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Abstract: Crocin is a unique water-soluble carotenoid found in crocus and gardenia flowers. Crocin
has been shown to have a variety of pharmacological activities, such as antioxidant, anti-cancer,
memory improvement, antidepressant, anti-ischemia, blood pressure lowering and aphrodisiac,
gene protection and detoxification activities. Due to their amphiphilicity, crocin molecules form
concentration-dependent self-associates (micelles) in a water solution. In the present study, using
various NMR techniques (T2 relaxation and selective gradient NOESY), we have demonstrated that
crocin forms mixed micelles with water-soluble drug delivery system glycyrrhizin and linoleic acid
molecules. Note, that the spin–spin T2 relaxation time and NOESY spectroscopy are very sensitive
to intermolecular interactions and molecular diffusion mobility. The second purpose of this work
was the elucidation of the interaction of crocin with a model lipid membrane using NMR techniques
and a molecular dynamics simulation and its effects on lipid oxidation. It was shown that the crocin
molecule is located near the surface of the lipid bilayer and effectively protects lipids from oxidation
by peroxyl radicals. The role of glycyrrhizin and vitamin C in metal-induced lipid oxidation was also
elucidated. The results of this study may be useful for expanding the field of application of crocin in
medicine and in the food industry.

Keywords: carotenoids; crocin; glycyrrhizin; mixed micelles; lipid peroxidation; vitamin C; NMR;
NOESY; molecular dynamics simulation

1. Introduction

Crocin (C44H64O24, Figure 1) is a water-soluble carotenoid extracted from the stig-
mas of Crocus sativus L. flowers, which are mainly grown in Iran, Greece, India, Italy,
and other countries. It is a glycosyl ester derivative of the C20-dibasic acid crocetin (8,8’-
dicarotenoic acid) (Figure 1). Crocin has pharmacological activities such as antioxidant,
anti-inflammatory, anti-cancer, and anti-atherosclerosis activities and others [1–6]. The
advantage of crocin over other carotenoids is its good water solubility, safety, and excellent
physiological activity; thus, it is also used as a dye and food additive [2,7]. As one can see
from Figure 1, crocin is an amphiphilic compound. It contains both a central hydrophobic
part (unsaturated polyene chain) and side hydrophilic parts (glycosyl fragments). It is
well known that such amphiphilic compounds are prone to self-association in aqueous
solutions, with the formation of dimers, micelles, liposomes, or gel nanoparticles [8–12].
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As for crocin itself, several studies have been performed to study its aggregation ability in
aqueous solutions as well as its interaction with other amphiphilic compounds [13–15]. In
particular, Z. Khan and coauthors studied the self-aggregation behavior of crocin and mixed
micelle formation with sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bro-
mide (CTAB) using dynamic light scattering (DLS) and transmission electron microscopic
(TEM) techniques. It was concluded that pure crocin forms vesicles in a water solution,
whereas vesicle-to-micelle transformation was observed in the presence of CTAB [13]. Var-
ious physicochemical techniques, such as UV–visible absorption spectroscopy, dynamic
light scattering, transmission electron microscopy, energy-dispersive X-ray spectroscopy,
and selected area electron diffraction patterns, have been also applied by Z. Zaheer and
coauthors to study aqueous solutions of crocin and its self-aggregates [14]. The critical
micellar concentration of crocin was determined as 0.2 mM. Using TEM images and DLS
results, the shape, size, and size distribution of crocin aggregates have been characterized.
The interaction of crocin with bovine serum albumin (BSA) was studied using various
techniques such as surface tensiometry, UV–visible spectrophotometry, and fluorescence
spectroscopy [15].

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 2 of 15 
 

 

self-association in aqueous solutions, with the formation of dimers, micelles, liposomes, 
or gel nanoparticles [8–12]. As for crocin itself, several studies have been performed to 
study its aggregation ability in aqueous solutions as well as its interaction with other 
amphiphilic compounds [13–15]. In particular, Z. Khan and coauthors studied the 
self-aggregation behavior of crocin and mixed micelle formation with sodium dodecyl 
sulfate (SDS) and cetyltrimethylammonium bromide (CTAB) using dynamic light 
scattering (DLS) and transmission electron microscopic (TEM) techniques. It was con-
cluded that pure crocin forms vesicles in a water solution, whereas vesicle-to-micelle 
transformation was observed in the presence of CTAB [13]. Various physicochemical 
techniques, such as UV–visible absorption spectroscopy, dynamic light scattering, 
transmission electron microscopy, energy-dispersive X-ray spectroscopy, and selected 
area electron diffraction patterns, have been also applied by Z. Zaheer and coauthors to 
study aqueous solutions of crocin and its self-aggregates [14]. The critical micellar con-
centration of crocin was determined as 0.2 mM. Using TEM images and DLS results, the 
shape, size, and size distribution of crocin aggregates have been characterized. The in-
teraction of crocin with bovine serum albumin (BSA) was studied using various tech-
niques such as surface tensiometry, UV–visible spectrophotometry, and fluorescence 
spectroscopy [15]. 

