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Abstract: This study presents the synthesis of four series of novel hybrid chalcones (20,21)a–g
and (23,24)a–g and six series of 1,3,5-triazine-based pyrimido[4,5-b][1,4]diazepines (28–33)a–g and
the evaluation of their anticancer, antibacterial, antifungal, and cytotoxic properties. Chalcones
20b,d, 21a,b,d, 23a,d–g, 24a–g and the pyrimido[4,5-b][1,4]diazepines 29e,g, 30g, 31a,b,e–g, 33a,b,e–g
exhibited outstanding anticancer activity against a panel of 60 cancer cell lines with GI50 values
between 0.01 and 100 µM and LC50 values in the range of 4.09 µM to >100 µM, several of such
derivatives showing higher activity than the standard drug 5-fluorouracil (5-FU). On the other hand,
among the synthesized compounds, the best antibacterial properties against N. gonorrhoeae, S. aureus
(ATCC 43300), and M. tuberculosis were exhibited by the pyrimido[4,5-b][1,4]diazepines (MICs:
0.25–62.5 µg/mL). The antifungal activity studies showed that triazinylamino-chalcone 29e and
triazinyloxy-chalcone 31g were the most active compounds against T. rubrum and T. mentagrophytes
and A. fumigatus, respectively (MICs = 62.5 µg/mL). Hemolytic activity studies and in silico toxicity
analysis demonstrated that most of the compounds are safe.

Keywords: 1,3,5-triazines; chalcones; diazepines; anticancer activity; antibacterial activity; antifungal
activity; cytotoxicity

1. Introduction

Cancer and infectious diseases caused by the drug resistance of bacteria and fungi
are one of the main causes of death worldwide, and this requires highly selective and
efficient treatments with low toxicity. Around 10 million people died from cancer in
2020 worldwide [1,2], and according to Pan American Health Organization (PAHO) it is
estimated that this value would increase to 57% by 2040 [3]. Likewise, infections by resistant
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bacteria cause around 700,000 deaths annually worldwide, of which 230,000 deaths are due
to multi-resistant tuberculosis [4].

The synthesis of new compounds based on low molecular weight nitrogen-heterocyclic
fragments remains a successful strategy and one of significant interest in the discovery
of new therapeutic agents. These fragments are present in a large number of drugs and
bioactive molecules, which can establish different types of chemical interactions (hydrogen
bonds, π-stacking interactions, among others) with biological systems [5–9]. Thus, 1,3,5-triazine-,
pyrimidine-, and diazepine heterocyclic moieties are present in diverse molecules ex-
hibiting multiple biological properties acting as antioxidants [10,11], anti-HIV [12–14],
anticonvulsants [15,16], antimicrobials [17–19], anticancer [20–23], among others [24,25].

Particularly, 1,3,5-triazine is a heterocyclic molecule of wide synthetic versatility, which
has the possibility of functionalizing in positions 2, 4, and 6, allowing it to easily modulate
the physicochemical and biological activity of their derivatives [26]. The fusion of triazine
with other heterocyclic moieties and α,β-unsaturated ketones (molecular hybrids) has
generated derivatives with valuable biological properties [7,9,27–34] (Figure 1), including
the anticancer drug gedatolisib [35–38] used in the treatment of breast cancer. Its mecha-
nism of action is based on the inhibition of kinases PI3K and mTOR, thus promoting cell
apoptosis [39]. Another example is the triazine derivative 2, which is a potential multi-
target agent for the treatment of Alzheimer’s disease; this compound exhibited a IC50 of
0.044 µM against AChE, which is better than donepezil (IC50 = 0.052 µM). Triazine-chalcone
hybrid 3 demonstrated potential antitubercular activity (anti-TB) against Mycobacterium
tuberculosis H37Rv.
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α,β-unsaturated carbonyl compounds, also known as chalcones, are important struc-
tural scaffolds for natural medicine. They are widely distributed in nature (i.e., fruits, veg-
etables, and spices) and are precursors for the biosynthesis of flavonoids and isoflavonoids
in plants [40,41]. Chalcones have generated significant interest due to their biological
properties, such as anticancer [32,42], antibacterial [34,43], antifungal [44], antimalarial [45],
anti-inflammatory [46], and neuroprotective [47] activities. Several chalcone-based drugs
have been approved for clinical use, including methochalcone (choleretic) [48] and so-
falcone (antiulcer) [49]. In previous studies, we reported the synthesis of triazine-based
chalcones with outstanding anticancer properties comparable to the drug 5-fluorouracil
(thymidylate synthase (TS) inhibitor) [50,51]. In silico studies determined that the anti-
cancer activity exhibited by these compounds could be related to the inhibition of the
enzyme TS [52].

Diazepine rings fused to a benzene rings (benzodiazepines) or heteroaromatic rings
have shown not only anxiolytic properties, which they are especially known for, but also
anticancer [20], antioxidant [53], antimicrobial [54], and anti-inflammatory [55] properties.
Particularly, pyrimido-diazepine scaffolds have been proven successful as antimicrobial
and anticancer agents [54,56–61]. Their anticancer action mechanism involves the inhibition
of Aurora A, Aurora B, and Kinase Insert Domain-containing Receptor (KDR) [60], receptor
tyrosine kinases such as Flt3, and c-Kit [62], extracellular-signal-regulated kinase 5 (ERK5),
and leucine rich repeat kinase 2 (LRRK2) [63].
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The union of pharmacophoric fragments to generate molecular hybrids has been
an attractive and useful strategy in medicinal chemistry to generate lead molecules with
potential biological properties [64–67]. Stimulated by valuable bioactive properties of
1,3,5-triazine, chalcone, and diazepine derivatives, and based on molecular hybridization
approach, in this study, we are reporting the synthesis of 1,3,5-triazine-based chalcone- and
diazepine hybrids through a simple and versatile synthetic pathway. In vitro screening
tests were used for determining the anticancer, antibacterial, antifungal, and cytotoxic
profiles of the novel compounds synthesized, which showed outstanding results.

2. Results and Discussion
2.1. Chemistry

Initially, using a three-step synthetic sequence, the trisubstituted triazine precursors
12–15 were synthesized by aromatic nucleophilic substitution reactions (ArNS) from 2,4,6-
trichloro-1,3,5-triazine 4 [50,68–75] (Table 1). Looking for structural diversity, substituents
of aliphatic and aromatic nature and functional groups capable of forming hydrogen
bonding were incorporated. Various reaction parameters were explored for each compound
and Table 1 shows the optimized reaction conditions that allowed these precursors to be
obtained in high yields. To assure the monosubstitution of a chlorine atom to prepare the
precursors 5–7, it was imperative to perform the reactions at low temperature (−5–0 ◦C).
The second substitutions were carried out at room temperature, except for 11, since the
trisubstituted product was favored; at low temperature it was obtained as the only product.
Sodium carbonate (20%) was used as a hydrogen chloride acceptor. As the reactions
progressed, the medium acidified to a point where they no longer progressed, therefore,
the addition of the base was done slowly throughout the reaction and always maintaining a
neutral pH. The trisubstituted derivatives were synthesized under heating at reflux (for 13)
and at room temperature (for 12, 14, and 15). Initially, for the synthesis of triazines 12 and
13, dioxane and DMF were tested as solvents. In both tests, an excess of ethylenediamine
(1.5 equiv.) and stirring at room temperature was used; however, under these reaction
conditions complex mixtures of products were obtained. The use of ethylenediamine as a
reaction medium allowed the obtaining of compounds 12 and 13 with good yields.

Table 1. Reaction conditions toward the synthesis of trisubstituted triazine precursors 12–15.
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8 [74] Dimethylamine rt, 4 h,
5:Nu2H (1:1) 90

9 [71] Dimethylamine rt, 4 h,
6:Nu2H (1:1.5) 77

10 4-Hydroxy-3-
methoxybenzaldehyde

rt, 3 h,
6:Nu2H (1:1) 91

11 [73] Morpholine −5–0 ◦C, 7 h,
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13 Ethylenediamine Solvent free, reflux, 4 h,
9:Nu3H (1:16) 73

14 Dimethylamine
Dioxane,

rt, 1 h,
10:Nu3H (1:1)
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15 Ethanolamine Dioxane, rt, 24 h,
11:Nu3H (1:1.5) 86

The structures of precursors were confirmed by FTIR, 1H, and 13C NMR and mass
spectra data (Supplementary Material).

