual clones.

4.3. Production of Recombinant IrThy and its Domains in Insect Cells

S2 insect cells were used to produce full-length IrThy (residues 1–147) and its individ-
ual domains, IrThy-Nd (1–80) and IrThy-Cd (80–147). They were produced as fusion pro-
teins containing an oligohistidine tag (6xHis) and a TEV protease cleavage site with an ex-
tension of Ser-Asn-Ala-Ala-Ser residues at the N-terminus. IrThy cDNA was PCR-amplified
from the pCR4-TOPO vector containing the complete IrThy insert using the forward 5’-
gctagcgtgccaactcgagtggcc-3´ and reverse 5’-gcggccgctaacagtggtcgcgc-3´ primers, which
introduced the 5′ NheI and 3′ NotI restriction cloning sites (underlined). The PCR product
was ligated into the pUC19 vector (Thermo Fisher Scientific) using SmaI restriction endonu-
clease. The N-glycosylation motif Asn-Leu-Thr106 was disrupted by Thr106 to Ala106
mutagenesis as described in [64]. pUC19 vectors containing individual single-domain in-
serts were prepared from full-length IrThy by inverse PCR [65] using the following primers:
the forward 5′-tagcggccgcagggtaccgagctcg-3′ and reverse 5′-cttgcaggacttcagctgcctcgatgg-3′

primers for the C-domain deletion; the forward 5‘ aagtgtctggcagagcatcacgagaag-3′ and
reverse 5′-gctagcggggggatcctctagagtcg-3′ primers for the N-domain deletion; all primers
were 5′-phosphorylated. The resulting vectors were digested with NheI and NotI restriction
endonucleases and ligated into the pMT/BiP/V5-His A plasmid (Thermo Fisher Scientific),
which was modified to contain at the N-terminus a NheI restriction site and a sequence
encoding the BiP signal sequence, His6 tag, and TEV cleavage site.

Stably transfected insect cells were prepared as follows: Schneider 2 (S2) cells (Thermo
Fisher Scientific) were cultured at 28 ◦C in Sf-900 II SFM medium (Thermo Fisher Sci-
entific) containing 10% fetal bovine serum (Gibco, Thermo Fisher Scientific). Cells were
co-transfected with the pMT/BiP/V5 vector containing IrThy-derived inserts (19 ng) and
the pCoBlast selection vector containing the blasticidin resistance gene (1 ng) (Thermo
Fisher Scientific) using the Calcium Phosphate Transfection Kit (Sigma Aldrich) according
to the Drosophila Expression System protocol (Thermo Fisher Scientific). Stably transfected
cells were selected with blasticidin (25 µg/mL) two weeks after transfection. S2 transfec-
tants were expanded to a large volume (1.5 L) and cultured in Sf-900 II SFM medium to
a density of 107 cells/mL in a 6 L spinner flask, stirred at 120 rpm at 28 ◦C. Expression
was induced with 1 mM CuSO4, and after 10 days, cells were removed by centrifugation
(1000× g, 5 min, 10 ◦C). The supernatant was concentrated by lyophilization to a final
volume of 150 mL and desalted on a Sephadex G25 column equilibrated with 10 mM
Tris-HCl pH 8.0.

Recombinant His-tagged proteins were purified by Ni2+ affinity chromatography on a
HiTrap IMAC HP column (Cytiva, Marlborough, MA, USA) following the manufacturer’s
protocol for elution with imidazole at pH 8.0. The His-tags were cleaved by TEV protease
(enzyme:protein ratio 1:10, w/w) in 50 mM Tris-HCl pH 8.0, 0.5 mM EDTA, and 1 mM DTT
for 12 h at 26 ◦C and removed by Ni2+ affinity chromatography on a HiTrap IMAC HP
column (see above). This was followed by size-exclusion chromatography on a HiLoad
16/600 Superdex 75 column (Cytiva) equilibrated with 50 mM Tris-HCl, 300 mM NaCl,
pH 8.0 (for IrThy and IrThy-Cd) or pH 7.0 (for IrThy-Nd). Protein purity was monitored by
Laemmli SDS-PAGE on 15% polyacrylamide gels stained with Coomassie Brilliant Blue
R-250. The purified proteins were buffer-exchanged into 20 mM Tris-HCl, 20 mM NaCl,
pH 8.0 (for IrThy and IrThy-Cd) or pH 7.0 (for IrThy-Nd), concentrated using an Amicon
Ultra-3K centrifugal unit (Millipore), and stored at −80 ◦C. These recombinants were used
in all experiments except for the NMR structure determination.
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4.4. Production of Recombinant IrThy and its Domains in E. coli