However, similar to most other carotenoids, the application of crocin in medicine 
and the food industry is restricted by its instability when exposed to heat, oxygen, light, 
acidic environments, and metal ions [16–18]. For example, the optical properties of crocin 
change, that is, the absorbance at short wavelengths increases, resulting in a decrease in 
the color rendering ability of crocin [19,20]. A high temperature will break the glycosidic 
bond of crocin, and the glucose molecules will be lost, thereby reducing or even elimi-
nating its physiological activity [20]. 

 
 

Crocin Crocetin 

 

Glycyrrhizic acid 

Figure 1. Structure of crocin, crocetin, and glycyrrhizic acid. 

To increase the stability and bioavailability of lipophilic carotenoids like β-carotene, 
lutein, astaxanthin, and others, the formation of inclusion complexes with various su-
pramolecular drug delivery systems (DDS) is used as an effective approach [21–24]. It has 

Figure 1. Structure of crocin, crocetin, and glycyrrhizic acid.

However, similar to most other carotenoids, the application of crocin in medicine and
the food industry is restricted by its instability when exposed to heat, oxygen, light, acidic
environments, and metal ions [16–18]. For example, the optical properties of crocin change,
that is, the absorbance at short wavelengths increases, resulting in a decrease in the color
rendering ability of crocin [19,20]. A high temperature will break the glycosidic bond of
crocin, and the glucose molecules will be lost, thereby reducing or even eliminating its
physiological activity [20].
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To increase the stability and bioavailability of lipophilic carotenoids likeβ-carotene, lutein,
astaxanthin, and others, the formation of inclusion complexes with various supramolecular
drug delivery systems (DDS) is used as an effective approach [21–24]. It has previously been
demonstrated that this approach allows not only an increase in the stability and bioavailability
of carotenoids but also corrects their antioxidant and photophysical properties [21,25]. In
particular, the incorporation of some carotenoids into polymer nanoparticles allows an increase
in their photostability by 5–10 times. It was shown that the main mechanism of increasing the
photostability of carotenoids in aqueous solution is the isolation of carotenoids from water
molecules, which play the role of the proton acceptor from the carotenoid radical cations
formed under irradiation. The neutral carotenoid radicals formed in this reaction are very
unstable and can rapidly transform into oxidized products. A similar protection mechanism
is implemented against transition metal ions, namely iron and copper, which effectively
oxidize carotenoids via an electron transfer mechanism [18]. Apanasenko and coauthors have
demonstrated that the incorporation of the carotenoids zeaxanthin and lutein into the micelles
of the disodium salt of glycyrrhizic acid decreases the oxidation rate of these carotenoids by
ferric ions by more than 10 times [25].

However, it should be noted that for most drug delivery systems, the driving force
of inclusion complex formation is hydrophobic interaction. Lipophilic molecules, like
carotenoids, can easily penetrate the hydrophobic interior of DDS (cyclodextrins, micelles,
lipid bilayer, and so on). Therefore, such an approach might be not suitable for the
water-soluble carotenoid crocin. On the other hand, as mentioned above, due to their
amphiphilicity, crocin molecules can form concentration-dependent self-associates (micelles
or vesicles) in a water solution [13–15]. Also, crocin molecules are able to be incorporated
into the micelles formed by the surfactants SDS and CTAB. We have suggested that crocin
is also able to form mixed micelles with other amphiphilic molecules used as the DDS, for
example, with lipid molecules and saponins (see reviews [26–29] for the application of lipid
nanoparticles and saponins as the drug delivery systems). To prove such a possibility, in
the present study, we have tried to use saponin glycyrrhizin and lipid molecules to prepare
mixed micelles with crocin. Note, that only a few examples of DDS for crocin molecules
have been reported so far [30,31].

