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Abstract: Taxonomic classification using metabarcoding is a commonly used method in microbi-
ological studies of environmental samples and during monitoring of biotechnological processes.
However, it is difficult to compare results from different laboratories, due to the variety of bioinfor-
matics tools that have been developed and used for data analysis. This problem is compounded
by different choices regarding which variable region of the 16S rRNA gene and which database is
used for taxonomic identification. Therefore, this study employed the DADA2 algorithm to optimize
the preprocessing of raw data obtained from the sequencing of activated sludge samples, using
simultaneous analysis of three frequently used regions of 16S rRNA (V1–V3, V3–V4, V4–V5). Ad-
ditionally, the study evaluated which variable region and which of the frequently used microbial
databases for taxonomic classification (Greengenes2, Silva, RefSeq) more accurately classify OTUs
into taxa. Adjusting the values of selected parameters of the DADA2 algorithm, we obtained the
highest possible numbers of OTUs for each region. Regarding biodiversity within regions, the V3–V4
region had the highest Simpson and Shannon indexes, and the Chao1 index was similar to that of the
V1–V3 region. Beta-biodiversity analysis revealed statistically significant differences between regions.
When comparing databases for each of the regions studied, the highest numbers of taxonomic groups
were obtained using the SILVA database. These results suggest that standardization of metabarcoding
of short amplicons may be possible.
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1. Introduction

Recently, due to the dynamic development of DNA sequencing techniques for analyz-
ing environmental samples, it has become necessary to use a reliable method that allows
for characterization of the organisms in those samples. One such method is metabarcoding,
which allows the simultaneous identification of organisms and multiple taxa within the
same sample using short fragments of DNA. To do this, researchers have searched for
genetic barcodes that meet three conditions. First, they should have high genetic variability
and differentiate organisms at the species level. Second, they should contain conserved
flanking sites that allow the creation of universal PCR primers. Finally, they need to have
the shortest possible sequences. For metabarcoding bacteria and archaea, the gene encoding
the small subunit of ribosomes (16S rRNA gene) is usually chosen [1]. Nine variable regions
(V1–V9) have been identified in the sequence of this gene, which allow the observation
of interspecies differences [2]. There are also differences in variation between the regions
themselves. In bacterial metabarcoding studies, the first five regions (V1 to V5) are com-
monly used. The lengths of the individual regions do not exceed the suggested values
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for barcodes, allowing them to be combined into fragments. In between these regions,
fragments of low variability are present, which are also known as conservative regions.
The region that proves to be most sensitive and accurate usually depends on the source of
the sample.

Metabarcoding is usually used in environmental microbiology to classify bacteria
at different taxonomic levels, detect the occurrence of taxonomic groups over time, seek
differences between samples taken under different conditions, and determine biodiversity
within or between samples. For example, the V3–V4 region was used to perform taxonomic
classification and deeper analysis in studies that focused on tropical warm springs and
different areas of the Rimac river [3,4]. In other examples, the V4–V5 region was used
to study the microbial communities in rainwater and precipitation in a forest area and
to compare five different ways to extract DNA from marine bacterial communities [5,6].
More and more often, metabarcoding is used to investigate technical biocenoses, such as
activated sludge. Activated sludge is a flocculent culture of microorganisms and protozoa
that develops in aeration tanks under controlled conditions and is used in biotechnological
wastewater treatment processes [7]. For these studies, the combined V3–V4 region is most
often used. In activated sludge studies, it is important to determine taxonomic groups,
biodiversity, and taxon variability over time to monitor process performance [8].

Due to the fact that the results are obtained in the form of short readings, which
are not always of appropriate quality, preprocessing is necessary. Preprocessing consists
of such steps as adapter removal, read quality control, sequence filtering and trimming,
merging, and chimera removal [9]. The choice of additional analyses depends on the
specifics of the work: for the purpose of diversity analysis, applying alpha-diversity
indices is usually enough. In the case where many samples are compared, beta- and
gamma-diversity tests are used. Currently, for bioinformatic analysis, algorithms such
as DADA2 [9] and Deblur [10] are applied. These algorithms are already part of open-
source platforms, such as Galaxy or Qiime 2, that are used for taxonomic classification
of microorganisms [11,12]. Several databases offering extensive collections of taxonomic
groups may be encountered inside these platforms. A frequently used database is SILVA,
which offers a high number of taxonomic groups and 99% identity [13]. We can also find
databases such as Greengenes2 [14] or RefSeq [15].

