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Abstract: The persisting presence of opportunistic pathogens like Pseudomonas aeruginosa poses a
significant threat to many immunocompromised cancer patients with pulmonary infections. This
review highlights the complexity of interactions in the host’s defensive eicosanoid signaling network
and its hijacking by pathogenic bacteria to their own advantage. Human lipoxygenases (ALOXs)
and their mouse counterparts are integral elements of the innate immune system, mostly operating
in the pro-inflammatory mode. Taking into account the indispensable role of inflammation in
carcinogenesis, lipoxygenases have counteracting roles in this process. In addition to describing the
structure-function of lipoxygenases in this review, we discuss their roles in such critical processes as
cancer cell signaling, metastases, death of cancer and immune cells through ferroptosis, as well as the
roles of ALOXs in carcinogenesis promoted by pathogenic infections. Finally, we discuss perspectives
of novel oncotherapeutic approaches to harness lipoxygenase signaling in tumors.

Keywords: ALOX; cancer; carcinogenesis; cystic fibrosis; lipoxygenase; inflammation; Pseudomonas
aeruginosa

1. Introduction

It is well established that many strains of Pseudomonas aeruginosa (PAE) produce the non-
specific lipoxygenase LoxA, and its homologs are present in some other opportunistic pathogens.

Gene expression studies have demonstrated elevated mRNA expression levels of LoxA
during infection and biofilm formation [1]. LoxA contributes to PAE pathogenesis in cystic
fibrosis patients by triggering lipid peroxidation-dependent cell death—ferroptosis, following the
oxidation of host arachidonic acid (AA) containing phosphatidylethanolamines to 15-hydroperoxy-
AA-phosphatidylethanolamines in the bronchial epithelial cells of humans [2–4].

Pro- and anti-tumorigenic roles of lipoxygenases, especially the immune cell-specific
ALOX5 and reticulocyte-type 15-ALOX/ALOX15 have been already discussed in many
reviews. Here, we attempt to link these data to the most recent discoveries, asserting that
the activation of some sensors of innate immunity can lead to excessive lipid oxidation
while switching on the eicosanoid oxidation cascades. Furthermore, we hypothesize that
certain ALOXs can have the propensity to play a distinct role in exacerbating the transition
from pre-cancerous conditions to aggressive cancers.
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2. Overview of Molecular Evolution of Lipoxygenases
2.1. Structure-Functional Basis of PUFA Lipoxygenation

Arachidonic acid and related polyunsaturated fatty acids (PUFAs) are the precursors
of hundreds of signaling lipids that exert various biological functions in a diverse set of
organisms, ranging from plants to humans [5]. These biologically active lipids are referred
to as oxylipins, which is a common name for oxygenated unsaturated fatty acid derivatives.
Twenty-carbon oxylipins are referred to as eicosanoids (from the Ancient Greek word
“ε
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inflammatory response and cancer. Recent advances in lipidomics have allowed the
dissection of this evolutionarily conserved signaling network and the identification of the
molecular players responsible for the transmittance of signaling cues in cells. In this review,
we focus on lipoxygenases: critical oxidoreductases of the eicosanoid pathway that catalyze
the oxygenation of polyunsaturated fatty acids to their corresponding hydroperoxide
derivatives and other downstream products. We attempt to highlight the intersecting roles
of lipoxygenation in infection and carcinogenesis.

Lipoxygenases are vital players in the deeply rooted evolutionary process of oxylipin
signaling, which can be ascribed to essential elements such as the ubiquitous presence
of oxygen and polyunsaturated fatty acids (PUFAs) [7]. Lipoxygenases generate PUFA
hydroperoxides through four sequential reactions (Figure 1):

Figure 1. Catalytic cycle of ALOX.

A fatty acid radical is formed by removing hydrogen from a bis-allylic methylene.
Radical fatty acid undergoes an intermolecular rearrangement. Incorporation of molecular
oxygen results in peroxyl radical formation. The peroxyl radical is reduced, converting it
into its corresponding anion [8].
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Lipoxygenases have a single amino acid chain with a non-heme iron and a Fe-O-H-C
bridge. In the 3D structure of rabbit 15-lipoxygenase, iron is coordinated by four histidine
side chains and the C-terminal isoleucine [9]. Animal lipoxygenases seem more structurally
flexible than their plant counterparts, with evident flexibility between the domains during
their cycle. Indeed, compared to soybean lipoxygenase-1, rabbit 15-lipoxygenase has
increased structural flexibility, especially in its linker domain [10–12].

The substrate binding pocket in these enzymes resembles an oblongated U-shaped
funnel with a dead end and an arrow aperture, which is lined with predominantly hy-
drophobic residues (Figure 2). While dioxygen follows through a defined path within
the enzyme, this channel is not highly conserved. The specific isoform of lipoxygenase is
characterized by specific regioselectivity, selecting which carbon atom in the fatty acid is
oxygenated. The stereoselectivity of lipoxygenation also depends on the isoform [13].

Figure 2. Substrate binding cavity of ALOX. (A) The docking of arachidonic acid into the
Pseudomonas aeruginosa lipoxygenase [14] (PDB ID: 4g33) shows the position and the binding site
which is normally occupied by a fatty acid. The fatty acid adopts the curved form of the binding
site upon approaching the iron ion, coordinated by histidine residues. (B) The binding site has
a narrow aperture. (C) An additional image to show the curved narrow form of the binding site.
(D) PlexView 2D interaction diagram shows that the binding site is lined by predominantly apolar
and aromatic residues. Docked with AutoDock Tools [15] and AutoDock Vina [16], visualization with
UCSF Chimera [17].

The subsets of amino acid residues defining regio- and stereospecificity have been
comprehensively characterized [9,18–20]. They can be slightly variable within the same
type of lipoxygenases until their physical properties are preserved. The most conserved
amino acid residues are metal-binding residues complexing catalytic iron ion (Figure 3).
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Figure 3. ConSurf output from the alignment of Pseudomonas aeruginosa lipoxygenase with some other
pathogen and symbiont ALOXs. The metal-binding residues (red circles) are absolutely conserved,
while regiospecificity-determining and stereospecificity-determining residues (green circles) are
slightly variable. Created with ConSurf [21].

Human lipoxygenases exist as a single polypeptide chain folding in two domains:
the larger catalytic domain consists predominantly of α-helices defining the active pocket
and catalytic properties of the enzyme. The N-terminal is a β-barrel domain featuring
β-sheets in both parallel and antiparallel orientations, similar to that of lipases. It makes
up approximately 15 kDa and it primarily regulates the membrane binding ability of the
enzyme [13]. The crystallized structure of rabbit 15-lipoxygenase has been completely
elucidated and serves as an ideal model for other ALOXs including human ALOX5 and
ALOX15 [22] (Figure 4). Truncation of the N-terminal domain does not inactivate the
enzyme [12].

Figure 4. Three-dimensional structures of lipoxygenases. The mammalian lipoxygenases (A–C) are
folded into classical two-domain structure: N-terminal β-sheets depicted in deep blue color and the
C-terminal α-helices in varying colors (red, yellow, green). The polypeptide chain of Pseudomonas
aeruginosa lipoxygenase (D) is folded into a single α-helix domain. (A): Three-dimensional Structure
of Rabbit Reticulocyte 15-Lipoxygenase (PDB ID: 1LOX) [23]. (B): Structure of human ALOX15B
with a substrate mimic (PDB ID: 4NRE) [22]. (C): Structure of a stable ALOX5 (PDB ID: 3O8Y) [24].
(D): Wild-type bacterial lipoxygenase from Pseudomonas aeruginosa (PDB ID: 5IR5) [25].
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2.2. Plants and Fungi

Initially identified as carotene oxidase, lipoxygenases were first discovered in plants
in the early 20th century [10]. Indeed, these enzymes are ubiquitously present in plants
and start an oxylipin pathway leading to the synthesis of diverse oxylipins involved in
defensive and stress-related reactions including reactions against microbial pathogens.
These oxylipins include microbicidal divinyl ethers, volatile oxylipins and potent plant hor-
mones such as jasmonates [11]. Plant lipoxygenases are moreover significantly involved in
defense responses against biotic and abiotic factors like viruses, bacteria, fungi, and insects.
Lipoxygenase-derived oxylipins are crucial players in the related physiological processes
including growth, germination of seeds, ripening of fruits and senescence. [11]. Plant lipoxy-
genases can be regio-specifically classified into either 9-lipoxygenases or 13-lipoxygenases,
with few instances of dual positional specificities (9/13 lipoxygenases) [26]. Most of the
metabolites derived from the 9-lipoxygenase pathway (such as 9(S)-keto octadecatrienoic acid)
regulate defense responses against pathogens. Mechanistically, 9-hydroxyoctadecatrienoic
acid induces cell wall modifications by inhibiting cellulose synthesis to restrict the invasion
of Pseudomonas syringae in Arabidopsis [27]. 9-hydroxyoctadecatrienoic acid has also been
shown to be a potent inducer of root waving [28]. The 13-lipoxygenase pathway leads to
the synthesis of plant signaling compounds like jasmonates and green leaf volatiles. [11]
Plant lipoxygenases have been successfully isolated from many plants such as Zea mays,
Oryza sativa, Capsicum annuum and Arabidopsis thaliana [10].