Glycyrrhizin or glycyrrhizic acid (GA, Figure 1) is the main bioactive component of
licorice root (Glycyrrhiza glabra and G. uralensis). Licorice is one of the most frequently used
plants in traditional Eastern medicine [32–35]. GA has been established to be safe for food
and medical applications [36–38] and has a wide range of biological activities such as anti-
inflammation, anti-viral, and anticancer activity (see review [39]). In previous studies, it was
demonstrated by various physicochemical methods that the amphiphilic nature of GA allows
it to form micelles and gel nanoparticles in aqueous solutions as well as inclusion complexes
with drug molecules, thereby enhancing their stability, permeability, and bioavailability [40,41].
The formation of inclusion complexes of GA has been detected not only in aqueous solutions
but also in other organic solvents DMSO and acetonitrile [42,43].

In the present study, we have applied various NMR techniques (T2 relaxation and
selective gradient NOESY) to answer the question of whether crocin forms mixed micelles
with saponin glycyrrhizin and linoleic acid molecules. Note, that the spin–spin T2 relax-
ation time and NOESY spectroscopy are very sensitive to intermolecular interactions and
molecular diffusion mobility. The second purpose of this work was the elucidation of
crocin interaction with a model lipid membrane using NMR techniques and a molecular
dynamics simulation and the effect of crocin on lipid oxidation. The role of glycyrrhizin
and vitamin C in transition metal-induced lipid oxidation was also elucidated.

2. Results and Discussion
2.1. NMR Study of Crocin/GA Mixed Micelles in Water Solution

Various NMR techniques, including NOESY spectroscopy and NMR relaxation study,
are very sensitive to intermolecular interactions. That is why these techniques are widely
used to study self-association processes and inclusion complex formation [12,25,44,45].
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Earlier, it was shown that due to their amphiphilicity, crocin molecules are able to form
self-aggregates in a water solution [13–15]. The critical micellar concentration (CMC) of
crocin was estimated at 0.2 mM. Figure 2 shows the 1H NMR spectra of water crocin
solutions at different concentrations (0.2 mM and 2 mM). One can see the changes in the
chemical shifts of the methyl protons (around 2 ppm) and =CH– protons (5.5–7.5 ppm) but
not of the sugar protons (3–4.5 ppm) due to the self-association of crocin into micelles in the
water solution. The NMR relaxation study showed a decrease in the T2 proton relaxation
time from 130 ± 50 milliseconds to 20 ± 5 milliseconds for the methyl protons and from
155 ± 25 to 80 ± 10 milliseconds for the sugar protons when the concentration of crocin
was increased from 0.2 to 2 mM. The reason for this effect is that during the formation of
aggregates, the diffusion and rotational mobility of the crocin molecules slow down, and
the relaxation time of their protons decreases significantly. This also shows that the crocin
behavior of self-assembling into micelles in aqueous solution is concentration-dependent.
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Figure 2. 1H NMR spectra of crocin in PBS (pH = 7.1): 0.2 mM, 2 mM, 1 mM + 2 mM GA,
1 mM + 2 mM Na2GA.

Figure 2 also shows a shift and broadening of the NMR lines of crocin in the presence of
2 mM of GA and its disodium salt Na2GA in a buffered water solution. Taking into account
the amphiphilicity of the GA molecule and its ability to self-associate, we have suggested
that the changes in the NMR spectrum of crocin in the presence of GA and Na2GA are due
to mixed micelle formation. To prove this hypothesis, we have applied T2 relaxation and
selective NOESY (sNOESY) techniques, which are extremely sensitive to the diffusional
mobility of molecules and intermolecular interactions, as mentioned above. Changes in the
T2 relaxation time are often considered evidence of inclusion complex formation as well as
self-association processes occurring in aqueous solutions [12,44,45]. We expect that when
the mixed micelles are formed, their diffusion and rotational mobility will change. From
the sNOESY spectra, we expect to detect crocin interaction with the micelles of GA and
Na2GA. Indeed, the selective gradient NOESY spectra shown in Figure 3 demonstrate the
presence of cross-peaks between crocin and the GA protons. The =CH– protons of crocin
(6–7.5 ppm) were saturated, and cross-peaks at the position of sugar (3–4 ppm) and methyl
GA protons (0.5–1.5 ppm) were detected.
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protons are saturated.