Subsequently, trisubstituted precursors 12 and 13 were reacted with 4-acetylbenzenesulfonyl
chloride 16 under stirring at room temperature in ethanol and using TEA as a base to gen-
erate sulfonamides 17 and 18, respectively (Scheme 1).
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Scheme 1. Synthesis of triazine-based sulfonamides 17,18.

Using carbonyl precursors 14,15 and 17,18 as starting materials, the triazinyloxy-
chalcones (20,21)a–g and triazinylamino-chalcones (23,24)a–g were obtained by Claisen–
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Schmidt condensation reactions with acetophenones 19a–g and benzaldehydes 22a–g,
respectively (Scheme 2). These chalcones were obtained in the range of 65% to 93% yield
and their structures were elucidated by FTIR, 1H, and 13C NMR and mass spectrometry
(Supplementary Material). To illustrate the main spectroscopic characteristics of these
compounds, chalcone 23f was taken as a reference. The mass spectrum confirms the
formation of this compound by presenting the molecular ion peak at m/z 555, which
corresponds to its expected mass. The 1H NMR spectrum run at 400 MHz in CDCl3 shows
two doublets at 7.84 and 8.01 ppm (J = 8.4 Hz) corresponding to the protons of the para-
substituted 4-acylbenzenesulfonyl moiety. A triplet and a double doublet are observed at
7.12 (J = 8.6 Hz) and 7.64 ppm (J = 8.6, 5.4 Hz), respectively, corresponding to the protons
of the para-F-substituted ring. Finally, at 7.39 and 7.78 ppm, two doublets are observed
(J = 15.7 Hz) corresponding to the vinylic protons of the α,β-unsaturated moiety, confirming
that the new double bond formed in product 23f possesses an E configuration.
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Scheme 2. Synthesis of triazinyloxy-chalcones (20,21)a–g and triazinylamino-chalcones (23,24)a–g.

The final target products (i.e., triazinyloxy- and triazinylamino-pyrimido[4,5-b][1,4]di-
azepines) (28–31)a–g (Scheme 3) were obtained with high regioselectivity by reaction of chal-
cones (20,21)a–g and (23,24)a–g, respectively, with an excess of 2,4,5,6-tetraaminopyrimidine
dihydrochloride 27 (1,4-dinucleophile) under stirring in refluxing methanol and using
BF3·OEt2 as catalyst. In the same way, diazepines (32,33)a–g were obtained starting from
the chalcones (25,26)a–g synthesized elsewhere [50]. Reaction yields ranged from 50%
to 90% and all synthesized diazepines were characterized by FTIR, 1H, 13C NMR, and
mass spectrometry (Supplementary Material). Particularly, the 1H NMR spectrum (run
in DMSO-d6) of product 32e shows the signals corresponding to the N-H (a singlet at
7.00 ppm) and the diastereotopic protons (AMX system) of the diazepinic ring formed.
The signal assigned to the H7A proton appears as a doublet at 2.75 ppm with coupling
constant 2JAM = 14.2 Hz; the signal for the H7M proton appears as a doublet at 3.77 ppm
with coupling constants 2JAM = 14.2 Hz and 3JMX = 6.0 Hz, while the signal corresponding
to the H8X proton appears as an unresolved doublet at 5.05 ppm, confirming the formation
of the new diazepine moiety. Additionally, in the 13C NMR spectrum, the C-7 and C-8
carbon atoms of the diazepine ring were observed at 38.2 ppm and 57.0 ppm, while a
molecular ion peak at m/z 602:604 with an isotopic profile [M]+:[M + 2]+ 18:6 was observed
in the mass spectrum agreeing with the formation of the structure 32e.
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Scheme 3. Synthesis of the target triazinyloxy- and triazinylamino-pyrimido[4,5-b][1,4]diazepines
(28–33)a–g.

2.2. Biological Activity Studies
2.2.1. Anticancer Activity

All the synthesized trisubstituted triazines 14,15 and 17,18, chalcones (20,21)a–g and
(23,24)a–g, and diazepines (28–33)a–g were evaluated through in vitro assays at one dose
of 10 µM against 60 cancer cell lines of nine cancer types (Leukemia, Lung, Colon, Melanoma,
Renal, Prostate, CNS, Ovarian, and Breast cancer) by the National Cancer Institute (NCI) [76].
The results were reported as a graph of growth percentages (PC) available for analysis
through the COMPARE program, which permits us to know the inhibition of growth
(i.e., %IG = 100 − %PC) and lethality (%PC values less than 0). Additionally, the mean
of the growth percentages (MGP) of each compound against all the 60 cancer cell lines is
also reported, which is used as one of the selection criteria to continue with tests at five
concentration doses. An MGP value less than 50% or with negative values indicates that
the compound exhibits outstanding anticancer activity. Figure 2 shows the bar charts of
the MGP values for all compounds evaluated. These diagrams are separated according
to the linker (p-aryloxy, N-(2-aminoethyl)benzenesulfonamide or p-arylamine; orange
moiety) between the triazine ring and the α,β-unsaturated carbonyl system or the diazepine
ring (green moiety). In red and yellow background, compounds with MGP < 50% are
highlighted; in red are the compounds that were evaluated at five concentration doses.

None of the trisubstituted triazine precursors showed remarkable anticancer activ-
ity; however, several triazinylamino- and triazinyloxy-chalcones from these precursors
enhanced their activity, such as 20b,d, 21a–d, 23d–g, and 24a–g, (Figure 2A–C). It should be
noted that the triazinylamino-chalcones that contain N-(2-aminoethyl)benzenesulfonamide
moiety 24a–g as a linker exhibited outstanding activity with MGP values below 25% and
even with negative values. If the latter are compared with chalcones 21a–g, which have the
dimethylamino and 4-fluoroanilino substituents on the triazine ring in common, it can be noted
that triazinylamino-chalcones 24a–g are more active than those containing the p-aryloxy linker
(21a–g), except for derivative 21d. This suggests that the N-(2-aminoethyl)benzenesulfonamide
moiety potentiates anticancer activity. In contrast, the MGP of the chalcone series 23a–g
evidenced that the presence of the 4-fluoroanilino substituent enhances the activity of
the chalcones containing the N-(2-aminoethyl)benzenesulfonamide moiety except for 23d
(R2 = 3,4,5-(OCH3)3).
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Figure 2. Bar chart of the mean growth percent (MGP) against 60 cancer cell lines for the trisubstituted
triazines 14–15 and 17–18, chalcones (20,21)a–g and (23,24)a–g, and diazepines (28–33)a–g.

Within the family of diazepines containing the N-(2-aminoethyl)benzenesulfonamide
linker 31a–g it was observed that compounds 31a,b,e,f,g exhibited potent activity. The
most active diazepines 31a–g and 33a–g (moiety in common: R = Cl or F) coincide with
the same substituents R2 = a:-H, b:-CH3, e:-Cl, f:-F, g:-CF3. On the other hand, comparing
the MGP values of the diazepines 31a–g with those of their precursors 24a–g, the latter
exhibited higher activity. The series of diazepines containing the p-aryloxy moiety 28a–g
did not show a MGP < 50%, while their analogous diazepines 29a,e,f,g did show MGP
values less than 50%, with 29e,g being selected for five-dose assays.

Chalcones containing the N-(2-aminoethyl)benzenesulfonamide moiety 24a–g were
the only ones having activity in the entire series (a–g) and better activity when compared to
chalcones 21a–g containing the p-aryloxy linker with 4-F/Cl-anilino substituent. Likewise,
the aromatic substituents 4-Cl-anilino and 4-F-anilino on the triazine ring enhanced the
activity of chalcones and diazepines in most cases compared to the morpholino substituent
(compounds 24a–c,e–g, 29a–g, and 33a–g were more active than 23a–c,e–g, 28a–g, and
32a–g, respectively). Regarding the R2 substituents in chalcones and diazepines, there was
not observed a marked chemical pattern that can be related to anticancer activity.