The pUC19 vectors containing IrThy, IrThy-Nd, or IrThy-Cd inserts (see above) were
digested with NcoI and NotI restriction endonucleases and ligated into the pETM-60
plasmid (EMBL, Heidelberg, Germany) in a frame with the NusA chaperone protein, His6-
tag, and TEV protease cleavage site. Recombinant proteins were produced in SHuffle
T7 Competent E. coli cells (New England BioLabs, Ipswich, MA, USA). Bacterial cultures
were grown in 15N or 13C/15N isotope-containing optimized M9 minimal media (0.5 L)
with 50 µg/mL kanamycin to an OD600 of 0.6. Expression was induced by the addition
of isopropyl 1-thio-β-D-galactopyranoside to a final concentration of 0.4 mM. Cells were
harvested by centrifugation (4000× g, 10 min, 4 ◦C) after 16 h of incubation at 16 ◦C
with shaking at 200 rpm. Harvested E. coli cells were lysed using an EmulsiFlex-C3
homogenizer (Avestin, Ottawa, ON, Canada), and the lysate was clarified by centrifugation
(12,000× g, 10 min, 4 ◦C). The recombinant His-tagged proteins were purified by Ni2+

affinity chromatography on a HiTrap IMAC HP column (Cytiva) using the manufacturer’s
protocol for elution with imidazole at pH 8.0. The fusion tags were cleaved by TEV protease
(see above) and removed by Ni2+ affinity chromatography on a HiTrap IMAC HP column
(see above). The purified proteins were buffer-exchanged into 50 mM Tris-HCl pH 8.0,
150 mM NaCl, concentrated using an Amicon Ultra-3K centrifugal unit (Millipore), and
stored at −80 ◦C. Protein purity was monitored by Laemmli SDS-PAGE (see above).

4.5. Expression Analysis by Quantitative Real-Time PCR

Total RNA was isolated from adult I. ricinus females during different stages of blood
feeding and from different tissues of females fed for six days, as previously described [62].
The IrThy gene-specific qRT-PCR primers were designed using Primer3. The expression
level of IrThy mRNA was measured by qRT-PCR using LightCycler 480 (Roche Applied
Science) and SYBR green chemistry [62], with the forward 5′-atgagcaaatgcagtgcaac-3′

and reverse 5′-gcggttccactttctggat-3′ primers. Relative expression was normalized to I.
ricinus ferritin1 (AF068224) [66] according to the mathematical model of Pfaffl [67]. Data
were obtained from three independent biological replicates (five females per replicate).
Statistical significance was analyzed using the unpaired Student’s t-test and the one-way
ANOVA test.

4.6. Mass Spectrometry Proteomic Analysis

For the identification of native IrThy, proteins from the salivary gland extract and saliva
of adult I. ricinus female were reduced, alkylated, and digested with trypsin. LC–MS/MS
analysis of the digests was performed on an Ulti-Mate 3000 RSLCnano system (Dionex,
Thermo Fisher Scientific) coupled to a Triple-TOF 5600 mass spectrometer equipped with a
NanoSpray III source (ABSciex, Framingham, MA, USA). The peptides were separated on
an Acclaim Pep-Map100 analytical column (3 µm, 150 × 0.75 mm; Thermo Fisher Scientific)
by gradient elution in a 0.1% formic acid–acetonitrile mobile phase. Full mass spectrometry
scans were recorded from 350 to 1250 m/z; up to 25 candidate ions per cycle were subjected
to fragmentation; in MS/MS mode, fragmentation spectra were acquired from 100 to
1600 m/z. Mass data were processed using ProteinPilot 4.5 software (ABSciex).

