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Abstract: Meat color traits directly influence consumer acceptability and purchasing decisions. Nev-
ertheless, there is a paucity of comprehensive investigation into the genetic mechanisms underlying
meat color traits in pigs. Utilizing genome-wide association studies (GWAS) on five meat color traits
and the detection of selection signatures in pig breeds exhibiting distinct meat color characteristics, we
identified a promising candidate SNP, 6_69103754, exhibiting varying allele frequencies among pigs
with different meat color characteristics. This SNP has the potential to affect the redness and chroma
index values of pork. Moreover, transcriptome-wide association studies (TWAS) analysis revealed
the expression of candidate genes associated with meat color traits in specific tissues. Notably, the
largest number of candidate genes were observed from transcripts derived from adipose, liver, lung,
spleen tissues, and macrophage cell type, indicating their crucial role in meat color development.
Several shared genes associated with redness, yellowness, and chroma indices traits were identified,
including RINL in adipose tissue, ENSSSCG00000034844 and ITIH1 in liver tissue, TPX2 and MFAP2
in lung tissue, and ZBTB17, FAM131C, KIFC3, NTPCR, and ENGSSSCG00000045605 in spleen tissue.
Furthermore, single-cell enrichment analysis revealed a significant association between the immune
system and meat color. This finding underscores the significance of the immune system associated
with meat color. Overall, our study provides a comprehensive analysis of the genetic mechanisms
underlying meat color traits, offering valuable insights for future breeding efforts aimed at improving
meat quality.

Keywords: GWAS; meat quality; single-cell enrichment; TWAS

1. Introduction

The color of meat is of paramount importance in evaluating meat quality and shap-
ing consumer preferences serving as a vital indicator for meat evaluation. In addition,
meat color provides valuable information regarding meat quality, freshness, nutritional
properties, and storage conditions. Consumers usually rely on their understanding of
meat color and quality to make informed purchasing decisions [1]. The color of meat
can be objectively described using the parameters in the Commission Internationale de
l’Éclairage lab (CIELAB) color space. These parameters contain the brightness (L*), redness
(a*), yellowness (b*), chroma indices value (C*), and hue angle (h◦) of meat color. The
CIELAB model is highly intuitive for color evaluations, aligning with the natural human
perception of colors. In the meanwhile, it has the advantages of time-saving, preciseness,
and reproducibility [2].
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Earlier studies (e.g., Esfandyari et al. [3], Lee et al. [4], and Zha et al. [5]) have suggested
that meat color traits in pigs demonstrate low to moderate heritability, indicating the
significant contribution of genetic factors to the variation in these traits. Therefore, through
a comprehensive analysis of the genetic mechanisms underlying meat color traits and
the identification of relevant candidate sites and genes, which can in turn enhance the
efficiency of marker-assisted selection or genomic selection, valuable insights for the genetic
improvement of the traits can be provided [6–9]. According to the release 48 version of the
animal quantitative trait loci (QTLs) database [10], a total of 18,265 QTLs or associations for
porcine meat quality and carcass traits have been reported in previous studies. However,
only 904 QTLs or associations specifically related to meat color traits have been identified.
Meat color traits are complex quantitative traits influenced by multiple genes, and further
research is required to unveil their intricate genetic basis. Deeper investigations are essential
to gain a comprehensive understanding of the underlying genetic mechanisms governing
meat color traits.