Based on the above results, the most active compounds were evaluated by the NCI
at five concentration doses for their cytostatic (GI50) and cytotoxic (LC50) activity against
60 cancer cell lines (see Supplementary Material). Table 2 highlights the four cell lines
that were most sensitive to each derivative (ordered from lowest to highest GI50) and
contrasts the GI50 values with those of the antineoplastic standard drug 5-fluorouracil (5-
FU, thymidylate synthase inhibitor). Analysis of these data showed that compounds 20b,d,
21a,b,d, 23a,d–g, 24a–g, 29e,g, 30g, 31a,b,e–g, 33a,b,e–g exhibited significant cytostatic
activity with GI50 values between <0.01–100 µM and cytotoxic activity with LC50 values
between 4.09 µM to >100 µM, against all cancer cell lines. Chalcones 20d, 21d, and 24f
and diazepine 33g showed the lowest GI50 range values (highlighted in green), indicating
that they were highly active for all cell lines. The latter points out that chalcones 20d, 21a,
21d, 23a, 23d, 24c, 24d and diazepines 29e,g, 30g, 31a–b,e–g, 33a–b,e–g showed higher
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activity against several cell lines than the standard drug 5-FU (Table 2, highlighted in pink).
Remarkably, diazepine 33a exhibited the best anticancer activity, with a GI50 value < 10 nM
against the MOLT-4 cell line of the Leukemia panel. The above results demonstrate that
the triazine-based chalcone/diazepine hybrids 20b,d, 21a,b,d, 23a,d–g, 24a–g, 29e,g, 30g,
31a,b,e–g, 33a,b,e–g are important hits and a starting point for further optimization of their
anticancer activity.

Table 2. Anticancer activity (GI50
a and LC50

b) exhibited by compounds 20b,d, 21a,b,d, 23a,d–g,
24a–g, 29e,g, 30g, 31a,b,e–g, 33a,b,e–g, against the four most sensitive cancer cell lines c and compared
to the GI50 values of the standard drug 5-FU.

Compound Panel Name
Most

Sensitive
Cell Line

GI50
a

(µM)
LC50

b

(µM)

Range
GI50

d

(µM)

GI50 5-FU
(µM) (NS
18893) e

20b

Melanoma LOX IMVI 0.43 4.09

0.43–100

0.25

Leukemia SR 1.06 >100 0.02

Renal cancer UO-31 1.49 - 1.43

Breast cancer MCF7 1.50 >100 0.08

20d

Melanoma LOX IMVI 0.64 4.99 0.25
Leukemia SR 0.78 >100 0.02

Colon cancer HCT-116 1.53 6.78 0.23
Leukemia HL-60(TB) 1.54 >100

0.64–4.72

2.30

21a

Melanoma LOX IMVI 1.60 6.23

1.60–48.60

0.25

Colon cancer SW-620 1.81 8.70 0.93
Non-small cell

lung cancer HOP-92 2.08 >100 77.98

Leukemia MOLT-4 2.56 >100 0.35

21b

Melanoma LOX IMVI 1.84 6.69

1.84–51.90

0.25

Colon cancer HCT-116 2.28 24.40 0.23

Colon cancer SW-620 2.36 20.10 0.93

Leukemia MOLT-4 2.80 >100 0.35
Leukemia MOLT-4 0.47 >100 0.35
Melanoma LOX IMVI 0.48 4.11 0.25
CNS cancer U251 0.50 9.59 0.9121d

Leukemia SR 0.70 >100

0.47–8.42

0.02

23a

Colon cancer HCT-116 1.82 7.10

1.82–20.20

0.23

Melanoma LOX IMVI 1.97 8.68 0.25

Colon cancer KM12 2.00 8.93 0.21
Leukemia K-562 2.19 >100 3.98

Renal cancer RXF 393 1.22 8.63 2.61
Leukemia RPMI-8226 1.39 >100 0.04
Leukemia K-562 1.46 >100 3.5823d

CNS cancer U251 1.54 5.54

1.22–14.30

0.91

23e

Melanoma LOX IMVI 1.71 6.13

1.71–17.90

0.25

Colon cancer HCT-15 2.07 9.93 0.11

Breast cancer MCF7 2.37 34.60 0.08

Leukemia SR 2.52 >100 0.02

23f

Melanoma LOX IMVI 1.63 6.19

1.63–16.10

0.25

Leukemia RPMI-8226 1.91 >100 0.04

Colon cancer HCT-15 2.15 13.70 0.11

Ovarian cancer IGROV1 2.27 25.40 1.22



Int. J. Mol. Sci. 2024, 25, 3623 9 of 24

Table 2. Cont.

Compound Panel Name
Most

Sensitive
Cell Line

GI50
a

(µM)
LC50

b

(µM)

Range
GI50

d

(µM)

GI50 5-FU
(µM) (NS
18893) e

23g

Melanoma LOX IMVI 1.68 5.94

1.68–17.80

0.25

Breast cancer MCF7 1.68 6.63 0.08

Leukemia RPMI-8226 1.77 >100 0.04

Ovarian cancer IGROV1 1.77 6.97 1.22

24a

Colon cancer HCT-116 1.72 6.10

1.72–14.60

0.23

Breast cancer MCF7 1.99 8.23 0.08

Colon cancer HCT-15 2.04 7.25 0.11

Colon cancer HCC-2998 2.35 17.90 0.05

24b

Colon cancer HCT-116 1.75 6.17

1.75–17.40

0.23

Breast cancer MCF7 2.01 25.20 0.08

Colon cancer HT29 2.38 16.20 0.18

Leukemia RPMI-8226 2.73 >100 0.04

24c

Colon cancer HT29 1.83 7.63

1.83–17.10

0.18

Colon cancer HCT-116 1.86 7.07 0.23

Breast cancer MCF7 1.93 46.10 0.08
Non-small cell

lung cancer NCI-H522 2.55 67.10 7.28

24d

Renal cancer RXF 393 1.45 6.74

1.45–21.80

2.61
Colon cancer HCC-2998 1.62 5.52 0.05

CNS cancer SF-539 1.71 5.62 0.06

Melanoma LOX IMVI 1.71 5.93 0.25

24e

Colon cancer HCT-116 1.66 3.11

1.66–12.80

0.23

Colon cancer HT29 2.15 5.72 0.18

Breast cancer MCF7 2.28 6.33 0.08

Leukemia RPMI-8226 2.47 7.11 0.04

24f

Colon cancer HCT-116 1.60 3.01 0.23
Melanoma LOX IMVI 1.66 3.07 0.25

Renal cancer SN12C 1.70 3.36 0.50
Ovarian cancer OVCAR-3 1.74 3.24

1.60–8.39

0.02

24g

Colon cancer HCT-116 1.68 3.13

1.68–17.40

0.23

Breast cancer MCF7 1.70 3.56 0.08

Colon cancer HCC-2998 1.77 3.61 0.05

Melanoma LOX IMVI 1.86 3.84 0.25

29e

Renal cancer RXF 393 2.46 >100

2.46–100

2.61
Non-small cell

lung cancer HOP-92 3.00 >100 77.98

CNS cancer SNB-75 3.24 >100 78.70
Renal cancer CAKI-1 3.38 >100 0.07

29g

Renal cancer RXF 393 1.22 34.10

1.22–100

2.61
Renal cancer CAKI-1 1.65 >100 0.07

Leukemia MOLT-4 1.71 >100 0.35

Colon cancer HCT-116 1.76 7.56 0.23
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Table 2. Cont.