For disulfide pairing analysis, recombinant IrThy, IrThy-Nd, or IrThy-Cd was digested
with trypsin or Asp-N in the presence of cystamine; LC–MS/MS analysis of the digests
was performed according to the protocol [68] described in Table S2.

4.7. Phylogenetic Distribution Analysis

Phylogenetic distribution was analyzed for proteins with Tg1 domains (Pfam en-
try: PF00086) in the InterPro-hosted Pfam database [28]. Proteins containing two Tg1
domains and meeting the additional criteria specified in Section 2.2. were filtered using
Python scripts.
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4.8. Protease Inhibition Assays

Inhibition measurements were performed in triplicates in 96-well microplates (100 µL
assay volume) at 37 ◦C. Recombinant inhibitors were preincubated with protease for 15 min,
followed by the addition of a specific fluorogenic substrate (see below). The kinetics of
product release were continuously monitored using an Infinite M1000 (Tecan, Männedorf,
Switzerland) microplate reader at 365 nm excitation and 450 nm emission wavelengths
(for AMC-containing substrates) or at 330 nm excitation and 410 nm emission wavelengths
(for Abz-containing substrates). The progress curves of kinetic measurements were linear,
indicating that the analysis was not affected by inhibitor degradation. IC50 values were
determined from residual velocities using dose–response plots; nonlinear regression was
fitted using GraFit software Version 7 (Erithacus, East Grinstead, UK), and the inhibition
constants Ki were calculated using the Cheng–Prusoff equation [41,60].

Substrates and proteases were applied in assays as follows: Z-Phe-Arg-AMC in a
concentration of 2.5 µM with 0.2 nM cathepsin L; 4.3 µM with 0.2 nM cathepsin K; 3.6 µM
with 0.1 nM cathepsin V; 53 µM with 0.2 nM cathepsin B; 27 µM with 1.2 nM cathepsin F;
100 µM with 0.5 nM papain; 17 µM Z-Val-Val-Arg-AMC with 0.1 nM cathepsin S; 100 µM
Arg-AMC with 1.9 nM cathepsin H; 87 µM Abz-Phe-Arg-Phe(NO2)-OH with 1.2 nM
cathepsin X; 130 µM Gly-Arg-AMC with 0.4 nM cathepsin C; 70 µM Z-Ala-Ala-Asn-AMC
with 1.2 nM legumain; 33 µM Abz-Lys-Pro-Ala-Glu-Phe-Phe(NO2)-Ala-Leu-NH2 with
3.5 nM cathepsin D; 67.8 µM Z-Phe-Arg-AMC with 0.6 nM trypsin; and 41.5 µM Suc-Ala-
Ala-Phe-Arg-AMC with 0.02 nM chymotrypsin. The assay buffers were as follows: 50 mM
sodium acetate pH 4.0 (for cathepsin D), pH 5.0 (for cathepsin X and legumain), or pH 5.5
(for cathepsins L, K, V, B, F, C, and papain); 50 mM MES pH 6.5 (for cathepsins S and H);
and 50 mM Tris-HCl pH 8.0 (for trypsin and chymotrypsin). The buffers contained 0.1%
polyethylene glycol 1500 and 2.5 mM dithiothreitol (for cysteine cathepsins and legumain),
50 mM NaCl (for cathepsin C), and 10 mM CaCl2 (for trypsin and chymotrypsin).

The inhibition mode was determined using an analogous activity assay with substrate
concentrations of 1–10 µM for cathepsin K and 1–32 µM for cathepsin V; initial velocities
of the product release were interpreted using a Lineweaver–Burk plot. The effect of pH
on the inhibitory potency of IrThy was measured with cathepsins K and V (as described
above) in 100 mM Britton–Robinson buffers within a pH range of 4.0–8.0. The effect of
GAGs on the inhibitory potency of IrThy was measured with cathepsins K, L, and V (as
described above) in the presence of various GAGs added to the preincubation mixture at
a final concentration of 10 µg/mL. Heparin was also tested in a concentration range of
0.01–10 µg/mL. Where indicated, incubation was performed in the presence of 0.3 M NaCl.