The T2 relaxation study showed that the relaxation time of =CH– crocin protons in
aqueous solutions (1 mM of crocin) decreases from 18 ± 2 ms to 11 ± 2 ms in the presence
of 2 mM GA or Na2GA. The significant decrease in T2 relaxation time in the presence of GA
and Na2GA is direct evidence of mixed micelle formation. This NMR relaxation experiment
confirmed the conclusions drawn from the results of the sNOESY experiment.

2.2. NMR and MD Study of Crocin Interaction with LA Micelles and DMPC/DHPC Bicelles

To shed light on the mechanism of crocin bioactivity, including antioxidant activity, it is
important to understand its ability to form mixed micelles or vesicles with lipid molecules
as well as the crocin location in the lipid membrane. To answer these questions, in the
present study, we have applied a 1H-NMR selective gradient NOESY technique and a
molecular dynamics simulation. Note, that the intensities of the cross-peaks in the NOESY
spectrum are extremely sensitive to the distance between interacting protons. We observed
the appearance of a cross-peak in the NOESY spectrum if the distance between the nuclei
was less than 0.5 nm. Thus, the arrangement of crocin molecules in the lipid micelle or
membrane could be determined.

In the present work, we used linoleic acid (LA) to study the mixed micelles of crocin
with lipids and as the model for lipid peroxidation and the bicelles DMPC/DHPC to study
the crocin interaction with lipid membranes (Figure 4).
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Figure 4. The structures of linoleic acid (LA) and phospholipids DMPC and DHPC used in the
present study.

Figure 5 shows the presence of a cross-peak in the sNOESY spectrum between the
crocin =CH– protons (saturated protons) and the -CH2– protons of LA, which indicate
their location in the same self-associate. In the next paragraph (Section 2.3), these mixed
micelles will be used as a model to study the influence of crocin on metal-induced lipid
peroxidation. We assume that the configuration of crocin in mixed micelles with LA is
similar to that previously proposed for the crocin molecule included in the SDS and STAB
micelles [13]. In that study, the authors suggested that the presence of CTAB significantly
changed the aggregation phenomenon of crocin due to the complete solubilization and
incorporation of crocin into the CTAB and led to the formation of mixed micelles having a
wicket-like conformation.
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In the present paper, we deal with mixed micelles, which are large enough and can
contain different ratios of molecules in each micelle. So, it is hard to speculate on the exact
structure of the self-associates. In the case of linoleic acid micelles, we can assume that
the crocin molecule bends in such a way that the sugar fragments are located outside the
micelle, and the hydrophobic part is inside. This structure can be inferred from the NOESY
data since we observed cross-peaks between the –CH= protons of crocin and the CH2
protons of linoleic acid, but we did not observe cross-peaks between the –CH= protons of
crocin and the terminal CH3 protons of linoleic acid, which would be expected if the crocin
molecule was unfolded and pierced the linoleic acid micelle.

Similar effects have been observed for crocin interaction with the model lipid bilayer—
bicelles DMPC/DHPC in PBS buffer solution. The presence of cross peaks with the –CH2–
protons of lipids indicates the location of the hydrophobic chain of crocin inside the lipid
bilayer (Figure 6a). The cross-peak at ~2 ppm corresponds to an intramolecular interaction
with crocin methyl protons, which are spatially close to saturated crocin =CH– protons.
But we do not observe cross-peaks between the CH protons of crocin and the terminal CH3
protons of the phospholipid, which would be expected if the crocin molecule penetrated
the center of the lipid bilayer.
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Figure 6. 1H NMR and selective gradient NOESY spectra of (a) 0.5 mM crocin and 24 mM
DMPC/DHPC in PBS (mixing time = 0.4 s), (b) 0.5 mM crocin + 2 mM GA and 24 mM DMPC/DHPC
in PBS (mixing time = 0.4 s). Crocin =CH– protons are saturated. The presence of cross-peaks
indicates location of crocin inside lipid bilayer.