However, the various approaches to metabarcoding often make it difficult to compare
the results of different studies because, due to advances in NGS capabilities, the diversity
of processes performed in laboratories and during bioinformatics analysis has expanded.
When utilizing the same region of the 16S rRNA gene, bacteria from different environments
do not classify equally. In response to this problem, measures are being taken to standardize
and optimize the entire process. One attempt at standardization is to examine the differ-
ences between taxonomic classifications using different regions in a particular environment
to try to select the most accurate region for that environment [16]. Such standardization and
the possibility of comparing results will certainly enable the development of metabarcoding
processes in many fields.

Therefore, in this study using activated sludge samples, we wanted to attempt
to standardize the process by optimizing preprocessing for metabarcoding using the
three combined regions (V1–V3, V3–V4 and V4–V5) of the bacterial 16S rRNA gene. The
optimalization process included selecting parameters for the DADA2 plugin for Qiime2,
with further complex control of the sensitivity and effectivity of the acquired operational
taxonomic units (OTUs) from each tested combined region. Additionally, we performed
a comparative analysis of three databases usually used for classification of bacterial tax-
onomies.

2. Results

This study aimed to optimize the bioinformatic analysis of the microbial composition
of activated sludge samples. As a first step towards achieving this goal, the preprocessing
of raw sequences was optimized in the Qiime2 environment. Next, the effects of primers
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targeting different variable regions of the 16S rRNA gene on indices of biodiversity was
examined. Finally, the influence of using different databases on the classification of bacterial
taxonomies was investigated.

The mean number of reads for the V1–V3 combined regions was 256,440 ± 16,293. The
value for the V3–V4 combined regions was 214,490 ± 20,239, and for the V4–V5 combined
regions, it was 160,356 ± 6954.

The initial parameters for the DADA2 algorithm were set based on the QS results.
This algorithm has three major steps: sequence filtration, sequence merging, and chimera
removal. The results of each stage of the optimization process were averaged across all sam-
ples within each of the tested combined regions of the 16s rRNA gene. The result of the initial
filtration process was 52.84 ± 5.03% of the input reads from the V1–V3 combined region,
but the percentage dropped drastically after merging and chimera removal to 0.77 ± 0.12%
and 0.71 ± 0.12%, respectively (Figure 1A). Regarding the V3–V4 combined region, the
drop from filtration, to merging, to chimera removal was not so drastic (70.92 ± 2.46%,
54.45 ± 4.24%, 37.28 ± 3.37%, respectively). As for the V4–V5 region, the drop from the
initial to the final step was the smallest of the three regions (59.79 ± 2.60%, 54.45 ± 4.24%,
37.28 ± 3.37%, respectively). Based on these results, the optimization process first fo-
cused on increasing the output from both the V1–V3 region after the merging step and
the chimera deletion step for all three regions. Changing --p-min-overlap from the default
12 to 10 increased the percentage of merged reads from the V1–V3 region to 6.54 ± 0.64%.
Similarly, changing the --p-chimera-method from the default consensus to pooled increased
the number of passed non-chimeric reads in all the tested combined regions by at least
1.5-fold (V1–V3: 6.36 ± 0.62%, V3–V4: 49.36 ± 3.66%, V4–V5: 52.93 ± 4.36%). In the second
stage of optimization, changing the --p-trunc-left-r value increased the merging step of
V1–V3, but decreased that of V3–V4 and V4–V5 (12.5 ± 3.44%, 17.3 ± 1.7%, 31.08 ± 1.45%,
respectively); therefore, this change was not adopted.
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Figure 1. Average percentages of filtration, merging and non-chimeric read output from DADA2
pipeline. Each process from the DADA2 pipeline is represented by a different color. Each bar shows
the mean percentage calculated from seven samples. (A) Mean percentages in each sample with
initial parameters. (B) Mean percentages with parameters after the optimization process.