In fungi, the most interesting aspect of lipoxygenase function in the context of the cur-
rent review is the putative involvement of lipoxygenase-derived oxylipins. Candida albicans
is reported to synthesize resolvin E1 (an anti-inflammatory oxylipin) probably via a
lipoxygenase-dependent pathway. This suggests its possible role in immune crosstalk
between the C. albicans and the host. Gaeoumannomyces graminis uses lipoxygenase to
penetrate host tissues. Besides pathogenicity, lipoxygenases in fungi are involved in mor-
phological shifts and quorum sensing processes; this is highly suggestive for their role in
intra-species cell-to-cell signaling, which is similar to the case of mammals and plants [29].

It is also worth mentioning that some fungi such as Botrydiplodia theobromae, Lasiodiplo-
dia theobromae, Aspergillus niger and Fusarium oxysporum are able to synthesize jasmonate
analogues [29]. Despite the fact that their biosynthesis pathway is still poorly characterized,
their possible role is identified as mimicking the natural plant’s jasmonate signaling to
hijack it and downregulate the plant’s immunity. This, in turn, facilitates invasion. This
biochemical peculiarity is highly suggestive that some human bacterial pathogens may
exert a similar process in opportunistic infection, including patients with cancer and other
malignant comorbidities.

2.3. Prokaryotes

Besides plants, lipoxygenases have also been widely discovered in mammals [30] and
to a lesser extent, bacteria [31]. Microbial lipoxygenases have not received much attention in
research, with the majority of studies limited to eukaryotic organisms for the most part [32].
There is ongoing debate about whether the numerous lipoxygenase sequences found in
databases of microbes like PAE are due to sampling biases. With only a handful of excep-
tions, bacteria with putative lipoxygenase-encoding genes are expected to make up not
more than 0.5% of all sequenced bacteria. These bacteria belong to the phyla Cyanobacteria
and Protobacteria. This insufficient gene distribution in bacteria implies lipoxygenase-
encoding genes could potentially be acquired through horizontal gene transfer [33,34].
Given the total number of sequenced bacterial genomes, this results in a few hundred
putative bacterial sequences, but we estimate the number of biochemically characterized
lipoxygenases to be in the order of tens, based on a recent review by Chrisnasari et al. [18]
and given the growing number of routine biochemical analyses of lipoxygenases for the
purposes of biotechnology. However, biotechnological papers provide almost no data
about the biological function of prokaryotic ALOXs in natural settings. Such experimental
data are restricted to single works on Myxococcus xanthus and Nostoc punctiforme, as well as
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a few works on PAE lipoxygenase (which will be discussed in the next section). Ultrasound-
induced injury in N. punctiforme releases lipoxygenase-derived oxylipins—but the reactions
they are expected to elicit remain obscure [35].

Attempts to recompense for this lack of experimental data with a bioinformatic study
first led to finding a statistical and phylogenetic link between lipoxygenases and multicel-
lularity in bacteria, and secondly led to the hypothesis that bacterial oxylipins are involved
in forming and maintaining multicellular structures [36,37]. However, the definitive con-
firmation of this hypothesis has not yet been obtained. Moreover, these works revealed
the second association between bacterial lipoxygenases and opportunistic pathogenicity,
which will be discussed in detail in later sections.

Even though experimental data are scarce, bioinformatic analysis identified lipoxygenases
in a range of opportunistic pathogens, such as PAE, Burkholderia gladioli, Nocardia brasilensis,
Nocardia pseudobrasilensis, and some other pathogens [37,38]. Bacterial lipoxygenases have
been found to act on a wide range of PUFAs such as arachidonic, linoleic, eicosapentaenoic
and docosahexaenoic acids. PUFAs were not detected in Burkholderia thailandensis [39].
Interestingly, lipoxygenase from this pathogen has been shown to produce 15-HETE from
arachidonic acid, which is further metabolized into bioactive lipid compounds including
lipoxins and leukotrienes [40]. Identical to PAE, B. thailandensis can regulate host immune
defense through alteration of local immune mediators. B. thailandensis, which is also closely
related to B. gladioli, has been successfully analyzed after its expression and purification.
This native enzyme appears as a 150-kDa dimer, with each chain weighing 75 kDa. It
exhibited the highest enzymatic activity and catalytic efficiency for linoleic acid, similar to
plant ALOXs producing 13-(S)-hydroperoxy-octadecadienoic acid (13-S-HPODE). However,
the kcat/km was only two times lower for arachidonic acid and thus the profile for substrate
specificity is not very different from that of human ALOXs. Conditions optimized for its
activity are pH 7.5 and 25 ◦C with specific concentrations of linoleic acid. Curiously, the
enzyme is stimulated by high concentrations of Cu2+ and methanol. Notably, this enzyme’s
efficiency surpasses that of commercial soybean lipoxygenase when tested under optimal
conditions for each enzyme at similar substrate and enzyme concentrations [41]. The kinetic
variables of various lipoxygenase isoforms including that of soybean are detailed in Table 1.

Table 1. Kinetic Parameters of Various Lipoxygenase Isoforms.

Lipoxygenase
Optimum
Temperature
(◦C)

Thermal
Instability
(◦C)

pH Vmax
(µM/min) Km (µM) Kcat (s−1) Kcat/Km

(µM−1s−1) References

Soybean
ALOX15 35–40 >60 9.0 15 b 287 19 b [12,42,43]

Human
ALOX15 22, 25–30 >40 7.0, 7.5 1.03 a

4.9 b
7.5 a

3 b
5.3
7.8

2.0 a

2.5 b
[12,44,45]
[46,47]

Human
ALOX15B 37 >45 8.5 3.5 a 0.74

0.14
0.1 a

0.013 b [45,48,49]

LoxA 22–35, 25
>45 ◦C,
t1/2 = 10 min
at 50 ◦C

6.5, 7.5 0.226 b 12 a

7 b
181
28

16 a

3.8 b [43,50,51]

Human
ALOX5 21, 25 >40 ◦C c 8.0 2.56 a 22.3 a 0.06 0.054 a [52–55]

a Arachidonic acid as substrate. b Linoleic acid as substrate. c guinea pig enzyme.

Pathogens such as PAE and B. gladioli can employ lipoxygenases to counteract anti-
pathogen defenses in plants, facilitating pathogenic transition from plants to humans—a
phenomenon known as interkingdom pathogen transfer [38].

2.4. Lipoxygenase (LoxA) in Pseudomonas aeruginosa

Amongst the well-studied bacterial lipoxygenases is LoxA, first characterized in
2004 from the opportunistic pathogen PAE [56]. PAE is a highly versatile Gram-negative
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opportunistic pathogen, dominant in patients with chronic lung infections, particularly in
cystic fibrosis patients and immunocompromised cancer patients [56,57]. The pathogen’s
capacity to invade host tissues and circumvent immune defenses is attributed to virulence
factors secreted via types 2 and 3 secretion systems [57,58]. These secretions comprise
an arsenal of enzymes involved in host lipid metabolism that facilitates the pathogen’s
environmental adaptation and immune system modulation, leading to the exacerbation of
infections [59–61].

Extensive in vitro and in vivo biochemical studies have characterized a highly con-
served and secretable LoxA enzyme [4,56] capable of oxidizing a wide range of free PUFAs
including omega 6 and omega 3 fatty acids during chronic lung infection in cystic fibrosis
patients [59]. Contrary to mammalian lipoxygenases, LoxA carries a unique N-terminal
signal sequence that earmarks it for secretion predominantly to the periplasmic space,
with a fraction of the active protein further secreted to the extracellular milieu in a fashion
dictated by the Xcp type II secretion apparatus [56]. It is noteworthy that a periplasmic
enzyme like LoxA has the ability to convert exogenous substrates for extracellular release
due to the molecular masses of arachidonic acid and other PUFAsubstrates (304.5–320.5 Da)
which are small enough to transit through PAEs outer membrane. Evidently, the treat-
ment of intact bacteria with arachidonic acid produced a significant fraction of cell-free
15-HETE, unconfined in the periplasm of PAE [56]. Thus, this finding strongly supports
studies demonstrating that some strains of PAE make available to themselves pools of free
host PUFA substrates by secreting a specific phospholipase ExoU cytotoxin, to trigger the
release of PUFAs from host cell membranes [43,62]. Considering its apparent suitability
to metabolize exogenous substrates, LoxA happens to proficiently act on host substrates
in order to potentially modify local inflammatory signals during infections. These data
suggest a significant biological role for LoxA in modulating host-pathogen interactions.
Numerous studies have identified LoxA enzyme as an exhibitor of ALOX15 activity, local-
ization in the periplasm [56], and a capability to oxidize various free and membrane-bound
polyunsaturated fatty acids (such as arachidonic, linoleic, oleic, and linolenic acids) to
produce ALOX15 derivatives [32]. Despite its functionality, LoxA displays limited sequence
similarity to human ALOX15 (39%) and soybean ALOX15 (37%) [43].

2.5. Bacterial Lipoxygenases, Cystic Fibrosis and Malignant Conditions

Recent bioinformatic studies have identified the link between the presence of lipoxy-
genase sequences in bacteria and their ability to cause lung infection in cystic fibrosis
patients [38]. In the data analysis by Kurakin (2022) [38], “cystic fibrosis” was specially
highlighted as the term with a huge connectivity to other nodes on the graph model. This
underscores that lung damage reflects some intrinsic property of bacterial lipoxygenases.