4.9. Proteolytic Degradation of IrThy

Recombinant IrThy was incubated with cathepsins B, K, L, or V in 50 mM sodium
acetate pH 5.5, 2.5 mM DTT, 0.1% polyethylene glycol 1500 at 37 ◦C. The reaction was
stopped by the addition of 10 µM E-64 at different time points. A 100 µL aliquot contained
10 µg of IrThy (final concentration of 6 µM) and 2 µg or 0.5 ng of cathepsin (final concen-
trations of 0.8 µM or 0.2 nM, respectively). The reaction mixture was acetone-precipitated,
separated by Laemmli SDS-PAGE (15% polyacrylamide gel), and stained with Coomassie
Brilliant Blue R-250.

4.10. NMR Spectroscopy

NMR spectra were acquired at 25 ◦C using an 850 MHz Bruker Avance spectrometer
equipped with a triple resonance (15N/13C/1H) cryoprobe. The protein sample (0.35 mL
in a Shigemi tube) was measured in 50 mM deuterated Tris-HCl pH 8.0, 150 mM NaCl,
and 5% D2O/95% H2O. A series of double- (Figure S7) and triple-resonance spectra [69,70]
were recorded to obtain sequence-specific resonance assignment in NMRFAM-Sparky [71].
1H–1H distance restraints were derived from spectra obtained by 3D 15N/1H NOESY-
HSQC and 13C/1H NOESY-HMQC spectra using a NOE mixing time of 100 ms. The
structure calculation was performed in CYANA [72] using NOESY data in combination
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with backbone torsion angle restraints generated from assigned chemical shifts using the
TALOS+ program [73].

The combined automated NOE assignment and structure determination protocol
(CANDID) was used for automatic NOE cross-peak assignment. Five cycles of simulated
annealing combined with redundant dihedral angle restraints were then used to calculate
a set of converged structures with no significant restraint violations (distance and van
der Waals violations < 0.5 Å and dihedral angle constraint violations < 5◦). The 30 struc-
tures with the least restraint violations were further analyzed using the Protein Structure
Validation Software suite [www.nesg.org] (accessed on 11 December 2023).

Statistics for the resulting structure are summarized in Table S4. The structures, NMR
restraints, and resonance assignments were deposited in the PDB (accession code: 8R6T)
and BMRB (accession code: 34883) databases. Figures with structural representations were
generated using PyMOL v2.3.2 (Schrödinger, New York, NY, USA) [74]. The structural
comparison of IrThy-Cd with other thyropins provided the following Cα RMSD values
(number of aligned Cα atoms is indicated): 5.36 Å (58 atoms) for the p41 fragment, 4.92 Å
(50 atoms) for saxiphilin domain 1, and 5.62 Å (49 atoms) for saxiphilin domain 2.

5. Conclusions

Ticks are parasite vectors for a variety of viral and bacterial diseases in humans and
domestic animals. Our study focuses on Ixodes ricinus ticks, vectors of Lyme borreliosis and
tick-borne encephalitis. Tick saliva injected into the host modulates the physiological re-
sponse at the tick bite site and facilitates the transmission of pathogens. Protease inhibitors
from tick saliva are important effector proteins in this process and thus represent promising
vaccination targets and pharmacological agents. Here, we characterize at the molecular
level a new protease inhibitor, IrThy, found in I. ricinus saliva. It belongs to the thyropin
family, which is poorly understood in parasites and pathogens. We provide a comprehen-
sive analysis of IrThy, including its unique inhibitory specificity against only three human
cysteine proteases, cathepsins V, K, and L, involved in immunity and inflammation, and
the NMR structure that explains the functional properties. Based on the results obtained,
we propose potential physiological roles for IrThy in host–parasite interaction at the tick
bite site.
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62. Urbanová, V.; Šíma, R.; Šauman, I.; Hajdušek, O.; Kopáček, P. Thioester-containing proteins of the tick Ixodes ricinus: Gene
expression, response to microbial challenge and their role in phagocytosis of the yeast Candida albicans. Dev. Comp. Immunol. 2015,
48, 55–64. [CrossRef]
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