When glycyrrhizic acid was added to the system, the additional cross-peak between
the crocin =CH– protons and the lipid N+(CH3)3 protons appeared, while the cross-peak
between the crocin =CH– protons and the lipid CH2-protons remained (Figure 6b). This
means that in the presence of GA, crocin is slightly shifted to the bilayer surface but stays
immersed in the hydrophobic part of the bilayer. We suppose that the mobility of the
CH-chain of crocin increases in the presence of GA, which leads to a freer movement of the
investigated protons closer to the surface and back deeper into the bilayer. However, from
the experimental data, we can only say unambiguously that some fraction of –CH= protons
appears closer to the bilayer surface, which leads to the appearance of cross-peaks between
the –CH= protons of crocin and the N+(CH3)3 protons of lipids. The influence of GA on
phospholipid membranes has been studied in detail in our earlier works (see review [29]
and refs therein).
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This experimental result, namely the location of the hydrophobic chain of crocin inside
the lipid bilayer, was also confirmed by MD simulations. Figure 7 illustrates the localization
of the crocin molecule in the model DMPC membrane. One can see that hydrophilic groups
of crocin (atoms 1 and 2 in Figure 7) are located near the surface of the membrane, but the
hydrophobic chain (atom 3) penetrates deeper into the polar region of the lipid bilayer and
is located near the phospholipid acyl chain but does not make contact with the terminal
CH3-groups of the lipid. The lipid bilayer is centered at the center of the box.
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Figure 7. Density profiles of the selected O and C atoms of crocin (left). Atoms 1 and 2 belong to
OH groups of terminal sugar fragments, and atom 3 belongs to the methyl group in the center of
the polyene chain. Vertical lines correspond to the centers of density profiles of DMPC N-atoms.
Snapshot of MD trajectory of crocin in box with DMPC bilayer (right). Water molecules are not
shown. Two production runs with 500 ns duration were performed in MD simulation, and density
was calculated by averaging both trajectories.

Based on the sNOESY experimental data and the MD calculations, we assume that
the crocin molecule in the lipid bilayer has a curved shape, as earlier suggested by Khan
and coauthors for crocin molecules incorporated into CTAB micelles [13]. Since in the lipid
membrane, the crocin molecule changes its form to a U-shape (see Figure 8), the sugar
fragments become not equivalent. Therefore, atoms 1 and 2, which stay in symmetric
positions outside the membrane, show the three distribution peaks shown in Figure 7. The
conclusions about the shape of the crocin molecule are made on the basis of observed NOE
signals. When the crocin –CH= protons were saturated, NOE signals of the phospholipid
CH2 protons were observed. However, we did not observe cross-peaks between the –CH=
protons of crocin and the terminal CH3 protons of the phospholipid, which would be
expected if the crocin molecule were in an unfolded form. We also confirmed the curved
form of the crocin molecule by MD simulations (see Figure 8). Note, the U-shape is a
characteristic form for bolaamphiphiles like the crocin molecule.
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lipid bilayer obtained by MD simulation.

2.3. Peroxidation of Linoleic Acid Micelles in the Presence of Crocin

In the last decade, several studies have indicated that carotenoids may prevent or
inhibit certain types of cancer, atherosclerosis, age-related muscular degeneration, and
other diseases (see the last review as an example [46]). It was suggested that such activity
of carotenoids is related to their ability to scavenge free radicals. A number of studies have
indicated that carotenoids act as antioxidants in solution, micelles, and lipid membranes.
Three mechanisms are usually discussed for the reaction of free radicals with carotenoids,
namely radical addition to the carotenoid polyene chain, hydrogen abstraction from the
carotenoid, and electron transfer. The primary products of these reactions were further
reacted with other reactive species by means of various reaction mechanisms to give a
variety of products [46].

In the present work, the antioxidant activity of crocin was studied through the NMR
method using LA micelle oxidation as a model process (Equations (1)–(4)). Lipid mi-
celles formed by LA are widely used as models to simulate the properties of biological
membranes [46]. Likewise, the polyunsaturated fatty acid LA has also been used in lipid
peroxidation studies [47,48]. We studied the redox activity of crocin in an LA peroxidation
reaction in the presence of metal ions through the changes in the NMR spectrum at different
time delays after mixing. The changes in the LA proton signal intensity during the reaction
were recorded to conduct a kinetic analysis of the redox process [49]. Specifically, we
performed a kinetic analysis of the reaction process through the time-dependent change
in the NMR signal intensity of the bisallyl protons (2.7 ppm, see Figure 5) of LA. Because
the bisallyl group of LA loses a hydrogen atom in the initial stage of oxidation, and the
reaction products (Equations (1)–(4)) have no NMR signal at 2.7 ppm, the initial stage of
the reaction can be characterized. The intensity of the signal at 2.7 ppm decreases with time
(Figure 9). The following Equations (1)–(4) represent the iron-induced lipid peroxidation
process [50–53].