Compound Panel Name
Most

Sensitive
Cell Line

GI50
a

(µM)
LC50

b

(µM)

Range
GI50

d

(µM)

GI50 5-FU
(µM) (NS
18893) e

30g

Non-small cell
lung cancer HOP-92 7.48 >100

7.48–100

77.98

Renal cancer RXF 393 10.30 >100 2.61

Leukemia RPMI-8226 11.20 >100 0.04

Breast cancer MDA-MB-
468 13.70 69.50 6.61

31a

Non-small cell
lung cancer HOP-92 2.18 9.96

2.18–99.70

77.98

Renal cancer RXF 393 2.55 8.95 2.61
Leukemia MOLT-4 3.11 >100 0.35

Leukemia RPMI-8226 3.32 >100 0.04

Melanoma LOX IMVI 2.09 5.11 0.25

Leukemia MOLT-4 2.20 7.53 0.35
Renal cancer RXF 393 2.27 9.12 2.61

31b

Colon cancer HT29 2.27 4.65

2.09–78.80

0.18

31e

Melanoma LOX IMVI 1.77 3.55

1.77–72.70

0.25

Breast cancer MDA-MB-
468 1.92 4.92 0.07

Renal cancer RXF 393 2.27 8.75 2.61
Non-small cell

lung cancer HOP-92 2.53 13.20 77.98

31f

Breast cancer MDA-MB-
468 2.15 6.24

2.15–96.00

6.61

Leukemia MOLT-4 2.45 0.35
Renal cancer RXF 393 2.48 2.61
CNS cancer SNB-75 2.53 74.00 78.70

31g

CNS cancer SNB-75 2.13 86.00

2.13–86.00

78.70
Renal cancer RXF 393 2.57 18.80 2.61

Breast cancer MDA-MB-
468 2.67 11.70 6.61

Leukemia MOLT-4 2.74 86.00 0.35

33a

Leukemia MOLT-4 <0.01 >100

0.01–17.70

0.35
Leukemia HL-60(TB) 0.32 >100 2.51
Leukemia SR 0.55 0.02

Leukemia CCRF-
CEM 0.95 >100 9.79

33b

Non-small cell
lung cancer HOP-92 1.30 6.30

1.30–16.70

77.98

Leukemia K-562 1.34 24.90 3.58
Leukemia MOLT-4 1.38 >100 0.35

Renal cancer RXF 393 1.45 2.61

33e

Leukemia K-562 0.71 >100

0.71–14.80

3.58
Leukemia MOLT-4 0.79 >100 0.35

Leukemia SR 0.91 >100 0.02

Leukemia CCRF-
CEM 1.14 >100 9.79

33f

Leukemia K-562 0.49 >100

0.49–12.90

3.58
Leukemia MOLT-4 0.53 >100 0.35

Leukemia SR 0.67 >100 0.02

Leukemia CCRF-
CEM 0.75 >100 9.79
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Table 2. Cont.

Compound Panel Name
Most

Sensitive
Cell Line

GI50
a

(µM)
LC50

b

(µM)

Range
GI50

d

(µM)

GI50 5-FU
(µM) (NS
18893) e

33g

Leukemia K-562 0.64 >100 3.58
Leukemia MOLT-4 0.89 >100 0.35

Colon cancer HCT-116 1.05 5.54 0.23
Renal cancer RXF 393 1.14 5.48

0.64–2.55

2.61
a GI50 shows compound concentration resulting in a 50% diminution in the net protein increase (as measured
by SRB staining) in control cells during the drug incubation, determined at five concentration levels (100, 10,
1.0, 0.1, and 0.01 µM). GI50 values highlighted in pink (of our compounds) are lower than GI50 values of 5-FU.
b LC50 is a parameter of cytotoxicity that reflects the molar concentration needed to kill 50% of the cells. c Data
obtained from NCI’s in vitro disease-oriented human cancer cell lines screen in µM [76–79]. d Range of GI50 values
against the 60 cancer cell lines, entries highlighted in green show the lowest GI50 ranges. e Activity values against
human cancer cell lines shown by 5-FU correspond to those reported by: https://dtp.cancer.gov/dtpstandard/
cancerscreeningdata/index.jsp, accessed on 12 October 2023.

2.2.2. Antibacterial Activity

The antibacterial activity of trisubstituted triazines 14,15 and 17,18, chalcones (20,21)a–g
and (23,24)a–g, and diazepines (28–33)a–g was tested against gram-positive (Staphylo-
coccus aureus (ATCC 25923, ATCC 43300, and VISA strains), and gram-negative bacteria
(Pseudomonas aeruginosa ATCC, Klebsiella pneumoniae ATCC 700603, BAA1645, Escherichia
coli ATCC 25922, and Neisseria gonorrhoeae ATCC 49226). The anti-TB effect of the com-
pounds was assessed on Mycobacterium tuberculosis ATCC 27294. None of the evaluated
compounds showed inhibitory effects on P. aeruginosa, K. pneumoniae, and E. coli. Diazepine
33g was active against S. aureus ATCC 43300, a methicillin resistant strain (MRSA), with
MIC = 31.25 µg/mL (tetracycline MIC = 0.05 µg/mL, range: 0.05–0.25 µg/mL).

Additionally, we found that triazinylamino- and triazinyloxy-diazepines 28a–g, 29a,c,d,f,
30d, 31a–f, 32a,b,f,g, 33a,b,c,f showed inhibition against N. gonorrhoeae with MIC values be-
tween 0.25 and 62.5µg/mL (Table 3). This could suggest that the pyrimido[4,5-b][1,4]diazepine
moiety may be associated to the activity against N. gonorrhoeae [80]. Moreover, diazepines
containing the p-aryloxy linker 28a–g and N-(2-aminoethyl)benzenesulfonamide linker 31a–f
showed inhibition with MIC values between 0.25–500 µg/mL and 0.5–8 µg/mL, being, the
triazinylamino-diazepine 31f the compound with the highest activity against N. gonorrhoeae
with a MIC value 0.25 µg/mL, which is similar to that for penicillin[81]. These findings are
relevant because N. gonorrhoeae is the second most prevalent sexually transmitted bacte-
rial infection worldwide, and has developed resistance to the first line treatment and has
emerged as a thread for public health [82,83]. Some of the evaluated compounds could
become molecules for future development in this regard.

Antitubercular Activity

It was determined that the triazinylamino-chalcones 24a–g exhibited anti-TB activity
inhibiting the growth of M. tuberculosis H37Rv at concentrations between 25 and 50 µg/mL
(Figure 3A). However, as it was observed for N. gonorrhoeae, the most inhibitory compounds
were those with a pyrimido[4,5-b][1,4]diazepine core, being 29a–g and 31a–g series the most
active with MIC values between 0.6 and 5 µg/mL (Figure 3B,C). Previous studies have
confirmed the anti-TB activity of some pyrimido-diazepine derivatives [84]. In addition,
it has been shown that some compounds containing this heterocyclic system can inhibit
the action of tyrosine [62] and serine-threonine kinases [85]. Unlike most bacteria, which
use histidine kinases as major components in signal transduction, M. tuberculosis possesses
11 serine-threonine kinases, two of which (PknA and PknB) have been shown to be essential
for its growth in vitro [85]. Therefore, the activity observed for compounds 29a–g and 31a–g
could be due to the inhibition of one of these proteins. In addition to the pyrimido[4,5-
b][1,4]diazepine moiety, the 4-fluoroanilino substituent seems to play a crucial role in
the interaction with the target, since compounds with morpholino as substituent did not
displayed activity. As shown in Figure 3B,C, compounds 29b and 31b exhibited the most

https://dtp.cancer.gov/dtpstandard/cancerscreeningdata/index.jsp
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outstanding anti-TB activity both containing a methyl group as R2 substituent, which could
favor Van der Waals interactions, giving stability to the molecule when interacting with
the target.

Table 3. Minimum inhibitory concentration (MIC) values for triazine derivatives active against N.
gonorrhoeae ATCC 49226.

Compound MIC
(µg/mL) Compound MIC (µg/mL) Compound MIC

(µg/mL)

15 ≥500 29c 62.5 32b 4

21f 500 29d 16.12 32d 500

23d >500 29e ≥500 32e 1000

24e 500 29f 0.5 32f 2

28a 4 29g ≥500 32g 4

28b 4 30d 16.12 33a 1

28c 0.5 31a 8 33b 0.5

28d 2 31b 8 33c 2

28e 8 31c 8 33f 1

28f 8 31d 500 Penicillin a 0.25 (0.25–1.0)

28g 8 31e 0.5 Tetracycline a 1.00 (0.25–1.0)

29a 2 31f 0.25

29b ≥500 32a 8
a Penicillin and tetracycline were used as control drugs, MIC range values for this strain are indicated in parenthesis.
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2.2.3. Antifungal Activity

Several of the obtained triazine derivatives were evaluated against sensitive fungal
species comprising of two yeasts (Candida albicans (ATCC 10231), Cryptococcus neoformans
(ATCC 32264)), three dermatophytes (Microsporum gypseum (CCC 115), Trichophyton rubrum
(CCC 134-2000), Trichophyton mentagrophytes (CCC 202-2000)), and three Aspergillus fungi
((A. fumigatus (ATCC 26934), A. niger (ATCC 9029), and A. flavus (ATCC 9170)). The
minimum inhibitory concentration (MIC) and the minimum fungicidal concentration
(MFC) of these compounds were determined by the M27-A3 and M38-A8 microdilution
method (CLSI) [86,87].