In recent years, the application of genetic methods in the study of meat color traits
has made notable advancements, with genome-wide association studies (GWAS) being
particularly significant. GWAS has emerged as a powerful tool in the last decade, aiming to
identify associations between genotypes and phenotypes of various traits or diseases [11–15].
Several GWAS analyses have been conducted on meat color in pigs [16–20]. However, these
studies are basically limited in the marker density, resulting in the loss of crucial information.
Furthermore, these studies lack comprehensive post-GWAS analyses, e.g., transcriptome-
wide association studies (TWAS) and single-cell enrichment analysis, which restrict the
depth of research findings. TWAS is a method that integrates transcriptome data and
GWAS data to analyze the genetic mechanisms of traits at the transcriptome level. TWAS
aims to identify associations between gene expression and a phenotype and is frequently
employed as a secondary analysis of GWAS results [21]. Single-cell RNA sequencing
(scRNA-seq) has emerged as the preferred method for quantifying gene expression at the
single-cell level, enabling researchers to gain a more precise understanding of gene activity
across different cell types and offers a higher resolution compared to studies that utilize
bulk transcriptomic data [22]. Moreover, scRNA-seq has the ability to identify novel cell
populations within traditionally defined cell types [23]. By integrating scRNA-seq with
GWAS data, researchers can potentially uncover the crucial tissues, cell types, and cell
populations through which candidate variants influence traits or diseases [24–26]. The
use of TWAS and single-cell transcriptomics for the genetic analysis of meat color traits
will be helpful to further understand the genetic structure and regulatory mechanism of
meat color.

This study presents a multi-layered analysis to explore the genetic mechanisms un-
derlying meat color traits in pigs (Figure 1). Initially, we estimated the genetic parameters
and performed whole-genome sequence-based GWAS on five meat color traits, i.e., L*,
a*, b*, C*, and h◦. This process enabled the identification of candidate SNPs and genes
associated with meat color. Subsequently, we explored selection signatures in pig breeds
with distinct meat color characteristics to identify SNPs linked to color variation. Moreover,
we conducted TWAS and single-cell enrichment analysis to identify genes and cell types
significantly associated with meat color.
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Figure 1. The comprehensive analysis of genetic mechanisms underlying meat color in pigs.

2. Results and Discussion
2.1. Estimates of Heritability and Genetic Correlations

The average values of L*, a*, b*, C*, and h◦ were 47.78, 7.48, 9.70, 9.85, and 0.90 in
Jinhua × Piétrain F2 pigs; meanwhile, the values were 40.48, 4.65, 5.67, 7.46, and 0.92 in
(Piétrain × Duroc) × (Landrace × Yorkshire) pigs. This study found that meat color traits
exhibit low-to-moderate heritability. The heritabilities of L*, a*, b*, C*, and h◦ are 0.17
(±0.09), 0.14 (±0.10), 0.17 (±0.10), 0.10 (±0.09), and 0.30 (±0.10). This is consistent with
the results of previous reports that the heritability of meat color traits is in the range from
0.10 to 0.50, and meat color traits are characterized by low to moderate heritability [3,5].
Meanwhile, we found most of the traits had lower estimates of heritability than in purebred
pigs, e.g., Duroc [27] and Berkshire [4]. The previous studies reported varying estimates of
heritability between crossbred and purebred data, but generally, heritability estimates tend
to be higher for purebred pigs compared to crossbred pigs [3,28,29]. The phenotypic and
genetic correlations (Table 1) between a* and h◦ exhibited a significant negative association.
In addition, the phenotypic and genetic correlations between a* and C* revealed a significant
positive association, and b* and C* also displayed a significant positive correlation. It is
worth noting that the phenotypic and genetic correlations between the traits a* and C*,
a* and h◦, b* and C*, and b* and h◦ are generally strong. This could be attributed to the
fact that the values of C* and h◦ are generated by the ratio of the values of a* and b* in
the analysis.
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Table 1. The phenotypic and genetic correlations between meat color traits.

Correlation L* a* b* C* h◦

L* 0.04 0.59 0.47 0.31
a* −0.19 (0.15) 0.75 0.95 −0.81
b* 0.35 (0.41) 0.09 (0.49) 0.91 −0.30
C* −0.39 (0.55) 0.75 (0.22) 0.73 (0.23) −0.63
h◦ 0.58 (0.25) −0.85 (0.12) 0.42 (0.36) −0.30 (0.38)

Note: The diagonals are estimates of genetic and phenotypic correlations between corresponding traits. Below
diagonal are genetic correlations, and above diagonal are phenotypic correlations.