Fe2+ + H2O2 → Fe3+ + OH + OH− (1)

LH + OH·→ L + H2O (2)

L + O2 → LOO·

LOO + LH → LOOH + L (3)

LOOH → LO·→ epoxides, hydroperoxides, aldehydes

L·+ L·→ L − L (4)

LOO + L → LOOL
LOO + LOO → LOOL + O2
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In addition, we studied the effect of crocin on lipid oxidation in the presence of vitamin
C (ascorbate). The influence of ascorbate on this process is mediated by the reduction of
Fe3+ to Fe2+ (5), which accelerates the formation of OH radicals (1):

AscH− + Fe3+ → Asc•− + Fe2+ + H+ (5)

From Figure 9 we can see that the signal intensity decays exponentially with time.
Then, through data processing, we obtained the rate constant of the LA peroxidation
reaction. In the absence and presence of crocin, the rate constants of the initial stage of
LA peroxidation are 1.7 ± 1 × 10−4 s−1 and 2.9 ± 0.2 × 10−5 s−1, respectively, from
which we can infer that crocin, as an antioxidant, can slow down the oxidation of lipids.
Interestingly, when we measured the redox activity of Na2GA and the crocin/Na2GA
mixture in the peroxidation reactions of LA (Table 1), we found that both Na2GA and the
crocin/Na2GA complex decreased the oxidation rate with the same rate constants. This
shows that Na2GA itself has an obvious antioxidant effect, as it was previously detected by
EPR and CIDNP techniques.

Table 1. Rate constants of the reactions of linoleic acid (LA) peroxidation induced by iron ions in the
absence and in the presence of crocin, Na2GA and ascorbate.

System Rate Constant, in 10−5 s−1

LA 17 ± 1
LA + 1 mM crocin 2.9 ± 0.2

LA + 1 mM Na2GA 1.8 ± 0.2
LA + 0.1 mM crocin + 1 mM Na2GA 1.8 ± 0.2

LA + 2.5 mM ascorbate 128 ± 4
LA + 1 mM crocin + ascorbate 10.7 ± 0.3

The addition of ascorbic acid significantly increased the rate constant of LA peroxi-
dation by a factor of 7.5 compared to similar conditions without ascorbic acid (see Table 1
and Figure 10). This observation may be due to the rapid conversion of Fe(III) to Fe(II) in
the presence of ascorbic acid. This accelerates the formation of OH radicals via the Fenton
reaction (1). In the presence of ascorbic acid and crocin at the same time, the rate constants
of LA peroxidation were significantly lower than in the control group without the addition
of ascorbic acid. The results of this experiment indicate that crocin is able to inhibit the
pro-oxidant effect of ascorbic acid in metal-induced lipid peroxidation.
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Figure 10. Ascorbate enhanced LA peroxidation in the presence and in the absence of crocin at 20 ◦C.
Peroxidation studies were performed using 3.5 mM LA, 1 mM crocin, 0.1 mM FeSO4 (pH 7.4), 2.5 mM
ascorbate, and 0.5 M H2O2. Graphs are based on the decay of the integral intensity of LA protons at
2.7 ppm.

3. Materials and Methods
3.1. Materials

Crocin was purchased from Hangzhou Muhua Biotechnology Co., Ltd., Hangzhou,
China. Glycyrrhizic acid (GA, purity of GA ~98.0%) and Na2GA (purity of Na2GA ~99.5%)
were purchased from Shaanxi Panier Biotechnology Co., Ltd., Xi’an, China. Linoleic acid
was purchased from Shanghai Aladdin Bio-Chem Technology Co., Ltd., Shanghai, China.
The lipids 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dihexanoyl-sn-
glycero-3-phosphocholine (DHPC) (both >99% purity) were purchased from Avanti Polar
Lipids, Inc., Birmingham, AL, USA. Deuterated solvent (D2O, 99.8% D) was obtained from
Sigma Aldrich (St. Louis, MO, USA) and was used as supplied.

3.2. NMR and Selective NOESY Measurements

The 1H NMR and selective gradient NOESY (sNOESY) spectra were recorded on
a Bruker AVHD-500 (500 MHz at 1H) NMR spectrometer (Bruker, Billerica, MA, USA)
at 300 ◦K. The optimal mixing time, that is, the delay during which the magnetization
transfer via cross-relaxation occurs in selective NOESY, was determined through a series of
sNOESY experiments. The NMR spectra were processed using TopSpin 3.6.2 software. The
T2 relaxation time was measured using a Carr–Purcell–Meiboom–Gill pulse sequence at
300 K. The spin–spin relaxation time T2 is closely related to the mobility of the molecule
and is inversely proportional to the rotation correlation time. Therefore, by using T2 data,
we can draw conclusions about the influence of the environment or the molecular state
(free/bound).