Cystic fibrosis (CF) is a genetic disorder resulting from mutations in the cystic fibrosis
transmembrane conductance regulator (CFTR) gene that affect the digestive system and
respiratory tracts. Defects in this gene disrupt the formation of ion channels responsible
for the transport of water and ions (chloride and bicarbonate ions) in exocrine and sweat
glands, causing a build-up of highly viscous sticky mucus which clogs up vital organs not
limited to the lungs and pancreas [63]. This obstructs airways and enhances colonization by
pathogens. Inflammatory response to infections sets off a vicious loop leading to the failure
of the respiratory systems and surrounding organs [64]. Common symptoms of cystic
fibrosis include malnutrition and poor growth due to obstructions in both the transport
of digestive enzymes from the pancreas and food breakdown in the intestines. Breathing
abnormalities and persistent cough due to the blockage of airways in the lungs are other
resulting indicators.

There are diverse molecular mechanisms explaining the cause of CF, although the
consequences of most mutations have been associated with a decrease or loss in CFTR
protein function. A number of mutations have an effect on the production of CFTR mRNA—
influencing the length or amount of mRNA produced. These comprise splicing mutations,
significant insertions and deletions, and nonsense mutations [64]. Mutation F508del in-
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terferes with the intramolecular interactions of CFTR protein leading to delays in folding
processes, trafficking, and the facilitation of premature chaperone-assisted degradation of
the misfolded protein. Structural molecular changes in the protein have been attributed
to long exposure of hydrophobic regions to the aqueous environment which eventually
disrupts protein-protein interruptions [65]. Apart from F508del, a variety of mutations are
believed to induce CTFR misfolding, however the disruption of intramolecular interactions
may vary depending on the location of mutations [66]. Specific mutations in positions that
build up the anion pore have also been described to solely affect protein channel function
by impairing conductance via unbalanced anion selectivity [67].

PAE is undoubtedly one of the prevalent pathogens that thrives and aggravates con-
ditions in the lungs of CF patients. Therefore, the available experimental data on the
role of bacterial lipoxygenase in lung damage regard only this species. As the preferen-
tial free substrate of LoxA, DHA and other PUFAs present in the human lung mucosa
are metabolized into specific ALOX15 metabolites including 17-hydroxydocosahexenoic
acid (17-HdoHE) and 15-HETE, ultimately triggering the production of anti-inflammatory
and pro-resolving lipid mediator LXA4 [59]. It is noteworthy that LXA4 resolves acute
inflammation even at nanomolar concentrations. The biosynthesis of this pro-resolving
lipid requires transcellular mechanisms involving several cell types (leukocytes, endothe-
lium, and epithelium) together with the coordinated action of other ALOXs (ALOX5). The
overproduction of LoxA-dependent products like LXA4 downregulates major chemokines
(MIP-2/CXCL-2, KC/CXCL-1) and limits the recruitment and chemotaxis of leukotrienes
and leukocytes critical for inflammatory response and antimicrobial defense via a paracrine
or autocrine axis [59,68]. Consequently, LoxA minimizes PAE clearance in the lung, thus
conferring a survival advantage to the Gram-negative opportunistic pathogen [59]. Even
more interesting, a similar study described the sidetracking of host immune response via
marked production of AA-derived LXA4 by a specific ALOX15 from apicomplexan proto-
zoan, Toxoplasma gondii [69]. Mechanistically, Toxoplasma gondii-derived-LXA4 suppresses
interleukin-12 production by dendritic cells, delaying early innate immune response and
augmenting Toxoplasmic encephaliti [69]. These data underscores that the production of
pro-resolving lipid mediators can be the general scheme by which pathogens modulate
host-pathogen interaction.

LoxA is not the only agent in PAE which facilitates the colonization of the pathogen in
the airways of immunocompromised patients. PAE has been shown to secrete a virulence
factor known as cystic fibrosis transmembrane conductance regulator inhibitory factor
(Cif)—an epoxide hydrolase that disrupts endocytic recycling of CFTR, consequently mini-
mizing the abundance of CFTR in host epithelial membranes [70]. Hvorecny and colleagues
firmly postulated that Cif-mediated ion depletion minimizes mucociliary transport which
ultimately hinders bacterial clearance from the lungs. Aware of the fact that an inverse
correlation exists in the airways between Cif and a host defensive pro-resolving lipid
(15-epi-lipoxin A4), the same study reported upregulated levels of 15-epi-lipoxin A4 in
murine lungs infected with a PAE strain expressing inactive Cif relative to those infected
with wild-type PAE [70]. These findings stress the acknowledgement of Cif as a virulent
factor in PAE pathogenesis in immunocompromised patients.

The example of plant-fungal jasmonate signaling in pathogenesis (mentioned above)
makes this hypothesis even more plausible.

Bioinformatics studies suggest that not only PAE, but also other pathogens like
B. gladioli, N. brasiliensis, and Pluralibacter gergoviae might employ lipoxygenases to coun-
teract plant anti-pathogen defenses, facilitating their transition from plants to humans—a
phenomenon known as interkingdom pathogen transfer [37,38].

Regarding the oncological perspective, bacterial lipoxygenases might be associated
with such a group of malignant conditions as leukemia. The term “leukemia” is present
in two bacterial species in the data analysis on bacterial lipoxygenases in opportunistic
pathogenicity [38]. Leukemia is often treated by chemotherapy which causes a serious
depletion of immune cells and renders patients immunocompromised. Given this fact, it is
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plausible that lipoxygenase-positive bacteria could pose a threat to leukemia patients on
the public health scale.

3. Inventory of Human and Mouse Lipoxygenase Isoforms

In 1974, the discovery of a 12-lipoxygenase enzyme in human platelets led to its
subsequent identification as the platelet-type 12-lipoxygenase, encoded by the ALOX12
gene. Another isoform known as the reticulocyte-type 15-lipoxygenase (ALOX15) was later
found in the lysate of immature red blood cells, playing a primary role in the oxidation of its
membrane lipids. Over time, various isoforms of this enzyme have been discovered, each
bearing unique characteristics. Following the comprehensive sequencing of the human
genome, six distinct functional lipoxygenase isoform genes were identified: ALOX15,
ALOX15B, ALOX12, ALOX12B, ALOX5, and ALOXE3 [71,72].

3.1. ALOX12

Also known as “platelet-type”, ALOX12 was the first mammalian lipoxygenase to be
characterized when it was discovered in human platelets in 1974. It incorporates molecular
oxygen at C12 of arachidonic acid to produce 12(S)-hydroperoxy-5,8,10,14-eicosatetraenoic
acid (12(S)-HpETE) and encodes a 663-amino-acid residue protein with a molecular mass of
75 kDa [8]. Apart from being expressed in platelets and megakaryocyte cells, ALOX12 was
recognized in germinal layer keratinocytes. It is abundant in the settings of lung carcinoma,
epidermoid carcinoma, and psoriasis [73].

Determining the function of this enzyme in human and mouse platelets has been
particularly challenging. Creation of ALOX12 knockout mice did not uncover convinc-
ing roles besides a minor effect in regulating ADP-induced aggregation of platelets [74].
Nevertheless, ALOX12 has been suggested to somewhat maintain water permeability of
the skin [75]. Besides ALOX12, the normal mouse skin expresses ALOX12B, ALOXE3 and
ALOX15B. Knockout of ALOX12 in mice is viable and it reproduces normally [74]; thus,
the exact biological role of this enzyme is not completely understood and the defective
function of ALOX12 is possibly compensated for by other lipoxygenase isoforms.

3.2. ALOX12B and ALOXE3

12(R)-hydroperoxyeicosatetraenoic acid (12(R)-HpETE) producing lipoxygenase (ALOX12B)
was the first mammalian ALOX discovered to incorporate molecular oxygen in the R-
stereo-configuration. Both mouse and human ALOX12B encode proteins with 701 residues,
sharing 86% identity [76]. Even though both orthologs show weak activity on arachidonic
acid—the 12-hydroxyeicosatetraenoic acid product generated is of the R-stereo configura-
tion [77]. The mechanism for preferentially inserting oxygen in the R-configuration was
later established to take place in an ordinary glycine residue close to the active site [78]. It
is specifically expressed in the suprabasal keratinocytes of the skin and hair follicles [77]. A
potential biochemical route for regulating the epidermal barrier has been put forward [79].
Here, ALOX12B converts linoleoyl-ω-hydroxyceramide in the stratum corneum to 9(R)-
hydroperoxylinoleoyl-ω-hydroxyceramide. Further activity by ALOXE3 (see next para-
graph), followed by cleavage of the fatty acyl moiety makes room for conjugation of ω-
hydroxyceramide with proteins, forming protein-lipid scaffolds which sustain and support
the permeability barrier of the epidermis.

Mouse ALOXE3 encodes an epidermis-type lipoxygenase-3 of 711 amino acids ex-
hibiting 54% sequence identity with ALOX12B. It is present in the epithelia of the skin,
forestomach and tongue [8]. ALOXE3 lacks classical oxygenase activity and no enzy-
matic activity is observed following incubation with arachidonic acid under standard
conditions [80]. As an epoxyalcohol synthase, ALOX3E utilizes 12(R)-HpETE as preferred
substrate, converting it less efficiently to other hydroperoxides, and more efficiently to
12-ketoeicosatetraenoic acid (12-KETE) and hepoxilin A3 isomer (8(R)-hydroxy-11(R),12(R)-
epoxyeicosatrienoic acid) in a 1:2 ratio (Figure 5). Consequently, ALOXE3 was identified
as a hydroperoxide isomerase which incorporates two oxygen atoms from 12(R)-HpETE
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into the epoxyalcohol, and is hypothesized to be in the ferrous form, dissimilar to other
lipoxygenases [81]. The substrate specificities of human and mouse ALOXE3 vary to an
extent: while both orthologs prefer substrates of R-stereochemistry, human ALOXE3 has
higher affinity for 12(R)-HpETE, whereas the mouse enzyme favorably metabolizes 8(R)-
HpETE [82]. Genetic evidence has linked missense and splice site mutations in ALOXE3
and ALOX12B to the incidence of autosomal recessive congenital ichthyosis (ARCI)—a
severe disorder of keratinization [83,84]. Clearly, ALOXE3 competes with glutathione
peroxidase (GPX) for hydroperoxyl-PUFA derivatives in the keratinocytes. Simultaneous
ectopic expression of ALOXE3 and GPX in other tissues may have detrimental effects. Even
though it may be experimentally demanding, the combination of ALOX12B and ALOXE3
can be a good transgene combination for cancer gene therapy.