2.2. GWAS and Selection Signatures for Meat Color Traits

Subsequently, a comprehensive analysis was undertaken to identify promising SNPs
and candidate genes associated with meat quality traits. Our findings revealed significant
associations between specific SNPs and five meat color traits, i.e., L*, a*, b*, C*, and h◦

(Figure 2A and Table S1). These SNPs were found to overlap with a set of candidate genes,
with 14, 37, 75, and 114 genes associated with each respective meat color trait (Table S2).
Notably, our QTL enrichment analysis highlighted a strong enrichment of meat and carcass-
related QTLs among the SNPs associated with meat color traits (Table S3). These QTLs
encompassed key attributes, e.g., meat color, tenderness score, and fat androstenone levels.
These results provide evidence of a relationship between the candidate SNPs and meat
color. Additionally, our analysis revealed a significant enrichment of QTLs related to lipid
deposition, as lipid oxidation is a crucial factor influencing meat color [2,30]. Interestingly,
we also observed the significant enrichment of health-related QTLs that displayed a close
relationship with meat color, such as aspartate aminotransferase activity and eosinophil
number. Aspartate aminotransferase, also known as glutamic oxaloacetic transaminase,
is an enzyme with widespread presence and multiple functions. Its biological functions
can influence the changes in glycolytic and apoptotic potentials that occur during the
postmortem period. These potentials are crucial in determining the variation in meat
quality attributes, e.g., the development of pale-like characteristics [31,32]. Furthermore, the
notable enrichment of QTL related to the eosinophil number suggests a connection between
immunity and meat color traits. Previous studies have established associations between
immunity and production traits [33,34]. These associations present a challenge for breeding
programs and necessitate careful consideration in order to enhance immunocompetence
without compromising production traits in pigs. Furthermore, we identified a total of 6, 9,
6, 8, and 11 lead SNPs (Table 2) associated with L*, a*, b*, C*, and h◦, respectively. These
lead SNPs exhibited the lowest p-values within their respective genomic regions and are
particularly suitable for enhancing the selection models by incorporating prior knowledge.
Their inclusion might enhance the efficacy of selecting desirable meat color traits in pigs.

In the current study, we discovered a group of 32 shared SNPs that were associated
with at least two meat color traits (Figure 2B). These SNPs were found on chromosomes 6,
10, and 14, with the majority being located on chromosome 6. By utilizing these SNPs, we
observed that the five traits could be clustered into two distinct groups: one comprising L*
and h◦, and the other consisting of a*, b*, and C*. Notably, this clustering pattern aligned
with the genetic correlations observed among these traits.

To pinpoint the promising SNPs associated with meat color traits, we conducted
analysis to detect selection signatures. The previous study has reported that Laiwu pigs
displayed significantly different color parameters compared to Erhualian and Bamaxiang
pigs [35]. Therefore, in our analysis, we focused on assessing the genetic differentiation
between two groups: Group 1 (Laiwu vs. Erhualian) and Group 2 (Laiwu vs. Bamaxiang).
We identified a total of 624 candidate signatures, corresponding to 182 putative genes in
Group 1 (Table S4), and 1094 candidate signatures, corresponding to 307 putative genes in
Group 2 (Table S5). To gain insights into the biological functions and pathways of these
putative genes, we further performed gene enrichment analysis (Table 3). Although the
identification of selection signatures was broad-spectrum, some of these GO terms and
KEGG pathways were related to the formation of meat color, e.g., porphyrin metabolism.
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Iron will fall off from the porphyrin ring in the heme destruction process, which can further
cause a more serious lipid oxidation in muscle foods than heme iron [36], and influence the
formation of meat color.

Table 2. The lead SNPs associated with meat color traits in pigs.