Two compounds (29e and 31g) exhibited outstanding antifungal activity with
MICs = 62.5 µg/mL. Thus, triazinyloxy-chalcone 29e was active against T. rubrum, while
triazinylamino-chalcone 31g was active against T. mentagrophytes and A. fumigatus. These
chalcones contain 4-chloro/4-fluorophenylamine and dimethylamine as substituents at-
tached to the triazine ring, and their linker moieties have both H-bond donors and acceptors.
This suggests that this structural design can be further tested for the optimization of its
antifungal activity. On the other hand, triazine 17, chalcones 23e, 24c,e, 21d, and diazepines
30d,g, 29f,g showed marginal activity (MIC = 125 µg/mL) against various fungal species
(Table 4).

Table 4. Minimum inhibitory concentrations (MIC) and minimum fungicidal concentrations (MFC)
of triazine derivatives with MIC < 250 µg/mL against fungal species a.

Compounds
MIC b (µg/mL)/MFC (µg/mL) c

Ca Cn Mg Tr Tm Afu Ani Afl

17 >250 >250 >250 125 >250 >250 >250 >250

21d >250 >250 >250 125 >250 >250 125 >250

23e 250 250 >250 125 >250 >250 >250 >250

24c >250 >250 >250 125 >250 >250 >250 >250

24e >250 >250 >250 >250 125 >250 >250 >250

29c >250 >250 125 >250 >250 >250 >250 >250

29e >250 >250 >250 62.5 >250 >250 >250 >250

29f >250 >250 125 >250 >250 >250 >250 >250

29g >250 >250 125 >250 >250 >250 >250 >250

30d >250 >250 >250 125 >250 >250 >250 >250

30g 125 125 >250 250 >250 >250 >250 >250

31g >250 >250 >250 250 62.5 62.5 >250 >250

Amphotericin B d 0.5 0.25 0.125 0.075 0.075 0.50 0.50 0.50

Terbinafine d - - 0.04 0.01 0.025 - - -

Fluconazole d 0.03 0.25 - - - - - -

Itraconazole d 0.5 - - - - - - -
a MIC: Minimum concentration that inhibits 100% of the growth of the fungi b MFC: Lowest concentration
that produced <3 colonies (approximately 99 to 99.5% lethal activity). c Ca: Candida albicans; Cn: Cryptococcus
neoformans; Mg: Microsporum gypseum; Tr: Trichophyton rubrum; Tm: Trichophyton mentagrophytes; Afu: Aspergillus
fumigatus; Ani: Aspergillus niger; Afl: Aspergillus flavus. d First-line drugs used for the treatment of diseases caused
by fungi [88]. The data in bold indicate the most notable MICs values.

2.2.4. In Silico Physicochemical Parameter Predictions

The physicochemical features of the most active compounds were determined by in
silico analysis using the SwissADME platform [89] (Table 5). All the active compounds
showed violations of the Lipinski rule of five and the pharmacokinetics need improve-
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ment as gastrointestinal absorption and cytochrome interactions was poor. However, the
synthetic accessibility indicates the feasibility for analogues synthesis of these compounds.

Table 5. Physicochemical properties, ADME, and medicinal chemistry predictions of most ac-
tive compounds.

Compounds 29b 29e 31b 31f 31g 33a Expected
Value

MW 621.67 697.79 642.09 675.64 751.76 609.08 <500

PSA 174.61 222.73 174.61 174.61 222.73 197.20 <140

HBA 9 10 9 12 13 7 <10

HBD 4 6 4 4 6 7 <5

RB 8 11 8 9 12 9 <10

Log P 4.64 3.38 4.23 4.64 3.89 3.36 0–5

Log S (ESOL) −6.89 −6.59 −7.19 −7.46 −7.16 −6.38 >−6

Lipinski violations 2 3 2 2 3 3 -

GI absorption Low Low Low Low Low Low -

BBB permeant No No No No No No -

Pgp substrate No No No No No No -

CYP1A2 inhibitor No No No No No No -

CYP2C19
inhibitor No No No No No No -

CYP2C9 inhibitor No No No No No No -

CYP2D6 inhibitor No No No No No No -

CYP3A4 inhibitor Yes Yes No No Yes Yes -

Synthetic
Accessibility 5.31 5.62 5.18 5.34 5.64 5.03 <6

Bioavailability
score 0.17 0.17 0.17 0.17 0.17 0.17 >0.1

2.2.5. Hemolytic Activity

The ability of the compounds showing better anticancer, antibacterial, and antifungal
activity (17, 20b,d, 21a,b,d,f, 23a–d, 24a–g, 28a–g, 29a,c,d,f, 30a,b,d,e,g, 31a–g, 32a,b,f,g and
33a–c,e–g) to induce hemolysis in human red blood cells (huRBC) was evaluated following
the spectrophotometric cytotoxicity method [90]. Table 6 reports the hemolytic activity
obtained for these compounds evaluated at 200 µg/mL. Most of the compounds showed
low hemolytic activity (<25%,) suggesting that they have low membrane interactions and
toxicity. Only diazepines 29d, 28g, and 33b induced membrane lysis with >75% hemolysis.

2.2.6. Toxicity Studies

Toxicity, median lethal dose (LD50), and toxicity classification were predicted for the
six most active compounds of each activity studied: 33a (anticancer), 29b, 31b, and 31f
(antibacterial) and 29e and 31g (antifungal) using Protox II [91] (Table 7). Most compounds
(five/six) showed predicted immunotoxicity, whereas 29b, 31f, and 31g showed predicted
carcinogenicity and 31f, 31g, and 33a may have cytotoxic effects; however, these alerts
were predicted with low likelihood (cs < 0.7). None of the compounds were predicted as
mutagenic or hepatotoxic chemicals. Four out of six compounds were classified as low
toxic (class 5).
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Table 6. Results of the hemolytic activity for the synthesized triazine derivatives that showed
significant biological activity.

Compound % Hemolysis Compound % Hemolysis Compound % Hemolysis

17 1.6 24g 0.8 31a 1

20b 3.3 28a 3 31b 1.7

20d 1.2 28b 5 31c 1.2

21a 2 28c 7 31d 0.6

21b 13 28d 1 31e 2.3

21d 8 28e 5 31f 2.4

21f 0.8 28f 2 31g 3

23a 0.7 28g 100 32a 2

23b 1.8 29a 3 32b 1

23c 0 29c 2.9 32f 5

23d 0.2 29d 75 32g 2

24a 10.6 29f 0 33a 8

24b 1.2 30a 0.6 33b 100

24c 0.1 30b 0.2 33c 5

24d 2.3 30d 11 33e 1.2

24e 9.1 30e 2.7 33f 5

24f 9.9 30g 2.4 33g 22

Table 7. In silico toxicity studies of compounds 29e, 29b, 31b, 31f, 31g, 33a.

Compound 29b 29e 31b 31f 31g 33a

Hepatotoxicity Inactive
0.56

Inactive
0.52

Inactive
0.52

Inactive
0.56

Inactive
0.56

Inactive
0.70

Immunotoxicity Inactive
0.52

Active
0.99

Active
0.99

Active
0.73

Active
0.84

Active
0.57

Carcinogenicity Active
0.51

Inactive
0.61

Inactive
0.61

Active
0.51

Active
0.51

Inactive
0.62

Mutagenicity Inactive
0.71

Inactive
0.52

Inactive
0.51

Inactive
0.73

Inactive
0.73

Inactive
0.62

Cytotoxicity Inactive
0.50

Inactive
0.56

Inactive
0.55

Active
0.50

Active
0.50

Active
0.54

LD50(mg/Kg) 3000 900 3000 3000 900 2958

Toxicity class a 5 4 5 5 4 5
a Class I: fatal if swallowed (LD50 ≤ 5), II: fatal if swallowed (5 < LD50 ≤ 50), III: toxic if swallowed
(50 < LD50 ≤ 300), IV: harmful if swallowed (300 < LD50 ≤ 2000), V: may be harmful if swallowed
(2000 < LD50 ≤ 5000), VI: non-toxic (LD50 > 5000).