Figure 5. Reaction catalyzed in the skin by the ALOX12B and ALOXE3 ensemble.

3.3. ALOX15

The human ALOX15 gene encodes 662 amino acids and contains 92 non-synonymous
coding sequence variations along with 8 nonsense mutations [85,86]. It is expressed in
many epithelial tissues [87] and abundant in organs such as the breast, prostate, skin, lung,
esophagus, vagina, and cervix. However, its expression is generally limited in certain
epithelial or glandular tissues like the pancreas, duodenum, gallbladder, kidney, and
urinary bladder. Tumor environments exhibit fluctuating expressions of ALOX15 across
a broad range of tissues: while it is abundantly present in cancerous tissues of the breast,
prostate, lung, head and neck, and colorectal cancers, its expression is lost in tumors of the
brain, muscle, or germline cells [88].

The human ALOX15 enzyme was identified to catalyze the S-stereospecific oxygena-
tion of carbon-15 in arachidonic acid, producing 15(S)-hydroperoxyeicosatetraenoic acid,
which is subsequently reduced to the more stable 15(S)-hydroxyeicosatetraenoic acid. This
enzyme was thus named arachidonate 15-lipoxygenase or 15-lipoxygenase-1.

ALOX15 predominantly metabolizes PUFAs at the n-6 position, necessitating the initial
hydrogen removal from the n-8 carbon atom. Through this mechanism, arachidonic acid under-
goes oxygenation at carbon-15, resulting in the formation of 15-hydroperoxyeicosatetraenoic
acid (15S-HpETE) [89]. Linoleic acid undergoes a similar chemical modification to pro-
duce 13-hydroperoxyoctadecadienoic acid (13-HpODE) (Figure 6). Accounting for roughly
3–15% of the product yield is arachidonic acid-derived 12-hydroperoxyeicosatetraenoic
acid (12S-HpETE). This unique characteristic is known as the dual positional specificity of
ALOX15 and has been validated in both humans and orangutans [90].
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Figure 6. Top panel—Reactions catalyzed by major human ALOXs. Bottom panel—Schematic repre-
sentation of the metabolism of free membrane fatty acids by 15-LOX isoforms in human (ALOX15,
ALOX15B) and PAE (LoxA). + is indicative of a low product yield, ++ is indicative of significant
product yield. Membrane bound-ω-3 polyunsaturated fatty acids—arachidonic acid and linoleic
acid—are hydrolyzed into their unbound forms by the action of phospholipase A2. All three en-
zymes oxygenate free arachidonic acid with similar affinity to produce 15 hydroperoxyeicosate-
tratenoic acid (15-HpETE) as a main intermediate. Free linoleic acid is also oxygenated to form
13-hydroperoxyoctadecadienoic acid (HpODE) as a major metabolite of human ALOX15 and a minor
metabolite of human ALOX15B and LoxA. Further oxidation by glutathione peroxidase (GPx) leads
to the formation of 15-hydroxyeicosatetraenoic acid (15-HETE) and 13-hydroxyoctadecadienoic acid
(13-HODE) respectively. 15(S)-HpETE, 15(S)-HETE and 13(S)-HODE are involved in downstream
signaling cascades that regulate critical biochemical processes including the deceptive formation of
anti-inflammatory environment in PAE infections, and growth arrest in some tumors.

3.4. ALOX15B

Human and mouse ALOX15B orthologs display distinct reaction specificities leading
to varied reaction products. Targeted double inverse substitution mutations in human
ALOX15B have been demonstrated to yield products characteristic of mouse metabolism,
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and vice versa. Ordinarily, the wild-type human ALOX15B enzyme converts arachidonic,
docosahexaenoic, and eicosapentaenoic acids into their corresponding hydroperoxyl deriva-
tives. Introducing a double mutation (D602Y + V603H) in this enzyme, however, results in
a product pattern unique to mice. In a similar fashion, applying an inverse mutagenesis
strategy to mouse ALOX15B (Y603D + H603V exchange) produces reaction products similar
to those in human metabolism. This is true for arachidonic and eicosapentaenoic acids,
but not for docosahexaenoic acid. With linoleic acid as substrate, the Y603D plus H603V
exchange in mouse ALOX15B leads to a human-like product pattern [91]. However, inverse
mutagenesis in human ALOX15B creates a racemic product yielding enzyme. This illus-
trates that specific amino acid substitutions in human and mouse ALOX15B orthologs can
convert C-20 fatty acids into murinized or humanized product patterns respectively, but this
trend does not consistently apply to fatty acid substrates with varying chain lengths [91].

3.5. ALOX12E

Murine epidermal lipoxygenase (ALOXE) encodes a 12-lipoxygenase isoform which
synthesizes 12(S)-HETE from arachidonic acid and is primarily detected in the mouse
epidermis. Sequence homology data show 60% sequence identity in relation to both
platelet-type and leukocyte-type murine 12-lipoxygenases. It is however more analogous
to platelet-type enzymes with respect to the substrate and product specificities [92]. Both
ALOX12E and ALOX12B have been shown to efficiently metabolize fatty acid methyl
esters of both arachidonic and linoleic acids relative to the corresponding free substrates.
Moreover, both enzymes oxygenated docosahexaenoic acid to respectively 13-hydroxy-
docosahexaenoic and 14-hydroxy-docosahexaenoic acids, respectively, independent of
calcium concentration while catalytic activities decreasing under acidic pH [93]. MafB
is a transcription factor that regulates the differentiation of keratinocytes in both mice
and humans. Transcriptional profiling studies demonstrate upregulated expression of
lipid-metabolism associated genes like ALOX12E in MafB-deficient mice [94].

3.6. ALOX5 and ALOX5AP

ALOX5 is the central player in the initial stages of leukotriene synthesis in which an
unstable LTA4 intermediate is produced from arachidonic acid [8]. ALOX5 is primarily
expressed in bone marrow-derived cells including B lymphocytes, dendritic cells, granulo-
cytes, macrophages, and mast cells. It is abundant in organs such as the spleen, intestines,
and lungs [8]. High expression levels of ALOX5, indicative of abundant macrophage infil-
tration, have been identified in tumor samples of gastric [95] thyroid [96], pancreatic [97],
renal [98], endometrial, and urothelial cancers [99].

The discovery of the inhibitory action of MK-886 on the synthesis of leukotrienes
in intact cells led to the discovery of five lipoxygenase-activating protein (FLAP)—a
small integral membrane protein essential for ALOX5 activity [100]. Following affin-
ity chromatography-based purification and characterization, the extrapolated amino acid
sequence revealed a unique 162 amino acid protein having three proposed transmembrane
domains [101]. Transfection of osteosarcoma cells with ALOX5 cDNA alone, and combined
with FLAP cDNA show that the small integral membrane protein is critical for the biosyn-
thesis of leukotriene in intact cells [101]. Genetic analysis proves that despite the fact that
FLAP-deficient mice breed normally and seem to have no extra inflammatory roles beyond
its definitive prerequisite for leukotriene biosynthesis, FLAP-deficient mice exhibit reduced
production of 12-HETE and are incapable of metabolizing arachidonic acid to leukotriene
products [102].

3.7. ALOXes and Esterified PUFAs

The amino-terminal polycystin-1-lipoxygenase α-toxin (PLAT) domain of ALOX15B
facilitates transient translocation and binding of the enzyme to membranes. In resting cells,
western blotting of cytosol and membrane fractions of ALOX15B-expressing cells show a
predominant location of the enzyme in the cytosol [103]. The enzyme shows a preference for
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arachidonic acid (AA) over linoleic acid (LA) (Figure 6) and typically produces 15-S-HETE,
although this specificity might slightly vary between in vivo and in vitro environments [85]

Although 15-lipoxygenase orthologues have been implicated in the production of anti-
inflammatory mediators including arachidonic acid-derived lipoxins and specialized pro-
resolving lipid mediators (SMP), there is still uncertainty about whether ALOX15B acts on
5-HpETE and if the enzyme is really involved in the generation of lipoxins. In transcellular
synthesis events, generation of lipoxin intermediate 5,15-dihydroperoxyeicosatetraenoic
acid (5,15-diHpETE) is mediated by ALOX5 oxygenation. Mechanistically, it has been
demonstrated that ALOX15B also generates 5,15-diHpETE via oxygenation of 5-HpETE
and 5-HETE, but cannot produce lipoxin B4 from 5-HpETE or 5,15-diHpETE because of
its inability to remove a hydrogen atom at C10 [104]. Nevertheless, ALOX15B-derived-15-
HpETE can serve as a ALOX5 substrate to generate lipoxins [105]. Furthermore, ALOX15B
has the ability to transform ALOX5-derived pro-inflammatory mediators into pro-resolving
precursors (lipoxin A4) [104]. This counteraction between ALOX15B and ALOX5 indicates
an essential switch between pro- and anti-inflammatory precursors, as evidenced in studies
of cystic fibrosis macrophages [106] and prostate cancer cells [107]. A case in point is,
5-HETE, which is primarily involved in the proliferation of prostate cancer [108], and
overexpression of ALOX15B leads to reduced proliferation of prostate cancer cells [107].
This confirms the ability of ALOX15B to class-switch ALOX5 pro-inflammatory products
into anti-inflammatory counterparts.