Next, further decreasing the --p-min-overlap value to 8 was tested. This change in-
creased the mean percentage of merged reads from V1–V3 to 7.54 ± 0.88%, without affecting
the number of reads from the other regions. However, this percentage was still deemed too
low; thus, in the fourth stage, the --p-pooling-method was changed from independent to a



Int. J. Mol. Sci. 2024, 25, 3508 4 of 12

more sensitive option for rare variants—pseudopooling. Additionally, the value of --p-trunc-
len-f was changed from 280 to 260 and the value of --p-min-fold-parent-over-abundance was
changed from 1 (default) to 8. Unfortunately, even though these changes increased the mean
percentage of the merging step in V3–V4 and V4–V5 (51.87 ± 3.72% and 54.93 ± 4.47%),
they decreased that of V1–V3 (3.15 ± 0.25%). Therefore, in the fifth stage, the change from
the fourth stage was reversed, and the value of --p-trunc-len-f from the initial 280 to 298 was
changed. This modification increased the chimera deletion step of V1–V3 (17.55 ± 1.23%),
while only slightly decreasing that of V3–V4 and V4–V5 (46.30 ± 3.73% and 49.80 ± 4.34%).
Compared to the initial stage with the default values, these percentages were 14, 2, and
0.5-fold higher, respectively (Figure 1B). Further parameter modifications did not increase
the final output. In the control, the effects of --p-min-overlap, --p-pooling-method, --p-chimera-
method, and --p-min-fold-parent-over-abundance were investigated without trimming and
truncating. Under these conditions, only 0.89% ± 0.57 of V1–V3 reads, 10.71% ± 2.27 of
V3–V4 reads, and 3.41% ± 0.85 of V4–V5 reads successfully passed the filtration step in
preprocessing.

The preprocessed reads were used to obtain the number of OTUs and to proceed to
a comparison of the sensitivity and effectiveness of the combined regions. The average
OTU count was the highest for the V3–V4 region with 6702 ± 402, followed by V1–V3
with 2563 ± 197, and V4–V5 with 1527 ± 58 OTUs. As shown in the correlation heatmap
(Figure 2), there were negative, statistically significant correlations between the combined
regions. The samples from the V1–V3 and V4–V5 regions displayed small negative cor-
relations that were not statistically significant. Within each tested combined region, the
correlations were positive and statistically significant.
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Figure 2. A heatmap depicting the Spearman correlation coefficients between each sample of tested
fragments. The intensity of the color gradient reflects the direction and strength of the Spearman
correlation. Black dots on the heatmap indicate non-significant correlation coefficients (p > 0.05).

Analysis of the combined areas revealed the highest values of Simpson’s index for the
V3–V4 area, while the V1–V3 and V4–V5 areas had similar values (Figure 3A). There was
a significant difference between V3–V4 and V1–V3 (p < 0.001), and between V3–V4 and
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V4–V5 (p < 0.01). There was no statistically significant difference between the V1–V3 and
V4–V5 combined regions.
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Figure 3. Visualization of alpha-diversity indices: Simpson index (A), Chao1 index (B), and Shannon
index (C). Each of the tested 16S rRNA combined regions is represented by a different color: V1–V3
(light blue), V3–V4 (yellow) and V4–V5 (red). Statistical significance was evaluated with the Kruskal–
Wallis test followed by Dunn’s post-hoc test. A non-significant difference between combined regions
is shown with “ns”, p < 0.01 is indicated by two stars (**), and p < 0.001 is shown by three stars (***).