Trait Chr SNP Position MAF Beta p-Value

L* 3 3_6002588 6,002,588 0.02 −4.15 2.58 × 10−7

6 6_2992189 2,992,189 0.43 −0.94 2.74 × 10−7

9 9_122912114 122,912,114 0.04 −2.53 9.35 × 10−8

11 11_6188381 6,188,381 0.01 4.17 2.81 × 10−7

15 15_135164457 135,164,457 0.10 −1.96 5.52 × 10−8

15 15_135250924 135,250,924 0.10 −1.86 9.75 × 10−8

a* 6 6_65876337 65,876,337 0.08 1.12 1.85 × 10−7

6 6_66804782 66,804,782 0.05 1.57 9.92 × 10−8

6 6_68676398 68,676,398 0.05 1.49 1.14 × 10−7

6 6_69103754 69,103,754 0.05 1.50 2.91 × 10−7

6 6_153966756 153,966,756 0.42 −0.63 2.55 × 10−7

10 10_60238284 60,238,284 0.08 1.07 1.24 × 10−7

14 14_48805995 48,805,995 0.44 −0.67 4.83 × 10−8

14 14_118583268 118,583,268 0.16 0.97 2.92 × 10−7

15 15_6662644 6,662,644 0.08 1.21 3.82 × 10−8

b* 6 6_66804782 66,804,782 0.05 0.98 2.67 × 10−7

6 6_150521698 150,521,698 0.15 0.66 3.11 × 10−8

6 6_155031955 155,031,955 0.12 0.70 1.30 × 10−8

6 6_155302633 155,302,633 0.12 0.67 4.40 × 10−8

15 15_130829530 130,829,530 0.14 −0.85 1.74 × 10−8

15 15_134038873 134,038,873 0.11 0.67 1.24 × 10−7

C* 6 6_66800541 66,800,541 0.05 1.65 2.21 × 10−8

6 6_153966756 153,966,756 0.42 −0.72 1.48 × 10−8

14 14_118583268 118,583,268 0.16 1.03 2.32 × 10−7

14 14_119428840 119,428,840 0.12 1.15 2.82 × 10−7

14 14_120357132 120,357,132 0.12 1.18 1.38 × 10−7

17 17_16141992 16,141,992 0.02 2.40 8.41 × 10−8

17 17_23084166 23,084,166 0.02 2.43 9.99 × 10−8

17 17_34758105 34,758,105 0.06 −1.46 1.92 × 10−7

h◦ 1 1_6615079 6,615,079 0.05 −0.10 1.39 × 10−7

1 1_32736620 32,736,620 0.39 0.05 3.30 × 10−8

1 1_125247464 125,247,464 0.40 −0.06 7.99 × 10−8

1 1_131796623 131,796,623 0.03 0.13 6.24 × 10−8

2 2_71469230 71,469,230 0.05 0.10 6.97 × 10−8

2 2_83698362 83,698,362 0.47 −0.05 8.05 × 10−8

2 2_106827384 106,827,384 0.06 −0.09 3.47 × 10−8

2 2_112653547 112,653,547 0.09 −0.09 2.35 × 10−8

4 4_9073628 9,073,628 0.02 −0.14 3.00 × 10−7

4 4_106967798 106,967,798 0.11 −0.08 8.98 × 10−8

7 7_24660161 24,660,161 0.22 −0.05 2.22 × 10−7

Through the integration of GWAS and selection signature detection, we identified
two shared genes, GIN1 and PPIP5K2, which are the newly reported genes associated with
meat color traits across different pig breeds. Moreover, we discovered a promising SNP
(6_69103754) located within the GIN1-PPIP5K2 genomic region, which exhibited the highest
values of FST and θπ (Figure 2C). To further investigate, we examined the allele frequency
of 6_69103754 in various pig populations. Our findings revealed a significantly higher
frequency of the T allele in both LWU and JS pig populations compared to the commercial
pig breeds (Figure S1). These allele frequency results align with the observed phenomenon
of LWU and JS pigs exhibiting different and more favorable meat color in comparison to PI,
YY, LL, and DD pigs.
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Table 3. The enrichment analysis of the selected genes between pigs with distinct meat color.