4. Normal Function of Lipoxygenation in Human Metabolism and Immunity and
Their Weaknesses

Lipoxygenases play pivotal roles in human metabolism and immunity by participating
in the biosynthesis of a specific group of oxylipins, which include leukotrienes, eoxins,
resolvins, lipoxins, hepoxilins, maresins, and have the dual capacity to both promote and
resolve inflammation [8,109,110] (Figure 7).

Inflammation is the immune system’s protective response against deleterious stimuli
like pathogens, dead cells, irradiation and toxic substances [111]. During inflammation
resolution, the gradual decline of pro-inflammatory signals over time made room for the
recognition of the process as a passive event [112]. Recent insights have however retuned
this perspective: cessation of acute inflammation is now recognized as an active and
tightly regulated complex process driven by changes in inflammatory cues and cellular
composition, ultimately restoring normal tissue homeostasis [112]. The processes involved
are governed by a balanced interplay of cellular and humoral components from both the
innate and adaptive immune systems [13]. There are diverse classes of lipid and non-
lipid mediators modulating inflammation. Among lipoxygenase isoforms, ALOX5 exert
indisputable functions in human diseases by virtue of its principal role in the synthesis of
leukotrienes [113]. Leukotrienes are paracrine pro-inflammatory mediators produced in
many leukocytes, particularly in macrophages, dendritic cells and granulocytes; normally
functioning in local cellular environments [8]. Leukotriene biosynthesis begins with a
classical lipoxygenation at C5 of arachidonic acid forming 5-HpETE, followed by the
generation of leukotriene A4 (LTA4) via a process identified as pseudolipoxygenation [8].

Even within low nanomolar levels, leukotrienes are capable of eliciting a plethora of
immune regulatory responses. Cysteinyl-leukotrienes, for example, are three orders of
magnitude more potent than histamine in inducing the constriction of smooth muscles
in the airways [114]. Because of this, ALOX5 and the leukotrienes have been consis-
tently involved in the pathogenesis in several acute and chronic inflammatory human
diseases like cystic fibrosis, asthma and cancer [8]. Leukotriene B4—a downstream prod-
uct of ALOX5—provokes growth of pancreatic tumors through activation of its receptors
(BLT1/2), which are as well overexpressed in pancreatic tumor tissues [115]. Interactions
between pro-inflammatory mediators and G-coupled proteins on the membranes of im-
mune competent cells leads to a wide range of resolution activities including death of
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neutrophils by apoptosis, restoration of the permeability and integrity of vascular walls
and reduction in migration of leukotrienes to the site of infection [116].

In tissues with high levels of ALOX15B, expression of the enzyme is partly dictated by
certain key immune players. Their expression in macrophages is enhanced by lipopolysac-
charides (LPS), and interleukins 4, and 13 [117]. In immortalized human keratinocyte cells
(HaCaT), ALOX15B expression is induced by either interferon-γ or TNF-α [85,86].

Figure 7. Oxylipins in human immunity. LTB4 drives chemotaxis by binding to the BLT1 receptor,
notably on subsets of CD4 and CD8 T cells, however it is active on neutrophils, and undergoes further
transformations, thanks to the ALOX5 enzyme and subsequent LXA4 hydrolase actions. 12S-HETE
acts as a chemoattractant for neutrophils. AEA: Demonstrating immunosuppressive properties, AEA
hinders the migration of CD8 T cells. EPA might serve as a replacement for COX inhibitors. 15-HETE
amplifies cell proliferation and boosts the Th1 immune response. 12-HETE is implicated in metabolic
adjustments. LXA4: Resulting from ALOX12 action on 5-HETE, LXA4 acts to mitigate inflammation,
particularly in adipose tissue, leading to a reduction in IL-6 levels. CYP hydrolases produce 20-HETE,
which amplifies inflammatory cytokines and promotes cell adhesion. CYP Epoxygenases: These
yield anti-inflammatory epoxides.

5. Pre-Malignant Conditions and Benign Outgrowth—Roles of Lipoxygenation

A plethora of lipoxygenase functions have been described in the setting of complex
carcinogenesis—but the understudied roles of these enzymes in pre-cancerous milieu leaves
a significant gap in fully comprehending mechanics in cancer progression from the onset. A
classical case in point is the multiplex inception of precursor lesions in the development of
pancreatic cancer—an aggressive cancer with a perplexing prognosis [118]. The progression
from pancreatic intraepithelial neoplasia (PanIN) to pancreatic ductal adenocarcinoma
(PDAC) is not straightforward: although oncogenic K-RAS mutations is a critical hallmark
in PanIN, its advancement into PDAC is poorly understood [119].

For example, the lipid nuclear receptor, PPARγ, is overexpressed in human and mice
PanINs. Amplification of PPARγ ligand activity via a high-fat diet markedly accelerates the
transformation of PanIN to PDAC in KRASG12D mutated pancreatic epithelial cells [119].
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The expression of ALOX15B is lost in at least 70% of prostate cancer cases [107]. Although
prostatic hyperplasia is unexpectedly caused by the transgenic expression of ALOX15B,
it failed to develop into prostatic carcinoma [120] regardless of allelic loss or complete
absence of p53 [107]. Even more interestingly, there is a significant decrease in prostate intra-
neoplasia and prostate cancer following transgenic expression of ALOX15B in Myc-induced
prostatic adenocarcinoma [107]. It can be speculated that the hyperplasia-inducing ability
as well as the potential anti-carcinogenic activity of ALOX15B are somewhat evocative of
context-dependent pro- and anti-carcinogenic properties of Myc [121].

In the context of colorectal tumors, a comparative study of lipoxygenase products
revealed no significant difference in the levels of 12-HETE, 15-HETE, and leukotriene B4
across normal, polypus, and cancerous tissues of the colon. However, a marked decrease in
13-HODE levels was an apparent shift in the metabolic hallmark of colorectal polyps and
cancerous tissues [122].

The distribution of ALOX15B expression in normal lung and lung carcinomas have
been reported. In benign lung tumors, immunostaining of ALOX15B was solely detected in
PPARγ-expressing type-II pneumocytes. Although there were no experiments regarding
co-localization of both ALOX15B and PPARγ in type-II pneumocytes, their expressions in
a significant proportion of type-II pneumocytes points out a possible PPARγ-ALOX15B
signaling role in modulating differentiation and proliferation of these cells [123]. Out of
160 lung carcinomas, ALOX15B was variably expressed in non-small cell lung carcinomas
(NSCLC) including 48% of adenocarcinomas and 63% bronchioloalveolar carcinomas.
Moreover, well-differentiated NSCLC exhibited higher expression of ALOX15B along with a
significant inverse correlation between ALOX15B versus tumor cell proliferation (p < 0.0001)
and tumor grade (p < 0.03). These data proposes regulatory functions of ALOX15B in
proliferation in benign lung and neoplastic lung, especially in adenocarcinomas [123].

6. Lipoxygenases in Primary Carcinogenesis—Putative Intersections with Infections

It is evident that certain lipoxygenases can influence carcinogenesis through multiple
mechanisms (some of them are shown in Figure 8):

1. Catalyzing the activation of pro-carcinogens like aflatoxins.
2. Disruption of interferon signaling, which ordinarily promotes the identification and

elimination of cells with DNA damage, thereby pre-emptively targeting potential
early-stage cancerous cells.

3. Enhancing the invasiveness of existing cancerous cells by helping them evade immune
surveillance.

4. Boosting the resistance of cancer cells to specific anti-cancer drugs.

These mechanisms are largely derived from the well-established roles of ALOX15,
ALOX5 and its associated protein, FLAP. In the same vein, these lipoxygenases have
emerging significance in the action of certain opportunistic bacteria, in several cancer-
related infections.

Oxidative reactions involving eicosanoids play important roles in cancer develop-
ment [124], emphasizing the apparent involvement of lipoxygenase isoforms in carcinogen-
esis [125]. Both platelet-type ALOX12 and ALOX5 have been associated with promoting
carcinogenesis. ALOX15 and ALOX15B on the other hand majorly exhibit anti-carcinogenic
properties, even though various studies demonstrate their dual roles in regulating tumor
development [115,126,127].

A number of excellent reviews have presented a summary of published data on
eicosanoids in cancer [128]. A huge body of evidence highlights upregulation of PGE2
in tumors due to overexpression of cyclooxygenases COX2, and COX1 in certain renal
cancers [129], whereas PGI2 is anti-carcinogenic in mouse models of tobacco smoke-induced
lung cancer [130].
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Figure 8. The expression pattern of ALOX15 (15-LOX-1), and ALOX15B (15-LOX-2) together with
their major metabolites in normal and pancreatic tumor tissues, cell lines, and blood of patients.
The levels of 15-LOX enzymes and its main products differs in healthy subjects relative to patients
with pancreatic cancer. 15-LOX production and its metabolites are lost during the development
of pancreatic tumors (top left). While ductal and centroacinar cells of the normal pancreas exhibit
elevated levels in 15-LOX-1 protein and mRNA, tubular complexes have fluctuating expression
levels of 15-LOX-1, and pancreatic islets demonstrate absence or weak expression of 15-LOX-1
(top right). Downregulation of 15-LOX-1 and 15-LOX-2 is associated with resistance in apoptosis
following elevation in levels of PPARγ. Interestingly, 15-LOX-dependent bioactive lipids linked to
inflammatory resolution are present in the serum of patients with pancreatic cancer relative to that of
healthy individuals. Marked tumor growth inhibition is affected upon treatment of pancreatic cell
lines (Mia PaCa2 and S2-O13) with low concentration of 15(S)-HETE. Similar observations are read
for 13(S)-HODE but to a lesser extent and at a higher concentration (bottom left).