As for the Chao1 index, the V4–V5 combined region exhibited the lowest value
(Figure 3B). This value was significantly different from those of the V1–V3 combined region
(p < 0.01) and the V3–V4 region (p < 0.001). In the case of the Shannon index, the V3–V4
combined region exhibited the highest value (Figure 3C). There was a statistically significant
difference between V1–V3 and V3–V4 (p < 0.001), as well as between V3–V4 and V4–V5
(p < 0.01). After assessing diversity within each of the combined regions, beta-diversity was
calculated using Bray–Curtis distance and visualized on a PCoA plot (Figure 4). There are
noticeable differences between each combined region of the 16S rRNA gene, but differences
do not exist between samples in each tested region. The differences between combined
regions were further confirmed with a PERMANOVA test, revealing a significant Pseudo-F
value of 34.42 with a p-value of 0.001 for each combination between tested combined
regions of 16S rRNA gene.

In the last stage of the study, we conducted a comparative classification based on
the three most popular databases. In the SILVA database, there were 510,508 taxonomy
groups identified for the small subunit with a 99% identity threshold. For the RefSeq
database, there were 25,974 taxonomy groups for Bacteria and 1140 for Archaea. Taxonomy
of Greengenes2 is based on the Genome Taxonomy Database (GTDB) and Living Tree
Project. The largest number of taxonomic groups was obtained by using the Silva database,
and the smallest by using the RefSeq database (Figure 5). Differences in the number
of taxonomic groups between databases within each combined region were statistically
significant. The most unique taxonomic groups were obtained with the Silva database. It is
worth pointing out that the unique taxonomic groups obtained from the RefSeq database
were more numerous than those obtained from the Greengenes2 database. Differences in
the number of unique taxonomic groups between databases within each combined region
were statistically significant.
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Figure 5. Mean quantities of all taxonomic groups obtained from three different databases within
each region tested (n = 7). The Greengenes2 (GG2) database is shown in green, RefSeq is shown in red,
and Silva is shown in blue. For all three regions, the values on the Y axis are the same. The differences
of all taxonomic groups obtained in the taxonomic classification within the combined region are
statistically significant. Inside each bar is a black dash indicating the number of unique taxonomic
groups. Differences between the number of unique taxonomic groups within the combined region
are statistically significant.
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3. Discussion

In 16S rRNA metabarcoding, determining an appropriate set of common parameters
for the DADA2 algorithm for multiple regions of 16S rRNA will provide an opportunity
to reduce differences between various approaches to taxonomic analysis. Despite the
popularity of this algorithm, suggestions for a set of parameter values adapted to a specific
environment have still not been created. In addition, the use of ASV or OTU-based
approaches is also a non-standard aspect. Although the use of ASVs is growing, activated
sludge studies are often based on OTUs [17–19].

Therefore, this work suggests a possible set of parameters for the DADA2 algorithm
with which to further standardize the metabarcoding process of 16S rRNA gene amplicons
and simplify the comparison of results. Obtaining a fully standardized process requires fur-
ther work with larger samples, with which the sensitivity to adjustments of the algorithm’s
parameters will be increased.

The choice of which variable region of the 16 s rRNA gene (V1 to V5) varies from
one field to the next. In the environmental and biotechnology fields, the suitability of
these regions was evaluated using the Chao1, Simpson and Shannon (alpha-diversity)
indices, as well as beta-diversity indices and other analyses. For example, in a study using
environmental samples, Bukin et al. [20] compared differences in microbial classification
using the V2–V3 and V3–V4 regions. Using the previously mentioned biodiversity indices,
it was indicated that the V2–V3 region showed greater resolution at the genus and species
level. However, in a study by Brandt and Albertsen [21], it was shown that when comparing
the sensitivity and power of taxonomic classification of the V1–V3, V3–V4 and V4 regions,
the V3–V4 or V4 region has the highest power. In contrast, human origin samples frequently
use the first regions of 16S rRNA. An example is the study of respiratory samples, in which
four regions were selected to compare regions and test their taxonomic identification ability:
V1–V2, V3–V4, V5–V7 and V7–V9. In addition, because of the nature of the work and the
possible use of the results, receiver operating characteristic (ROC) curves were additionally
used. The result of this work was that the V1–V2 region is the most sensitive and has the
highest power for taxonomic classification. Therefore, The Human Microbiome Project
used the V3–V5 region as the core region for taxonomic classification, while the V1–V3
region was used to enhance the power of the resulting classification [22].