Group Term/Pathway FDR

Group 1 Bone mineralization (GO:0030282) 2.21 × 10−4

Signal transduction (GO:0007165) 2.71 × 10−4

Protein localization (GO:0008104) 3.12 × 10−4

Regulation of exocytosis (GO:0017157) 3.70 × 10−3

Cuticle development (GO:0042335) 2.50 × 10−3

Pentose and glucuronate interconversions (ssc00040) 9.33 × 10−6

Steroid hormone biosynthesis (ssc00140) 8.12 × 10−5

Thyroid hormone synthesis (ssc04918) 9.33 × 10−5

Ascorbate and aldarate metabolism (ssc00053) 2.12 × 10−3

Group 2 Anterior neural tube closure (GO:0061713) 7.14 × 10−4

Bicellular tight junction assembly (GO:0070830) 8.12 × 10−4

Regulation of protein stability (GO:0031647) 1.14 × 10−4

Pentose and glucuronate interconversions (ssc00040) 2.91 × 10−5

Bile secretion (ssc04976) 1.12 × 10−5

Ascorbate and aldarate metabolism (ssc00053) 2.23 × 10−5

Steroid hormone biosynthesis (ssc00140) 2.91 × 10−4

Porphyrin metabolism (ssc00860) 7.56 × 10−3

Retinol metabolism (ssc00830) 8.14 × 10−3

Metabolic pathways (ssc01100) 1.23 × 10−2

Biosynthesis of cofactors (ssc01240) 2.37 × 10−2
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2.3. TWAS for Meat Color Traits

Furthermore, we investigated the genetic mechanisms involved in meat color forma-
tion at the transcriptome level. To initiate this analysis, we conducted a summary-based
TWAS in 34 tissues using the FUSION TWAS pipeline. This approach prioritized 14, 35, 45,
47, and 70 candidate genes for L*, a*, b*, C*, and h◦ traits (Table S6), respectively. Notably,
we observed that candidate genes in various tissues, as the most candidate genes detected
in adipose, liver, lung, spleen tissues, and macrophage, were closely related to meat color
traits (Figure 3). This suggests that these specific tissues and cell types play a significant role
in the development of meat color. In this study, we specifically focused on the significant
genes identified in adipose, liver, lung, and spleen tissues.
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We discovered that the expression levels of 2, 5, 10, 11, and 19 genes in adipose, liver,
lung, and spleen tissues were significantly associated with L*, a*, b*, C*, and h◦ traits. No-
tably, the genes ATXN10 in adipose tissue and TPX2 in lung tissue reached the significance
threshold for L*. Additionally, we identified several shared genes that were related to a*,
b*, and C* traits. These include RINL in adipose tissue, ENSSSCG00000034844 and ITIH1 in
liver tissue, TPX2 and MFAP2 in lung tissue, and ZBTB17, FAM131C, KIFC3, NTPCR, and
ENGSSSCG00000045605 in spleen tissue. Among these traits, we observed that a higher
number of genes were significantly associated with the h◦ trait, which is consistent with
the results of GWAS. Notably, ENSSSCG00000051369 in liver tissue was a shared gene
significantly related to both h◦ and a*. Of all the significant genes associated with h◦, the
expression level of RGS14 in liver tissue potentially influences fat deposition, which in turn
contributes to the differences in meat color. RGS14 has been found to play crucial regula-
tory roles in liver damage and inflammatory responses [37]. In vivo and in vitro studies
have demonstrated that overexpression of RGS14 can effectively affect lipid accumulation,
inflammatory response, and liver fibrosis in hepatocytes [38]. Furthermore, we revealed
the potential biological functions of ENSSSCG00000034844, ENGSSSCG00000045605, and
ENSSSCG00000051369 in the formation of meat color in pigs.

Compared to other tissues, muscle tissue exhibits a relatively lower number of candi-
date genes. There are two potential reasons for this observation. Firstly, it is possible that
meat color as measured on the CIELAB scale primarily relies on other tissues, such as fat.
Secondly, the lack of subdivision of muscle tissue in the current PigGTEx portal may affect
the efficacy of TWAS focusing on muscle tissue. In future investigations, the subdivision of
muscle tissue could be considered to elucidate the specific underlying factors.