The implication of bacteria and viruses in cancer progression has gained significant
attention, with the tumorigenic function of Helicobacter pylori in gastric cancer being a
focal point [131]. One common bacterial-mediated inflammatory infection is periodontitis.
Studies have positively correlated periodontitis with the risk of developing cancers in the
pancreas, breast, buccal cavity and the lung [132,133]. Out of several bacteria currently
known to contribute to tumor progression, Fusobacterium nucleatum has only been linked to
colorectal and esophageal malignancies. F. nucleatum primarily exists in the normal flora of
the oral cavity. During pathogenesis, the bacteria should disseminate from the oral cavity
to the colorectal tissues through the gastrointestinal tract [134]. Interestingly, a recent study
suggests the colonization of colorectal tissues via the hematogenous route, explaining that
the inhabitation of F. nucleatum takes place during angiogenesis in tumor tissues, facilitating
bacterial trafficking from the buccal cavity following upregulation of Gal-GalNAc lectin—a
biomarker of colon carcinogenesis [135]. Notably, colonization of F. nucleatum is not limited
only to colorectal tumors, but is also found in breast cancers as well as metastasis to the
lung via detection of Gal-GalNAc lectin [135].

Furthermore, the gut microflora may play a significant role in influencing the ef-
fectiveness of radiotherapy and chemotherapy in treating colonic cancers. However, to
draw concrete conclusions in this area of research is a challenging task, as the correlations
between microbiome imbalances and treatment efficacy are generally subtle [136].
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7. The Oncogenic Role of Human ALOX

Lipoxygenases have been heavily implicated in oncological diseases via their oxidation
reactions of long chain PUFAs and downstream eicosanoid signaling pathways [124,125].
However, the biological roles of lipoxygenase isoforms in cellular proliferation and tumor
development are very complicated and experimental results have long been met with
certain criticisms. Platelet-type ALOX12 and ALOX5 have been widely studied to induce
carcinogenesis while ALOX15 and ALOX15B exhibit anti-carcinogenic activities although
several studies demonstrate dual roles in regulating tumor development [115,126,127].
Epigenetic modification through hypermethylation of ALOX15 promoter increases prostatic
intraepithelial neoplasia. On the other hand, 13-HODE—the significant linoleic oxygenation
product of ALOX15 and to a lesser extent ALOX15B—exhibits anti-apoptotic activities in
colorectal cancer and hence, demonstrates anti-tumorigenic properties [137]. This proposes
that the expression patterns and biological roles of lipoxygenase isoforms are not uniform
across cancer subtypes.

While ALOX5 inhibition triggers marked apoptosis in human prostate cancer cells [138],
it is overexpressed in prostate adenocarcinoma, PDAC [139], hepatocellular carcinoma [140],
and high-grade astrocytomas [141]. Moreover, overexpression of ALOX5 in pancreatic can-
cer tissues has been associated with lymph node metastasis and TNM stage [97]. Expression
of ALOX5 steadily increases with the progression of human Hepatocellular Carcinoma in
HepG2 cells and- inhibition of ALOX5 via zileuton administration decreased cell viability
and induced apoptosis in HepG2 cells [142].

Both ALOX15 and ALOX15B isoforms have lower expression levels and activities in
the cancerous tissues of the pancreas, breast [143], prostate [144–146] and lungs [123] than
in their respective normal tissues. In the pathogenesis of pituitary adenomas, the expression
of both ALOX15 and ALOX15B as well as their metabolites 15-(S)-HETE, 13-(S)-HODE
are significantly elevated respectively. The pro-carcinogenic role of ALOX15 isoforms
was highlighted following an increase in expression and activity in pituitary adenomas
with larger tumor size and a higher degree of invasion [147]. Similar to early events in
the development of pancreatic cancers, expression of the ALOX15 gene is significantly
downregulated in human colorectal cancers [148,149]. Few studies stating otherwise have
demonstrated significant overexpression of ALOX15 and its metabolite in human colorectal
cancer epithelial cells compared to normal tissue [150]. The treatment of two human col-
orectal adenocarcinoma cell lines, HT-29 and DLD-1, with celecoxib increases the protein
expression levels of ALOX15 by 1.5 and 2-fold respectively, while significantly increasing
apoptotic rate by 2-fold compared with control cells [151]. Human colorectal adenomas
and carcinomas are characterized by decreased expression of ALOX15 and low levels of
13-compared to normal mucosa [152]. Treatment of Caco-2 cells with 13-HODE led to de-
creased cell proliferation [153]. Interestingly, the same study noted that ALOX15 expression
was almost uniformin adenoma tissues (lower staining intensity in neoplastic epithelia
and more intense staining in inflammatory regions) while the expression of ALOX15 in the
healthy control tissue was for the most part restricted to colonic mucosal epithelium [153].
It is therefore necessary to rationalize that during malignant transformation, colonic cells
mask the apoptotic functions of ALOX15 due to the expression of ALOX15 and that expres-
sion of ALOX15 should be localized and strictly confined regions in order to fully observe
its biological activity.

On the molecular level, the products of ALOX activities affect many intracellular
targets. One of the key intracellular targets—peroxisome proliferator-activated receptor
(PPARγ)—is activated by eicosanoids [154]. Natural ligands of PPAR-γ include free PUFAs,
flavonols, glutamine, butyrate, and phthalates. Of particular interest are PGJ2, 9-HODE,
13-HODE, 15-HETE, LTE4, and some specialized pro-resolving mediators (SPMs). PPARγ
agonists regulate NF-kB-dependent inflammation by increasing levels of lkBα, an NF-kB
inhibitor in mouse cystic fibrosis biliary epithelium [155]. Long chain PUFAs like EPA
(eicosapentaenoic acid) and DHA (docosahexaenoic acid) stand out as potent PPARγ-
dependent effectors that inhibit pro-tumor cytokines such as IL-6 and IL-8 (as reviewed
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in [156]), and indeed EPA upregulates PPARγ which in turn facilitates the differentiation of
T-regulator cells [157].

At the transcriptional level, interleukin-4 induces the expression of ALOX15 [158].
Mechanistically, interleukin-4 receptor activation triggers activation of STAT6 in both the
colorectal Caco-2 and lung A549 cell lines. Following activation, STAT6 translocates to
the nucleus, directly binds and activates genes associated with IL-4, ALOX15 among oth-
ers [159]. In A549 cells, however, activation of the ALOX15 gene by interleukin-4 was due
to heightened activity of the Creb-Binding Protein’s histone acetyltransferase responsible
for acetylating both STAT-6 and nuclear histones in human lung adenocarcinoma cells [160].
Additionally, the constitutive expression of ALOX15 in human macrophages significantly
increases following treatment with interleukin 4 and 13 [161,162]. This leads to elevated
levels of ALOX15 mRNA and protein, which in turn boosts the production of one of its pri-
mary product, 15-HETE [163]. Similarly, a marked increase in ALOX15 expression occurred
following stimulation of monocytes with interleukin-13 [161]. Likewise, in glioblastoma
cells, interleukin-13-induced expression of ALOX15 led to the activation of PPAR-γ and the
triggering of apoptosis. Furthermore, downregulation of PPAR-γ by the ALOX15 product
13-S-HODE sensitizes apoptotic signaling pathway in colorectal cancer cells [137]. Notably,
STAT6 further boosts the transcription of PPAR-γ, underscoring the synergistic role of
ALOX15, interleukin-13, and PPAR-γ in modulating cellular growth and invasion [16].

It is necessary, however, to differentiate analogous processes between cancer cells and
immune cells since extracellular cues may affect tumor growth in opposite directions [164].
When pancreatic tumor cells are treated with ALOX substrates (PUFAs), there is a notable
suppression of tumor cell growth [165]. A preliminary report demonstrating lipoxygenase
derivatives of arachidonic acid showed that, relative to healthy subjects, patients with
pancreatic adenocarcinoma and chronic pancreatitis have 3–8-fold higher levels of 5-, 12-,
and 15-HETEs, and also stating that there are no marked differences in HETE levels in
different TNM stages of pancreatic cancer [166]. While examining the influence of ALOX15
on pathogenic angiogenesis, ALOX15 promotes the turnover of HIF-1α and reduces VEGF
expression. Inhibiting ALOX15 counteracts both effects. This discovery offers fresh insights
into the regulatory mechanisms of HIF-1α [167].

In pancreatic cancer, ALOX15 is known to be lost in islets and pancreatic intraepithelial
lesions but strongly expressed in normal acinar and ductal cells [126]. Upregulation of
ALOX5 is implicated in all grades of human pancreatic intraepithelial lesions, and ini-
tial development of pancreatic cancer in EL-KRAS mice and N-nitroso-bis(2-oxopropyl)
amine-treated hamsters [168,169]. Findings from other research works show that overex-
pression of ALOX15 in pancreatic cancer cells and inhibition of ALOX5 and platelet-type
12-lipoxygenase exert anti-tumorigenic effects [126].