Additionally, compounds 20b,d, 21a,b,d, 23d, 30d,e,g, 33e were tested for toxicity in the
Galleria mellonella model. Nine out of ten tested compounds showed LD50 ≥ 325 mg/Kg and
eight of them LD50 ≥ 650 mg/Kg. Although some compounds (21a, 30d, 30g, 21d) induced
mortality at the higher doses, it was only ≤25%. This suggests that most compounds are
likely to have a very low toxic nature.

3. Materials and Methods

All solvent and reagents were obtained from commercial sources and were used
without purification. Thin layer chromatography analyses were performed on 0.2 mm
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pre-coated aluminium plates of silica gel 60 F254 (Merck, Darmstadt, Hesse, Germany).
Melting points were taken on a Stuart SMP10 melting point device (Cole-Parmer Ltd., Stone,
Staffordshire, UK) and are uncorrected. FTIR spectra were determined on an IRAffinity-
1 spectrophotometer (Shimadzu, Columbia, MD, USA). 1H and 13C NMR spectra were
measured on a Bruker 400 Ultrashield Avance II spectrometer (Bruker, Billerica, MA, USA)
operating at 400 and 100 MHz, respectively, using DMSO-6 and CDCl3 as solvents and
TMS as internal standard. Mass spectra were obtained on a Shimadzu-GCMS-QP2010
spectrometer (Shimadzu, Kyoto, Honshu, Japan) equipped with a Rxi-1HT GC Capillary
Column (30 m, 0.25 mm ID, 0.25 um df, phase: dimethyl polysiloxane) and operating
at 70 eV. Elemental analyses were performed on a Thermo Finnigan Flash EA1112 CHN
elemental analyzer (Thermo Fischer Scientific Inc., Madison, WI, USA) and the values are
within ±0.4% of the theoretical values.

3.1. Chemistry
3.1.1. General Procedure for the Synthesis of Monosubstituted Triazines (5–7)

The synthesis of derivatives 5 [68–70] and 6 [71,72] was reported in previous studies.
Monosubstituted triazine 7 was obtained as follows: A solution of 4-hydroxy-3-methoxybenzal-
dehyde (13 mmol) in acetone (20 mL) was added slowly to a solution of 2,4,6-trichloro-1,3,5-
triazine 4 (35.1 mmol) in acetone (35 mL) at −5–0 ◦C. The mixture was neutralized with
20% Na2CO3. The content was poured onto crushed ice, filtered, and washed with water.
The required equivalents of the reagents and reaction time are reported in Table 1.

3.1.2. General Procedure for the Synthesis of Disubstituted Triazines (8–11)

The synthesis of derivatives 8 [74], 9 [71] and 11 [73] was reported in previous studies.
Disubstituted triazine 10 was obtained as follows: 4-hydroxy-3-methoxybenzaldehyde
(13 mmol)was added slowly to a solution of monosubstituted triazine 6 (13 mmol) in
acetone (35 mL) at room temperature. The mixture was neutralized with 20% Na2CO3 and
after 3 h the content was poured onto crushed ice, filtered, and washed with water. The
required equivalents of the reagents, the solvent used, the temperature and the reaction
time were reported in Table 1.

3.1.3. Procedure for the Synthesis of Trisubstituted Triazine (12)

A mixture of disubstituted triazine 8 (6.2 mmol) and ethylenediamine (99.2 mmol)
was stirred at room temperature for 18 h. The mixture was dissolved in chloroform and
washed with water. The organic phase was dried with MgSO4, filtered, and concentrated
under reduced pressure.

3.1.4. Procedure for the Synthesis of Trisubstituted Triazine (13)

A mixture of disubstituted triazine 9 (5.6 mmol) and ethylenediamine (89.6 mmol) was
refluxed for 4 h. The mixture was poured onto crushed ice, filtered, and washed with water.

3.1.5. Procedure for the Synthesis of Trisubstituted Triazine (14)

A mixture of disubstituted triazine 10 (3 mmol) and dimethylamine (3 mmol) in
dioxane (15 mL) was stirred at room temperature for 1 h. The mixture was poured onto
crushed ice, filtered, and washed with water.

3.1.6. Procedure for the Synthesis of Trisubstituted Triazine (15)

A mixture of disubstituted triazine 11 (3 mmol) and ethanolamine (4.5 mmol) in
dioxane (15 mL) was stirred at room temperature for 24 h. The mixture was poured onto
crushed ice, filtered, and washed with water.

3.1.7. General Procedure for the Synthesis of Trisubstituted Triazines (17,18)

A mixture of the respective trisubstituted triazine 12/13 (4 mmol), 4-acetylbenzenesulfonyl
chloride 16 (4.8 mmol) and TEA (0.5 mL) in ethanol (15 mL) was stirred at room tempera-
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ture for 24 h. The reaction crude was dissolved in chloroform and washed with water. The
organic phase was dried with MgSO4, filtered, and concentrated under reduced pressure.
The product was then purified by column chromatography on silica gel employing 10:1 of
ethyl acetate:hexane as eluent.

3.1.8. General Procedure for the Synthesis of Chalcones (23,24a–g)

A mixture of the respective trisubstituted triazine 17/18 (0.22 mmol), the respective
benzaldehyde 22a–g (0.27 mmol), and 0.2 mL potassium hydroxide (20%) in ethanol (3 mL)
was stirred at room temperature for 3–8 h. The solid thus formed was filtered and washed
with cold ethanol.

3.1.9. General Procedure for the Synthesis of Chalcones (20a–g)

A mixture of the trisubstituted triazine 14 (0.27 mmol), the respective acetophenone
19a–g (0.22 mmol) and 150 µL of a solution of potassium hydroxide (20%) in ethanol
(3 mL) were sonicated (US) for 6–8 h. The content of 20a-c,e,g was filtered, and washed
with cold ethanol. The content of 20d and 20f were dissolved in chloroform and washed
with water. The organic phase was dried with MgSO4, filtered, and concentrated under
reduced pressure. The product was then purified by column chromatography on silica gel
employing 20:1 of dichloromethane:methanol as eluent.

3.1.10. General Procedure for the Synthesis of Chalcones (21a–g)

A mixture of the trisubstituted triazine 15 (0.26 mmol), the respective acetophenone
19a–g (0.22 mmol), and 150 µL of a solution of potassium hydroxide (20%) in ethanol (3 mL)
was heated under reflux for 2–5 h. The content was dissolved in chloroform and washed
with water. The organic phase was dried with MgSO4, filtered, and concentrated under
reduced pressure. The products were purified by column chromatography on silica gel
employing 2:1 hexane:ethyl acetate as eluent.

3.1.11. General Procedure for the Synthesis of the 8,9-dihydro-7H-pyrimido[4,5-b][1,4]Diazepines
(28–33)a–g

A mixture of the respective chalcone (20,21)a–g and (23–26)a–g (0.5 mmol), 2,4,5,6-
tetraaminopyrimidine dihydrochloride 27 (1.5 mmol) and BF3·OEt2 (0.25 mL) in methanol
(10 mL) was heated under reflux for 3–8 h. After cooling to room temperature, the con-
tent was quenched with NH4OH 6% until neutralization. The content was dissolved
in chloroform and washed with water. The organic phase was dried with MgSO4, fil-
tered, and concentrated under reduced pressure. The product was purified by column
chromatography on silica gel employing 10:1 dichloromethane:methanol as eluent.