2.4. Single-Cell Enrichment for Meat Color Traits

To identify the potential contributing cell types, we conducted further analysis by
utilizing scRNA-seq data from adipose (Figure S2), liver (Figure S3), lung (Figure S4), and
spleen (Figure S5) tissues for single-cell enrichment analysis. We integrated the GWAS
data for five meat color traits with the single-cell RNA data from these tissues. We present
the enrichment results at the cell-type level, aggregated for each cell type based on the
individual cell-level results. The findings for a representative subset of cell types from the
four tissues and five traits are shown in Figure 4. Within this subset, the scDRS method
identified nine cell-type trait associations (FDR < 0.1) and revealed significant heterogeneity
in trait associations within specific cell types for two out of the nine identified cell-type
trait associations.

Regarding the associations between cell types and traits, we observed that scDRS anal-
ysis consistently linked metabolic and immune cell types with meat color traits. Notably,
erythroid cells and hepatocytes in the liver, macrophages in the lung and spleen, plasma
cells in the lung, and monocytes and NK cells in the spleen showed significant associations.
This suggests the involvement of immune response and metabolic processes in the forma-
tion of meat color. Furthermore, the significant correlation between macrophages and meat
color highlights the crucial role of the immune response in this process. It is worth noting
that the oxidative process in muscle tissues can vary depending on an animal’s immune
status [39], as lipid oxidation can impact meat color [2,30]. The results obtained from both
single-cell enrichment analysis and QTL enrichment analysis were found to be consistent,
indicating an association between meat color and immune system.

Meat color is influenced by multiple factors, including genetics, nutrition, management
practices, environmental conditions, and slaughter age [18,19]. For example, the meat color
of young animals tends to be paler in comparison to that of adult animals [40]. Genetics has
been identified as a particularly influential factor among these variables [18]. Consequently,
understanding the genetic mechanisms underlying meat color traits holds significant
potential for enhancing meat color.
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3. Materials and Methods
3.1. Samples and Data

All experimental procedures were carried out in accordance with the guidelines of the
China Council on Animal Care. The protocol was approved by the Animal Care and Use
Committee of Zhejiang University (permit number: ZJU20160346).

This study used the genotypes and phenotypes of a Jinhua × Piétrain F2 population
generated as follows. Six Piétrain (three boars and three sows) and five Jinhua (three sows
and two boars), constituting the F0 generation, were successfully mated and produced the
F1 generation (i.e., six boars and twenty-three sows). The individuals of the F1 generation
were intercrossed to produce the F2 generation. The pigs were provided with standardized
care and given unrestricted access to food and water. A total of 288 Jinhua × Piétrain
F2 pigs (Population 1, P1) were slaughtered with a mean age of 215.4 ± 31.2 days and
an average weight of 81.1 ± 11.5 kg in commercial slaughterhouses. The longissimus
dorsi muscle at the thoracolumbar junction was immediately isolated post-slaughter and
stored at −20 ◦C for subsequent DNA extraction. In addition, we collected a publicly
available dataset (Population 2, P2) containing 669 (Piétrain × Duroc) × (Landrace ×
Yorkshire) pigs [5] to increase the sample size and diversity, thereby enhancing the power
of genetic analysis.

The color of Longissimus lumborum of 288 Jinhua × Piétrain F2 pigs was measured
using a bench spectrophotometer (SP60, X-Rite, Grand Rapids, MI, USA) over black and
white backgrounds (ColorChecker; X-Rite) in the CIELAB color space with a measure area
diameter of 8 mm and 10◦ observer angle at 45 min of blooming. The lightness (L*), redness
(a*), and yellowness (b*) were recorded from the spectrophotometer, as hue angle (h◦) and
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chroma indices (C*) were calculated according to the following formula: h◦ = tan−1 (b*/a*),
and C* = (a*2 + b*2)0.5 [41].