In the context of this difference between fields and due to the lack of comparison
studies with activated sludge, it was unclear which region should be used for evaluating
samples from wastewater treatment plants. This study helps to fill this gap in knowledge
by suggesting that for biotechnological samples such as activated sludge, the V3–V4 region
shows the greatest power to carry out taxonomic studies. It is noteworthy that parallel
work with the other regions would fill in the missing OTUs.

In the metabarcoding approach, it is necessary to use an appropriate database for ob-
taining the most complete representation of microbial communities. Usually, for taxonomic
classification of microbes the SILVA and Greengenes databases are used [23,24]. In the case
of the Greengenes database, this was recently replaced by the new Greengenes2 in mid-2023.
In addition, the RefSeq database created by NCBI (National Center for Biotechnological
Information) is being expanded, strengthened, and used more and more often.

Finding that SILVA and Greengenes2 are the leading databases for taxonomic classifica-
tion of microorganisms, this study suggests that for activated sludge SILVA is also the most
appropriate choice. The same database classified the most specific taxa to low taxonomic
levels (genus, species), which is required in the control of biotechnological processes. In the
case of the RefSeq database (NCBI), this can compete with the Greengenes2 database, and
it needs further development to be suggested as a leading database in bacterial taxonomic
analyses.

Although many studies have taken up the problem of standardizing work with bac-
terial amplicon sequencing, it still requires continued analysis and work. To be able to
take the next steps, more details of their work need to be made available, such as the pos-
sibility to view raw data, scripts of commands with their parameters, and full taxonomic
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classification lists. The use of a single or a combination of 2–3 variable regions may not be
sufficient to obtain a complete list of taxonomic groups. It may be required to perform two
simultaneous analyses using different regions. Another solution may be to use full-length
analysis of the 16S rRNA gene using nanopore sequencing.

4. Materials and Methods

Seven samples of activated sludge were obtained from the municipal wastewater
treatment plant in Poznań, Poland (52.4493_N, 16.9826_E) treating municipal wastewater.
Activated sludge samples (4 L) were collected in about 2-month intervals from the aerobic
chamber. After sampling, activated sludge samples were placed at 4 ◦C and immediately
transported to the laboratory, where they were frozen at −20 ◦C. DNA extraction samples
were thawed at room temperature. DNA was extracted with a FastDNA Spin kit for
soil (MP Biomedicals, Irvine, CA, USA), 200 mg of semi-dry biomass obtained by short
centrifugation was re-suspended in a bead solution. Bead beating was performed at
maximum speed in a Uniequip device (Uniequip, Planegg, Germany) for 5 min [25]. The
quality of the extracted DNA was evaluated with agarose gel electrophoresis (0.8%), and
the DNA concentration was measured fluorometrically with a Quant-iT BR DNA Assay
(Thermo Fisher Scientific, Waltham, MA, USA) (Table S1).

To determine the optimal genome region for taxonomic composition analysis,
three variable regions of the 16S rRNA gene were tested (Figure 6).
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green, and yellow color were examined in the analysis. Light grey indicates a conservative region in
16S rRNA.

The V1–V3 region was analyzed by amplification using the 27F (5′-AGA GTT TGA
TYM TGG CTC AG-3′) and 534R (5′-ATT ACC GCG GCT GCTGG-3′) primers [26]. The
V3–V4 region was amplified with the 341F (5′-CCT ACG GGN GGC WGC AG-3′) and 785R
(5′-GAC TAC HVG GGT ATC TAA TCC-3′) primers [27]. Finally, the V4–V5 region was
amplified using the 515F (5′-GTG CCA CCM GCC GCG GTA A-3′) and 944R (5′-GAA TTA
AAC CAC ATG CTC-3′) primers [28]. Illumina adapters were added to all primers.