3.1.12. Anticancer Activity

The human cancer cell lines of the cancer screening panel were grown in an RPMI–1640
medium containing 5% fetal bovine serum and 2 mM L–glutamine. For a typical screening
experiment, cells were inoculated into 96–well microtiter plates. After cell inoculation, the
microtiter plates were incubated at 37 ◦C, 5% CO2, 95% air, and 100% relative humidity for
24 h prior to the addition of the tested compounds. After 24 h, two plates of each cell line
were fixed in situ with TCA to represent a measurement of the cell population for each cell
line at the time of sample addition (Tz). The samples were solubilized in dimethyl sulfoxide
(DMSO) at 400–fold the desired final maximum test concentration and stored frozen prior
to use. At the time of compound addition, an aliquot of frozen concentrate was thawed
and diluted to twice the desired final maximum test concentration with complete medium
containing 50 µg/mL gentamicin. An additional four 10–fold or 1/2 log serial dilutions
were made to provide a total of five drug concentrations plus the control. Aliquots of 100 µL
of these different sample dilutions were added to the appropriate microtiter wells already
containing 100 µL of medium, resulting in the required final sample concentrations. After
the tested compounds were added, the plates were incubated for an additional 48 h at 37 ◦C,
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5% CO2, 95% air, and 100% relative humidity. For adherent cells, the assay was terminated
by the addition of cold TCA. Cells were fixed in situ by the gentle addition of 50 µL of
cold 50% (w/v) TCA (final concentration, 10% TCA) and incubated for 60 min at 4 ◦C. The
supernatant was discarded, and plates were washed five times with tap water and air dried.
Sulforhodamine B (SRB) solution (100 µL) at 0.4% (w/v) in 1% acetic acid was added to each
well, and plates were incubated for 10 min at room temperature. After staining, unbound
dye was removed by washing five times with 1% acetic acid and the plates were air dried.
Bound stain was subsequently solubilized with 10 mM trizma base, and the absorbance
was read on an automated plate reader at a wavelength of 515 nm. Using the seven
absorbance measurements [time zero (Tz), control growth in the absence of drug, and test
growth in the presence of drug at the five concentration levels (Ti)], the percentage growth
was calculated at each of the drug concentrations levels. Percentage growth inhibition
was calculated as: [(Ti − TZ)/(C − TZ)] × 100 for concentrations for which Ti > Tz, and
[(Ti − TZ)/TZ] × 100 for concentrations for which Ti < Tz. Two dose−response parameters
were calculated for each compound. Growth inhibition of 50% (GI50) was calculated from
[(Ti − TZ)/(C − TZ)] × 100 = 50, which is the drug concentration resulting in a 50% lower
net protein increase in the treated cells (measured by SRB staining) as compared to the net
protein increase seen in the control cells and the LC50 (concentration of drug resulting in a
50% reduction in the measured protein at the end of the drug treatment as compared to that
at the beginning), indicating a net loss of cells; calculated from [(Ti − TZ)/TZ] × 100 = −50).
Values were calculated for each of these two parameters if the level of activity is reached;
however, if the effect was not reached or was exceeded, the value for that parameter was
expressed as greater or less than the maximum or minimum concentration tested [76–79].

3.1.13. Antibacterial Activity

Stock solutions (100 mg/mL) of the respective compounds were prepared in dimethyl-
sulfoxide (DMSO) and diluted to a final concentration of 500 µg/mL. An initial screening
for bacterial inhibition was performed by the agar diffusion method. Briefly, sterile Mueller
Hinton agar was prepared in Petri dishes and inoculated with a bacterial suspension pre-
pared in trypticase soy broth (TSB) and adjusted to 1.5 × 108 CFU/mL (0.08–0.1 OD at
600 nm) [92]. 6 mm diameter wells were drilled into the agar, and 10 µL of each compound
(stock solution) was deposited into each well. DMSO and TSB were included as negative
controls. Gentamicin and trimethoprim sulfamethoxazole were included as a positive
control for growth inhibition. Derivatives showing growth inhibition were tested at least
twice before being selected for the microdilution test. For N. gonorrhoeae, the agar diffusion
method was also used for screening with some modifications. For this method, 200 µL of
a bacterial suspension (1.5 × 108 CFU/mL) was inoculated onto Gonococcal Agar (GC)
supplemented with 1% isovitalex, and then compounds were added to wells as mentioned
above and incubated at 35–36.5 ◦C in 5% CO2 for 48 h. Penicillin and tetracycline were
used as controls [93].

Antitubercular screening was carried performed using the broth microdilution
method [94]. Briefly, 100 µL of Middlebrook 7H9 culture medium supplemented with 10%
Middlebrook OADC and test compounds at a concentration of 100 µg/mL were placed
in clear U-bottom polystyrene 96-well microplates. Wells with culture medium without
compounds were prepared as growth control. Bacterial suspensions were prepared from
Lowenstein Jensen agar cultures and adjusted to 5 × 106 CFU/mL. Once the required
density was reached, a 1:20 dilution was realized in Middlebrook 7H9 culture medium
supplemented with 10% Middlebrook OADC and 100 µL were inoculated into the wells
containing culture medium supplemented with the compounds. Microplates were incu-
bated at 37 ◦C for 14–21 days. After time, a visual reading of the growth in each well
was performed. Those wells in which no growth was observed were taken as positive for
anti-TB activity.

Microdilution test: The Minimum Inhibitory Concentration was determined for those
compounds with reproducible and visible antibacterial inhibition in the screening test. The
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bacterial suspensions were adjusted with Mueller Hinton Broth (MHB) to a concentration
of 5 × 105 to 8 × 105. The stock solution of the new compounds was diluted in MHB
containing 5% DMSO and 0.1% Tween 80 and added to 90 µL of inoculum. The microplates
were incubated for 24 h at 35–37 ◦C. The determination of the MIC of the new compounds
that presented anti-TB activity was developed as described in the previous section, in-
cluding decreasing concentrations of each compound. The MIC was defined as the lowest
concentration with visible inhibition of bacterial growth, and/or detected using Resazurin
(125 µg/mL). Isoniazid was included as growth inhibition controls. The experiments were
performed in duplicate.

For the analysis of inhibition against N. gonorrhoeae, compounds that showed growth
inhibition on evaluative screening were then tested for MIC on agar plates as described
by the Center for Disease Control Prevention and the Clinical and Laboratory Standards
Institute with modifications [93]. Briefly, GC agar supplemented with 1% isovitalex was
prepared with increasing concentrations of the new compounds and inoculated with 10 µL
of a bacterial suspension (1 × 104 CFU). The lowest concentration of the compound that
inhibited bacterial growth was determined as the MIC. Bacterial growth was examined and
verified using the oxidase test. The experiments were performed in duplicate in at least
two independent assays.

3.1.14. Antifungal Activity

Broth microdilution techniques were performed in 96-well microplates according to the
Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, document
M27-A3 [86] and of Filamentous Fungi M38-A8 [87]. For assay, stock solutions of each
compound in DMSO (maximum concentration 1%) were added to test wells and diluted
with RPMI-1640, to final concentrations of 250–0.98 µg/mL. An inoculum suspension
(100 µL) was added to each well (final well volume = 200 µL). One growth control well
(containing medium, inoculum, and the same amount of DMSO as used for each compound)
and one sterility control well (sample, medium, and sterile water instead of inoculum)
were included for each fungus tested. Microtiter plates were incubated in a dark, humid
chamber at 30 ◦C for the time necessary for each fungus. Amphotericin B, Terbinafine,
Fluconazole and Itraconazole were used as a positive control. The tests were performed
in triplicate.

3.1.15. Hemolytic Activity

Compounds that showed activity were evaluated for their ability to induce hemolysis
following the cytotoxicity method by spectrophotometry. The method was adapted from
Conceição et al. [90] with modifications. 240 µL of human red blood (huRBC) adjusted at
5% of hematocrit in phosphate-buffered saline were placed in each well of a 96-well plate
and subsequently exposed to 200 µg/mL of selected compounds (10 µL of a 5 mg/mL
solution of test compound dissolved in 5% DMSO, 0.1% Mueller Hinton broth Tween-80).
As a positive control for hemolytic activity, 10 µL of 1% sodium dodecyl sulfate was added.
As a negative control, the medium without the compounds to be tested was employing.
Free hemoglobin was measured after 24 h of incubation at 37 ◦C by spectrophotometry
(420 nm Cytation 3M, BioteK). Non-specific absorbance was subtracted from a blank. The
determinations were made in triplicate in at least two independent experiments.

3.1.16. Toxicity Studies In Vivo

Compounds biologically active were tested for toxicity in the Galleria mellonella
model. G mellonella larvae were cultivated in the laboratory and healthy, beige larvae
weighing 150–200 mg, were selected for toxicity assays. Groups of ten six- instar larvae
were inoculated with 10 µL or 20 µL of each compound at concentration equivalent to
650 mg/Kg and incubated at 37 ◦C in darkness. The larval survival was monitored every
24 h for 5 days to determine the half lethal doses (LD50). The larvae were initially injected
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30 mg/Kg and if most larvae (≥60%) survived after five days, the assay was performed
using higher doses up to 650 mg/Kg [95].