All Jinhua × Piétrain F2 pigs were genotyped using GeneSeek GGP-Porcine 80 k
SNP BeadChip (Neogen Corporation, Lansing, MI, USA). Quality control was performed
using PLINK (v1.9) software [42], following the below criteria: (1) retaining the SNPs
located in autosomes; (2) removing the SNPs with a call rate less than 90% or minor allele
frequency (MAF) less than 0.01. After quality control, the P1 had a total of 240 pigs with
full phenotypic records and 49,432 informative SNPs. Meanwhile, the P2 had 669 (Piétrain
× Duroc) × (Landrace × Yorkshire) pigs with the meat color parameters (i.e., L*, a*, b*, C*,
and h◦) and 16,943,752 SNPs. To obtain genotype data at the whole-genome sequence level,
we performed genotype imputation for two datasets using the multi-breed Pig Genomics
Reference Panel (PGRP v1) from PigGTEx [43]. Initially, we utilized conform-gt program
to revise strand inconsistencies of SNPs. Subsequently, we employed the BEAGLE (v5.1)
software [44,45] to impute the genotype data of three populations to the sequence level. We
filtered out the SNPs with dosage R-squared values less than 0.8. Finally, SNPs with MAF
lower than 0.01 were removed, resulting in a total of 909 individuals with 22,914,705 SNPs
retained for subsequent genetic analysis.

3.2. Statistical Analysis

We fitted a linear mixed model to estimate the heritability and genetic correlation
using the average information algorithm [46], as follows:

Y = Xβ + Za + Wk + e

where Y is the vector of phenotypic observations for L*, a*, b*, C*, and h◦ obtained from
the color measurements; β is the vector of fixed effects, including sex (two levels) and
project-batch (ten levels); k is the vector of covariates, including carcass weight at slaughter
and top five principal components; a is the vector of direct additive effects and is set as a~N
(0, Gσ2

g ), where G is the genomic relationship matrix; e is the vector of residual random
effects and is set as e~N (0, Iσ2

e ); I is an identity matrix; X, Z, and W are incidence matrices
for β, a, and k.

The heritability was calculated as follows:

h2 =
σ2

g

σ2
g + σ2

e

where h2 is heritability, σ2
g is the additive genetic variance, and σ2

e is the residual variance.
Genetic correlations between meat color traits were calculated as follows:

rg =
Cov(T1, T2)√(

σ2
T1 × σ2

T2
)

where rg represents the genetic correlation, σ2
T1, σ2

T2, and Cov(T1, T2) indicate genetic
variance and covariance between the breeding values of two traits.

We used a single-marker regression mixed linear model to investigate the association
between each SNP and the phenotype of each trait by GEMMA (v0.98) software [47]
as follows:

y = Wα+ Qk + Ub + Su + e

where y is the vector of L*, a*, b*, h◦, and C* of each pig; α is the vector of the fixed
effects, including sex (two levels) and project-batch (ten levels); k is the vector of covariates,
including carcass weight at slaughter and top five principal components; b is the vector of
the substitution effect of the SNPs; u is the vector of random additive genetic effects and is
set as u~N (0, Gσ2

u), where G is the genomic relationship matrix [48]; W, Q, U, and S are
incidence matrices for b, α, and u; e is the random residuals and is set as e~N (0, Iσ2

e ), where
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I is an identity matrix. Furthermore, SNPs with a p-value lower than 1/N were considered
as genome-wide putative candidate genes affecting meat color traits.

3.3. SNP Annotations

QTL enrichment analyses to annotate the putative candidate SNPs based on the
Animal QTL Database (Release 48) [10] was performed using GALLO (v1.3) package [49].
Here, QTLs with an FDR less than 0.05 were retained. We designated the SNP with
the lowest p-value on each chromosome as the lead SNP, and the SNP with the smallest
p-value outside a 0.4 Mb region upstream and downstream of the primary lead SNP as the
secondary lead SNP. This process was repeated until no significant SNPs remained on that
chromosome. We extracted the putative candidate SNPs from the Pig HAplotype Reference
Panel (v3) server [50] to investigate the differentiation of allele frequency between different
pig breeds via the detection of selection signatures, i.e., FST [51] and θπ. We conducted the
detection of selection signatures in two groups (Group1: Laiwu vs. Erhualian; Group2:
Laiwu vs. Bamaxiang). Furthermore, we analyzed the allele frequency of the promising
candidate SNP in various pig breeds, i.e., the indigenous Laiwu pig (LWU), the crossbred
Jishen black pig (JS), and four commercial pig breeds (Piétrain, PI; Yorkshire, YY; Landrace,
LL; Duroc, DD).