Important for our review is the classification of tumors according to the degree of
infiltration by immune cells. For example, glioblastoma is a classical cold tumor which
prefer to grow and disseminate in a stealth mode secreting immunosuppressive cues,
whereas bladder cancers usually belong to the hot type which employs another strategy that
relies on creating a flare-up for the host immune system via the build-up of excessive chronic
inflammation that is detrimental to the incoming anti-cancer immune cells. Other biolipid
mediators like prostaglandins, contribute to the immunosuppressive environment of cancer
tumors [170]. Thus, the functions of oxylipin signaling are rather context-dependent,
and are more difficult to predict in intermediate cases like PDAC that relies mostly on
reprogramming fibroblasts into TAMs, which creates a tumor friendly microenvironment.

8. The Anti-Tumorigenic Function of ALOXs

Because resistance to apoptosis is a hallmark of many infections and tumors, non-
apoptotic cell death gains extensive recognition in tumor therapy and disease treatment [171].
Ferroptosis is one such non-apoptotic modes of cell death. It is described as an iron-
dependent controlled necrosis driven by lipid peroxidation and reactive oxygen species
(Lipid-ROS) [172]. However, cancer cells have developed specific survival pathways to
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evade this cell death mechanism by detoxifying Lipid-ROS via several pathways including
augmentation of Gpx4 glutathione peroxidase activity, which uses glutathione (GSH) as a
co-factor [173].

There is mounting evidence that autophagy plays a context-dependent role in facil-
itating ferroptosis [174], despite the fact that ferroptosis was formerly thought to be an
autophagy-independent form of cell death [175]. Recent studies have identified the nuclear
receptor coactivator 4 (NCOA4) protein as a cargo receptor for ferritinophagy, which fa-
cilitates an increase of the intracellular iron pool (IIP), thereby contributing to Lipid-ROS
generation and cell death [176,177] (Figure 9).

Figure 9. The effect of ALOX15 (15-LOX) activity and their main metabolites in pancreatic cancer
development. The activity of ALOX15 (15-LOX-1) and ALOX15B (15-LOX-2) can influence pancreatic
cancer invasion and metastasis through a number of pathways. MiaPaca2 cells, including a number
of pancreatic cancer cell lines exhibit no expression of 15-LOX-1. Overexpression of 15-LOX-1 in
PANC-1, MiaPaCa2, AsPC, and S2-O13 cells leads to downregulation of anti-apoptotic proteins like
XIAP, inhibiting tumor growth. As a ferroptosis driver gene, 15-LOX has been proposed to somewhat
contribute to tumor cell death by ferroptosis. Acting as a tumor suppressor gene in pancreatic tumors,
downregulation of 15-LOX-1 during early development of this tumor contributes to progressive
development of pancreatic intraepithelial lesions to pancreatic ductal adenocarcinoma, invasion and
metastasis into the lymph nodes and liver.

In this respect, lipoxygenases have been implicated as key mediators in ferroptosis.
Although lipoxygenases are not crucial for ferroptosis to occur, they aid to its onset by
contributing to the pool of lipid hydroperoxides that enhance lipid oxidation [178]. A
number of studies have shown the relationship between ferroptosis and ALOX5. ALOX5
promotes lipid peroxidation of PUFAs containing phospholipids which are one of the cen-
tral players in driving ferroptosis [179]. As a novel target in melanoma drug development,
ALOX5 has been described to promote autophagy-dependent ferroptosis by activating the
AMP-activated protein kinase (AMPK) pathway in vitro and in vivo [180]. Via the AMPK
signaling pathway, the upregulation of ALOX5 mRNA and protein levels is associated with
the depletion of GSH, accumulation of intracellular iron, malondialdehyde production,
lipid peroxidation, and marked growth inhibition. Indeed, the silencing of ALOX5 sig-
nificantly reduced mitochondrial damage and increased the number of autophagosomes
in erastin-treated melanoma cells (A375, A-875) demonstrating the occurrence of iron-
dependent death and autophagy in the cells [181]. In a more recent study, overexpression
of ALOX5 sensitizes bladder cancer cells to ferroptosis. On the contrary, ALOX5 knockout
contributes to bladder cancer development by mediating escape from ferroptosis. Notably,
loss of ALOX was regulated by EGR1 at the transcriptional level [99]. ALOX15 and their
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polyunsaturated substrates can promote ferroptosis [182–186] and tumor ferroptosis have
been shown to be enhanced by ALOX-catalyzed lipid peroxidation in cellular membranes
after induction by erastin and RSL3 [187]. Binding of ferrostatin to ALOX5/PEBP1 (phos-
phoethanolamine binding protein 1) effectively inhibits the enzyme and the production
of its metabolite HpETE-PE, which ultimately prevents ferroptosis [188]. The action of
lipoxygenase enzyme has been exploited in tumor-killing nanoreactors to induce ferropto-
sis and anti-tumor immunity in order to ultimately enhance the therapeutic advantage of
radiofrequency ablation in preclinical models [189].

8.1. Hypoxia, Neoangiogenesis

In anoxia, lipoxygenase reactions are expected to cease as hypoxia induces significant
changes in gene expression, with hypoxia-inducible factor (HIF) playing a well-recognized
role in these alterations. It is conceivable that ALOX enzymes might have non-enzymatic
functions influenced by these changes. The response to hypoxia is crucial for tumor growth,
and ALOX enzymes may have significant roles in this process. Specifically, ALOX15
facilitates ubiquination and degradation of HIF-1α and reduces the expression of Vascular
Endothelial Growth Factor (VEGF). Conversely, inhibiting ALOX15 has the opposite effect.
This discovery provides new insights into the regulatory mechanisms of HIF-1α [167].
Redox equilibrium plays a pivotal role in shaping gene expression, thereby influencing the
phenotypic characteristics of mammalian cells. For example, overexpression of ALOX15 in
the U-937 human histiocytic lymphoma cell line results in altered gene expression patterns,
though the full phenotypic implications of these changes are yet to be fully understood.
Given these observations, it is worth considering whether lipoxygenases might function in
a manner akin to oxygen sensors.

8.2. P53, the ALOX Gene Family and Micro-RNAs

Numerous recent studies point to the ambivalent role of ALOX proteins in tumorigene-
sis. On one hand, ALOX proteins promote tumorigenesis by increasing the ROS production
and on the other hand, certain members of the ALOX family exhibit anti-tumorigenic
features. In this respect, it is important to mention the association of ALOX proteins with
one of the major tumor suppressors, p53. The p53 protein is operating mostly as a regula-
tor of transcription of protein-coding and non-coding genes whose products participate
in cell cycle arrest and apoptosis [190–192]. The activity and protein stability of p53 is
controlled by an E3 ligase, Mdm2 [193,194]. Thus, many attempts have been made to
develop therapeutic inhibitors of Mdm2, and some of them are currently in clinical tri-
als [195–197]. Accordingly, given that the link between p53 and ferroptosis has been firmly
established [198,199], several reports investigated the relations between p53 and ALOX
proteins during tumorigenesis. For example, by using unbiased whole-genome ChIP-seq
analysis, p53 was found to bind the G-intronic region of ALOX5. In agreement with the
mechanism of p53 activation, the expression of ALOX5 was induced by genotoxic stress
mediated by genotoxic drugs, actinomycin D or etoposide [200]. Notably, in the same
study, ALOX5 directly binds and blunts the transcriptional activity of p53, suggesting that a
negative feedback mechanism exists to restrict the activity of p53 in tumor cells. In line with
this notion is the observation that ALOX5 counteracts genotoxic drug-induced apoptosis in
cancer cells by interfering with the activation of proapoptotic genes regulated by p53 [201].
Mechanistically, ALOX5 interferes with p53 functions by inhibiting relocalization of the
tumor suppressor gene into PML nuclear bodies. When ALOX5 is inhibited using zileuton,
it results in reduced cell viability and increased apoptosis in HepG2 cells [107].

In drastic contrast to its role in tumor cells, ALOX5 in non-transformed cells promotes
the p53/p21-induced growth arrest caused by forced expression of oncogenic Ras [202].
Unfortunately, the effect of the p53/ALOX5 axis on ferroptosis was not examined in these
studies. Furthermore, p53 activates expression of another member of the ALOX gene family,
ALOX15B. Inhibition of the activity of iron anti-porter, SLC7A11, leads to the induction of
ferroptosis in bladder cancer cell [203].
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ALOX15B is significantly silenced in bladder cancer, and SCL7A11 is reported to
induce tumor growth through suppression of ferroptosis. In providing insights to the
mechanistic development of bladder cancer, p53 activates ALOX15B through the blocking
of cystine transporter SLC7A11 to induce ferroptosis [203]. The effects of ALOX15B and
p53/SLC7A11 on bladder cancer cells were evaluated by in vitro and in vivo experiments.
These experiments revealed that knockdown of ALOX15B promoted bladder cancer cell
growth, which was also found to protect bladder cancer cells from p53-induced ferroptosis.
Finally, p53 activated ALOX15B activity by suppressing SLC7A11 in bladder cancer [203].

Another layer of complexity to the p53-ALOX gene network is provided by variability
of expression of various micro-RNAs. p53 is known to regulate a plethora of non-coding
RNAs thereby possibly targeting the mediators of ferroptosis [204]. On the other hand,
p53 itself can be the target of microRNAs activated via ALOX-associated pathways. For
example, miR-660—which targets ALOX15B in cervical cancer cells [205]—also attenuates
the expression of Mdm2 in lung cancer cells [87], thereby releasing p53 from the negative
regulation and hence, augmenting the level of ALOX15B expression. In contrast, miR-125b,
which inhibits p53 translation [206] promotes ferroptosis in gastric cancer cells [207]. A
plausible hypothesis explaining these contradictory results may be that ferroptosis acts as a
means to control just appeared malignant cells through the death of cells with increased
ROS production.