3.3. Sample Preparation for Lipid Peroxidation Studies

Micelles of LA (3.5 mM LA) were used as the model for lipid peroxidation. Solutions
of 0.5 M H2O2, 0.1 mM FeSO4 prepared in phosphate-buffered saline (PBS), and 2.5 mM
ascorbic acid were used for the lipid peroxidation studies of crocin. All the experiments
were conducted at the natural oxygen level.

3.4. Sample Preparation for NMR Study of Crocin Interaction with Bicells

Small isotropic DMPC/DHPC bicelles were used as a model of crocin interaction
with cell membranes. The bicelles were formed from DMPC (1,2-dimyristoyl-sn-glycero-3-
phosphocholine) and DHPC (1,2-diheptanoyl-sn-glycero-3-phosphocholine). Powdered
lipids were dissolved in chloroform, the solvent was dried, and the resulting film was
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hydrated with PBS (pH = 7.4) dissolved in D2O. To accelerate the formation of bicelles,
three freeze–thaw cycles were performed [54]. The DMPC:DHPC ratio was 1:2, with the
total lipid concentration being 12 mM.

3.5. Molecular Dynamics Simulations

Molecular dynamics simulations were performed to understand the interactions of
crocin with phospholipid-containing membranes using the GROMACS 2018.4 package and
GROMOS54a7 force field. The topology of crocin was built using the Automated Topology
Builder [55]. For lipid simulations, the model DMPC lipid was utilized [56]. The simple
point charge model of water molecules was used.

The simulation was performed in the NPT ensemble with constant pressure (1 bar) and
constant temperature T = 300 K, which were maintained by the semi-isotropic Parrinello–
Rahman barostat [57] and Nose–Hoover thermostat [58]. The initial configuration of
the system contained the bilayer consisting of 128 lipid molecules surrounded by water
(~10,000 water molecules) and a crocin molecule located in water outside the bilayer. One
production run of 500 ns duration was performed.

4. Conclusions

In the present study, using various NMR techniques (T2 relaxation and selective gradient
NOESY), we have shown that crocin can form mixed micelles with other micelle-forming
amphiphilic molecules, namely saponins (glycyrrhizic acid) and lipids (linoleic acid). Note
that both saponins and lipids are capable of forming nanoscale associates used as drug delivery
systems. In addition, it was demonstrated that the crocin molecule was not able to penetrate
the center of the membrane but was located mainly near the membrane surface. Based on
the sNOESY experimental data and the MD simulation, we assume that the crocin molecule
in the lipid bilayer, as well as in the mixed micelles with LA and GA, has a curved shape, as
previously suggested by Khan and coauthors for crocin molecules incorporated into CTAB
micelles [13]. In the case of the lipid bilayer, the hydrophilic sugar groups of crocin were
located near the surface of the membrane, but the hydrophobic chain penetrated deeper into
the polar region of the lipid bilayer and was located near the phospholipid acyl chain but still
did not make contact with the terminal CH3-groups of the lipid.

Based on our preliminary experience, we can expect that the incorporation of crocin
into these mixed micelles can significantly increase crocin penetration through lipid mem-
branes as well as enhance its stability [59]. We plan to elucidate these aspects in the next
study. Some authors suggested that crocin micelles could be a promising compound for
studying nonlinear photodynamic therapy [60]. From this point of view, the location of
crocin in the cell membrane and its ability to penetrate through the lipid bilayer are also
very important.

Additionally, the NMR technique has been applied to demonstrate the antioxidant
activity of crocin and glycyrrhizic acid using the model reaction of iron ion-induced lipid
peroxidation. We have studied the influence of crocin, glycyrrhizic acid, and ascorbic
acid on lipid peroxidation in a model system—the micelles of linoleic acid that mimic the
cell membrane. The direct calculation of the rate constant of the initiation stage of lipid
peroxidation was performed using the original approach based on the measurement of the
decay rate of the NMR signal of the bis-allylic proton of linoleic acid [61].

The results of this study may be useful for expanding the field of application of crocin
in medicine and in the food industry.
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