The genes located in the genomic regions of selection signatures were identified as
candidate selected genes through mapping analysis with the pig reference genome. To
further investigate the biological functions of these genes, we conducted GO term and
KEGG pathway enrichment analyses of these candidate genes using the DAVID website
(v2023q4) with the gene background of sus scrofa [52,53].

3.4. Transcriptome-Wide Association Study

To explore whether the overall cis-genetic component of the molecular phenotype is
associated with meat color traits in 34 tissues, we performed single-tissue TWAS using
FUSION method [54] based on GWAS summary statistics on the FarmGTEx TWAS-Server
(v1, https://twas.farmgtex.org/, accessed on 1 December 2023) [55]. The GWAS summary
statistics files of meat color traits, comprising columns of the chromosome, position, SNP
name, effect allele, non-effect allele, p-value, and beta coefficient, were uploaded to the
server, then the association between the genetically regulated levels of gene expression
and the phenotypes with the imputed gene expression level was quantified. Bonferroni
correction was used and p-value < 0.05 after correction was considered as significance.

3.5. Polygenic Signals on Individual Cells

We downloaded the publicly available scRNA-seq datasets of subcutaneous adipose,
spleen, lung, and liver [56]. In the datasets, the five regions of the liver (i.e., left lateral lobe,
left medial lobe, right medial lobe, right lateral lobe, and quadrate lobe) and seven regions
(i.e., left apical lobe, left middle lobe, left main lobe, right apical lobe, right middle lobe,
accessory lobe, and right main lobe) of the lung were mixed to generate the scRNA-seq
data. Cells were imported into Scanpy (v1.9.5) [57] and filtered based on the following
criteria: the number of detected genes were greater than 200 and less than 5000, and the
percentage of mitochondrial transcripts from specific mitochondrial genes (ATP6, ATP8,
COX1, COX2, COX3, CYTB, ND2, ND3, ND4, ND4L, ND5, and ND6) was less than 30%.
Then, cells were clustered using the Leiden algorithm to perform lineage clustering. We
selected the top 1000 genes as putative meat color trait-related genes based on gene-level
association p-values from the TWAS results of the corresponding tissues. We used scDRS
(v1.0.2) [26] to quantify the aggregate expression of the putative genes derived from the
TWAS results in each cell of scRNA-seq data. Consequently, we generated cell-specific
trait-related scores via the function “compute-score”. In brief, 1000 sets of cell-specific raw
control scores were calculated from the matched control gene sets. Then, we normalized
the raw trait-related score and raw control scores for each cell, producing the normalized
trait-related score and normalized control scores. We performed cell-type-level analyses to

https://twas.farmgtex.org/
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identify trait-related associations within a predefined cell type using the function “perform-
downstream” with default settings. To correct for multiple testing, FDR was calculated via
the Benjamini–Hochberg method across all pairs of cell types and five meat color traits.

4. Conclusions

In summary, our comprehensive analysis has provided valuable insights into the
genetic basis of meat color in pigs. Our investigations led to the identification of SNP
6_69103754 as a promising candidate with varying allele frequencies in pigs with different
meat color characteristics. This SNP has the potential to influence the redness and chroma
indices values of meat. Furthermore, our TWAS analysis uncovered the expression of
several shared candidate genes associated with meat color traits in their respective tissues.
Additionally, our single-cell enrichment analysis revealed a significant association between
the immune system and meat color. These findings have the potential to advance pig breed-
ing and production, facilitating the development of efficient genomic selection schemes for
the genetic improvement of meat color traits.
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