4. Conclusions

Four new trisubstituted triazines 12–15 and 17,18, four triazinyloxy- and triazinylamino-
chalcone 20–21a–g and 23–24a–g series and six pyrimido[4,5-b][1,4]diazepine 28–33a–g
series were efficiently synthesized in successive reaction stages under mild conditions. The
In vitro anticancer activity analyzes against 60 human cancer cells revealed that seventeen
chalcones (20b,d, 21a,b,d, 23a,d–g, 24a–g) and thirteen pyrimido[4,5-b][1,4]diazepines
(29e,g, 30g, 31a,b,e–g, 33a,b,e–g) exhibited remarkable activity with GI50 values between
0.01–100 µM and LC50 between 4.09 µM to > 100 µM, being chalcones 20d, 21a, 21d, 23a,
23d, 24c, 24d and diazepines 29e, 29g, 30g, 31a–b,e–g, 33a–b,e–g more active against several
cell lines than the standard drug 5-FU. The antibacterial activity studies showed that the
triazinyloxy- and triazinylamino-pyrimido[4,5-b][1,4]diazepine hybrids exhibited the best
growth inhibition profiles. Compound 33g was active against S. aureus (ATCC 43300) with a
MIC = 31.25 µg/mL and derivatives 29a–g and 31a–g exhibited outstanding activity against
M. tuberculosis with MICs = 0.6–5 µg/mL, being compounds 29b and 31b the most active
of the series. Among the active diazepines against N. gonorrhoeae (28a–g, 29a,c,d,f, 30d,
31a–f, 32a,b,f,g, 33a,b,c,f) compound 31f stands out, which showed activity comparable to
that of the drug penicillin and low hemolytic activity. Regarding to the antifungal activity,
triazinylamino-chalcone 29e was active against T. rubrum and triazinyloxy-chalcone 31g
was active against T. mentagrophytes and A. fumigatus (MIC = 62.5 µg/mL, in all three
cases). The low toxicity of most of the above compounds suggests that they are safe and
non-toxic. These interesting biological profiles exhibited by synthesized 1,3,5-triazine-based
chalcone/diazepine hybrids could offer an excellent framework for the development of
potent anticancer, antibacterial, and antifungal agents through optimization processes.
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Analogues Incorporating Aminobenzene Sulfonamide, Aminoalcohol/Phenol, Piperazine, Chalcone, or Stilbene Motifs. Molecules
2020, 25, 1787. [CrossRef] [PubMed]

11. Reddy, R.; Reddy, R.; Subba, V.; Gopireddy, R.; Poola, S.; Krishna, S.; Chintha, V. Ethyl-4-(Aryl)-6-Methyl-2-(Oxo/Thio)-3,4-
Dihydro-1H-Pyrimidine-5-Carboxylates: Silica Supported Bismuth (III) Triflate Catalyzed Synthesis and Antioxidant Activity.
Bioorg. Chem. 2022, 129, 106205. [CrossRef]

12. Fader, L.; Bethell, R.; Bonneau, P.; Bös, M.; Bousquet, Y.; Cordingley, M.; Coulombe, R.; Deroy, P.; Faucher, A.M.; Gagnon, A.; et al.
Discovery of a 1,5-Dihydrobenzo[b][1,4]Diazepine-2,4-Dione Series of Inhibitors of HIV-1 Capsid Assembly. Bioorg. Med. Chem.
Lett. 2011, 21, 398–404. [CrossRef]

13. Ludovici, D.; De Corte, B.; Kukla, M.; Ye, H.; Ho, C.; Lichtenstein, M.; Kavash, R.; Andries, K.; De Béthune, M.P.; Azijn, H.; et al.
Evolution of Anti-HIV Drug Candidates. Part 2: Diaryltriazine (DATA) Analogues. Bioorg. Med. Chem. Lett. 2001, 11, 2235–2239.
[CrossRef]

14. Okazaki, S.; Mizuhara, T.; Shimura, K.; Murayama, H.; Ohno, H. Identification of Anti-HIV Agents with a Novel
Benzo[4,5]Isothiazolo[2,3-a]Pyrimidine Scaffold. Bioorg. Med. Chem. 2015, 23, 1447–1452. [CrossRef]

15. El-Subbagh, H.; Hassan, G.S.; El-Azab, A.S.; Abdel-Aziz, A.; Kadi, A.A.; Al-Obaid, A.; Al-Shabanah, O.; Sayed-Ahmed, M.
Synthesis and Anticonvulsant Activity of Some New Thiazolo[3,2-a][1,3] Diazepine, Benzo[d]Thiazolo[5,2-a][12,6]Diazepine and
Benzo[d]Oxazolo[5,2-a][12, 6]Diazepine Analogues. Eur. J. Med. Chem. 2011, 46, 5567–5572. [CrossRef] [PubMed]

16. Pal, R.; Jawaid Akhtar, M.; Raj, K.; Singh, S.; Sharma, P.; Kalra, S.; Chawla, P.; Kumar, B. Design, Synthesis and Evaluation of
Piperazine Clubbed 1,2,4-Triazine Derivatives as Potent Anticonvulsant Agents. J. Mol. Struct. 2022, 1257, 132587. [CrossRef]

17. Sethuvasan, S.; Sugumar, P.; Ponnuswamy, M.N.; Ponnuswamy, S. Synthesis, Spectral Characterization and Conformational
Assignment of N-Formyl-2,7-Diaryl-1,4-Diazepan-5-Ones as Potent Antibacterial Agents and Type I DHQase Inhibitors. J. Mol.
Struct. 2021, 1236, 130293. [CrossRef]

18. Tan, Y.; Li, D.; Li, F.; Fawad, M.; Fang, B.; Zhou, C. Pyrimidine-Conjugated Fluoroquinolones as New Potential Broad-Spectrum
Antibacterial Agents. Bioorg. Med. Chem. Lett. 2022, 73, 128885. [CrossRef]

19. Gupta, S.; Paul, K. Membrane-Active Substituted Triazines Antibacterial Agents against Staphylococcus Aureus with Potential
for Low Drug Resistance and Broad Activity. Eur. J. Med. Chem. 2023, 258, 115551. [CrossRef] [PubMed]

20. Gour, J.; Gatadi, S.; Pooladanda, V.; Ghouse, S.M.; Malasala, S.; Madhavi, Y.V.; Godugu, C.; Nanduri, S. Facile Synthesis of
1,2,3-Triazole-Fused Indolo- and Pyrrolo[1,4]Diazepines, DNA-Binding and Evaluation of Their Anticancer Activity. Bioorg. Chem.
2019, 93, 103306. [CrossRef] [PubMed]

21. Ali, W.; Garbo, S.; Kincses, A.; Nové, M.; Spengler, G.; Di Bello, E.; Honkisz-Orzechowska, E.; Karcz, T.; Szymańska, E.; Żesławska,
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Żesławska, E.; Agnieszka-Olejarz-Maciej; et al. An Exit beyond the Pharmacophore Model for 5-HT6R Agents—A New Strategy
to Gain Dual 5-HT6/5-HT2A Action for Triazine Derivatives with Procognitive Potential. Bioorg. Chem. 2022, 121, 105695.
[CrossRef]

31. Green, K.; Pang, A.; Thamban, N.; Garzan, A.; Baughn, A.; Tsodikov, O.; Garneau-Tsodikova, S. Discovery and Optimization
of 6-(1-Substituted Pyrrole-2-Yl)-s-Triazine Containing Compounds as Antibacterial Agents. ACS Infect. Dis. 2022, 8, 757–767.
[CrossRef]

32. El-Wakil, M.H.; Khattab, S.N.; El-Yazbi, A.F.; El-Nikhely, N.; Soffar, A.; Khalil, H.H. New Chalcone-Tethered 1,3,5-Triazines
Potentiate the Anticancer Effect of Cisplatin against Human Lung Adenocarcinoma A549 Cells by Enhancing DNA Damage and
Cell Apoptosis. Bioorg. Chem. 2020, 105, 104393. [CrossRef]
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