After sequencing, raw reads were checked using FastQC v0.12.0 [29] and the MultiQC
tool v1.18 [30]. Sequence counts and the percent adapter content were checked. The fact
that the maximum percentage of adapters did not exceed 1.08% indicated that adapter
removal was not necessary and that their presence would not affect the quality of the
analyses. For further filtration, the reads were imported to the QIIME 2 environment
v2023.09. First, the quality score (QS) was checked using QIIME2 View (Figure S1). After
that, it was decided to trim the nucleotides on the ends of reads which had less than 15 QS.

The Divisive Amplicon Denoising Algorithm 2 (DADA2) pipeline was selected for
preprocessing with the qiime2 dada2 denoise-paired command. After an initial stage, the opti-
malization process continued with 5 stages of optimalization (Figure 7). Several additional
optimization attempts were made, but none of them improved the result, so the output
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from stage 5 was used for further analysis. Due to the poor result for the V1–V3 region
in the initial stage, it was decided not to publish the taxonomic classification in the study,
but to place it along with the classification from the final stage in the supplementary files
(File S1). Additionally, the commands for the parameters were checked without adjusting
trimming and clipping (0 and 300 for both directions).
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Figure 7. Stages of the optimization process with the qiime2 dada2 denoise-paired command in the
Qiime2 pipeline. Black solid arrows indicated changes between a stage and the initial parameters.
Black dashed arrows show parameters with final values that were unchanged from the initial ones.
Red lines with an X indicate changes that decreased the percentage of reads that were obtained and
were not retained in further stages. Green dashed arrows correspond to changes that increased the
percentage of reads.

After conducting each stage, the number of filtered, merged, and non-chimera reads
was expressed as a percentage of the number of raw reads. These values were checked using
the Qiime2 View tool (Table S2). For each tested combined region, the mean value of the
samples was calculated with the corresponding standard deviation (SD). Additionally,
the initial and final outputs were visualized using the ggplot2 package, v3.4.4 for R,
v4.3.1 [31,32].

To find potential differences between various combined regions of 16S rRNA, a table
of operational taxonomic units (OTU) was created with Qiime2 tools. The BIOM file was
created using QIIME2, exported and opened using the read.biom() function from the rbiom
package, v1.0.3 in R [33]. Then, the number of OTUs and the alpha diversity indices (Chao1,
Simpson index, Shannon index) were calculated with the alpha.div() function from the
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same package. To test the statistical significance of differences between index values, the
Kruskal–Wallis test was performed using the kraskal.test() function from the stats package,
v3.6.2, in R, followed by Dunn’s post-hoc test with Benjamini–Hochberg p-value adjustment
using the dunn.test() function from the dunn.test package, v1.3.5 [34]. For all tests, the
criterion for significance was set at p < 0.05. The indices were visualized separately with
ggplot2. Additionally, Spearman correlation coefficients were calculated with cor.test() and
visualized with ggcorrplot() from the ggcorrplot package, v0.1.4.1 [35]. Testing differences
between 16S rRNA combined regions was based on beta diversity analysis. Statistical
examination was performed with the qiime diversity beta-group-significance command from
Qiime2 using the Bray–Curtis distance and visualized as a principal coordinates analysis
(PCoA) plot with Vega v5.26.1 [36,37]. Finally, permutational multivariate analysis of
variance (PERMANOVA with Bray–Courtis distances, permutations = 999) was calculated
and visualized using the same command as the above analysis of beta diversity [38].

In the next stage, three databases were compared: Silva v138.1, Greengenes2 v2022.10,
and RefSeq BioProjects 33175 and 33317. The prebuilt Silva and Greengenes2 datasets
were used in the Qiime2 pipeline for taxonomy classification. The RefSeq database was
imported to the Qiime2 taxonomy pipeline with the RESCRIPt plugin [39]. After taxo-
nomic classification, all taxonomic groups within these three data sets were compared
and visualized in R. Similarly, unique taxonomic groups, i.e., taxonomic groups that were
classified as belonging to a specific genus, were compared and visualized. To calculate
the statistical significance of differences in the number of taxonomic groups obtained with
each database, the Kruskal–Wallis test was used, followed by Dunn’s post-hoc test with a
Benjamini–Hochberg correction.
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