ALOX12 is required for p53-mediated tumor suppression through a distinct ferroptosis
pathway [208]. Indeed, a strong piece of evidence was presented in this important work
by [208], with the authors observing that p53 activation in xenografted tumors disconnects
ferroptosis from GPX4 glutathione peroxidase and thus makes cells more sensitive to ROS.
In that model ALOX12 was found to be important for p53 action, and it was demonstrated
that the blocking of ALOX12 reduces p53-mediated ferroptosis activated by ROS. A similar
hypothesis has been proposed in relation to ALOX12 inhibition in tumor cells from cervical
squamous cell carcinoma, head and neck squamous cell carcinoma, esophageal squamous
cell carcinoma and acute myeloid leukemia. This whole pathway was independent of
ACSL4 which is required for ferroptosis upon GPX4 inhibition [208]. The actual mechanisms
behind this interesting discovery remain unclear, thus, it is difficult to stratify cancer
patients according to their p53 status for example, and it is uncertain how it affects the
action of this axis especially with respect to radio- and chemotherapy.

8.3. Lipoxygenases and Immune Suppression in Tumor Growth

A good number of studies have evaluated the role of sphingosine-1 phosphate (S1P)
in lymphomas. In detailing the mechanism of sphingosine-1-phosphate (S1P) in obesity-
lymphomagenesis, a recent study demonstrated that up-regulated S1P-S1P receptors 1/2-
YAP signaling mediates the aggressive nature of obesity-lymphoma by inducing cell prolif-
eration and migration. More importantly, S1P-ALOX15 signaling mediates polarization of
macrophages towards tumor-associated macrophages, establishing an immunosuppressive
microenvironment [209]. In a separate study, both ALOX15 and ALOX15B isoforms were
identified in normal mammary epithelial cells as well as in vascular endothelial cells, and
the expression of both isoforms was considerably diminished in breast tumor tissues [143].
Trichostatin A-induced sensitization of apoptosis and cell-cycle arrest in breast cancer cell
lines MCF-7 and MB-MDA-231 have been associated with ALOX15 induction and elevation
of 13-S-HODE production [115,126,127].

Among several mono- and polyunsaturated fatty acids, linoleic acid could be im-
portant for triple negative breast cancers overexpressing fatty acid binding protein-7.
MDA-MB-231 cells overexpressing this protein undergo linoleic-acid induced cell death,
evidenced by low levels of 13-HODE—a pro carcinogenic metabolite in the setting of breast
tumors [210].

Human ALOX5, ALOX15, and ALOX12, coexist in the kidney—but they exhibit
opposite trends and their balance switches during carcinogenesis. There are high levels of
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ALOX15 and low levels of ALOX5 and ALOX12 at the onset of cancer, which reverses with
increasing tumor grade and progressing stage [211].

Research by Kelavkar and his team revealed that epigenetic alterations—specifically
hypermethylation of the ALOX15 promoter—amplify prostatic intraepithelial neoplasia.
Interestingly, as a minor linoleic oxygenation byproduct of both ALOX15 and ALOX15B,
12-HODE displays anti-apoptotic actions in colorectal cancer, suggesting its potential
anti-tumorigenic properties [212].

8.4. Human ALOXes and Tumor-Associated Inflammation

The patho-physiological function of lipoxygenase is not limited to the mere formation
of bioactive lipids, but the effects of the catalytic activity of these enzymes goes a long way
to influence the cellular redox homeostasis. The cellular redox state of cells is critical in
defining and regulating the expression pattern of genes which consequently modifies the
phenotypic profile of mammalian cells [213]. The eicosanoids and docosanoids involved in
the resolution of inflammation are normally metabolized from three major PUFA substrates:
arachidonic acid, docosahexaenoic acid and eicosapentaenoic acid. These mediators are as
a result of concerted signaling between ALOX5, ALOX15, ALOX15B, and ALOX12. For
example, 15S-hydroperoxyeicosatetraenoic acid may be further oxidized by ALOX5 into
lipoxins that resolve acute inflammation [85,86].

Human ALOX15 demonstrates both pro-inflammatory and anti-inflammatory activ-
ities in varying inflammation models. Mounting evidence uncovers the critical role of
ALOX15 during inflammation resolution, where their derived products (15-HETE and
13-HODE) exert anti-inflammatory effects through nuclear and cell-surface receptors along
with intervention of pattern recognition receptors [214]. Similarly, following the creation
of transgenic mice expressing human ALOX15 under the regulation of activating protein
2 promoter (aP2-ALOX15 mouse), systematic blocking of ALOX15 gene escalated inflam-
matory indicators whereas its overexpression minimized inflammation in a hind-paw
edema model. However, in a dextran sodium sulfate colitis model, overexpression of
ALOX15 hardly impacted the severity of inflammatory indicators even though systematic
blocking of the gene did protect female mice from colitis induced by dextran sodium sulfate.
Thus the implication of ALOX15 in the pathogenesis of inflammatory diseases remains
variable and inflammation model-dependent [215].

In the pathogenesis of asthma, a pro-inflammatory MAPK/ERK signaling pathway
is activated to induce hypersecretion of mucus, following binding of abundant epithelial
ALOX15 to phosphatidylethanolamine-binding protein in human asthmatic epithelial cells
in vivo [216].

ALOX5 and COX-2-derived eicosanoids play critical functions in the development
of colorectal cancer, thusthe dual targeting of these enzymes is a plausible strategy [217].
Inhibition of ALOX5 in tumor cells leads to varied impacts on gene expression profiles and
cellular functions depending on the cell type. Notably, genes associated with cytoskeletal
organization, cell adhesion, and formation of extracellular matrix undergo significant
changes. Consequently, such alterations in gene expression influence cell motility and
proliferation. For instance, the consequence of gene expression was studied following
knock-out of ALOX5 in multiple cancer cell lines: TGF-2 expression was elevated in HCT-
116 cells, expression levels of MCP-1 and platelet-derived growth factor were reduced in
U-2 OS cells. Also, the knockout of ALOX5 has an effect on cell motility and proliferation.
Intriguingly, pharmacological inhibition of ALOX5 only partially mimicked the knockout,
implying that there may be noncanonical roles at play [218]. Lack of migrated natural killer
T cells facilitates development of pancreatic cancer and their presence modulate tumor
associated macrophages (M2) through ALOX5 and mPGES-1 [219].

The role of lipoxygenase products in T cell function can be summarized as follows:

1. 15-HETE enhances T cell proliferation, particularly promoting Th1 cell activity.
2. 12-HETE facilitates chemotaxis, although it is more specifically a chemoattractant for

neutrophils, and the receptors for this activity are not yet identified.
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3. Lipoxin A4 (LXA4), through the BLT1 receptor, stimulates the production of cytokines.
4. Leukotriene B4 (LTB4), also acting through the BLT1 receptor, encourages T cell homing.
5. Cysteinyl leukotrienes D4 (CysLTD4) and E4 (CysLTE4), interacting with the CysLT1

receptor, are involved in inducing Th2 cell differentiation [157].
6. Metabolites of ALOX5 and ALOX12 are elevated in human colon adenoma tissue and

serve as therapeutic targets for colorectal cancer chemoprevention [220].

In both pancreatic and colon cancers, a substantial body of research supports the role
of inflammation in their pathogenesis. The anti-inflammatory properties of special pro-
resolving mediators (SPMs) counteract cytokines-promoting tumorigenesis [112]. Recent
research indicates that SPMs mitigate inflammation in the β-cells of the pancreas and the en-
terocytes of the colon—but the exact etiology and molecular consequences of how immune
responses in pancreatic and colon cancers are linked remains unclear [221]. Peripheral lev-
els of lipoxygenase-derived immunoresolvents (lipoxins A4, B4, and resolvins D1, D2) are
2–10 fold higher in patients with pancreatic cancer relative to healthy subjects [222]. Taking
into consideration the unrestrained inflammation characteristics of pancreatic tumorigene-
sis, it is logical to reason that significantly upregulated levels of these immunoresolvents is
probably an inhibitory feedback to keep this inflammatory processes at bay [222]. While
the role of ALOX15 and ALOX15B in tumor-associated macrophages (TAMs) is not yet
fully understood, numerous ALOX15/B metabolites, particularly resolvins and lipoxins,
exhibit anti-tumorigenic properties [223].

In the pathogenesis of pituitary adenomas, the expression of both ALOX15 and
ALOX15B as well as their metabolites 15-(S)-HETE, 13-(S)-HODE are significantly elevated.
This pro-carcinogenic role of ALOX15 isoforms was highlighted following an increase in
expression and activity in pituitary adenomas with larger tumor size and higher degree of
invasion [147]. Expression of ALOX15B mRNA and protein is lost in esophageal cancers
and upregulation of ALOX15B during a COX-2 inhibitor, NS398, treatment is associated
with reduced cancer cell survival and proliferation [224].

The ALOX15-derived metabolite 13-(S)-HODE has been shown to augment the MAP
kinase signaling pathway and diminishes PPARγ in colorectal cancer cells. Opposingly,
there is a loss and increase in the expressions of ALOX15B and ALOX15, respectively, in
prostate tumor tissues. Specifically, ALOX15-derived 13-HODE and ALOX15B-derived
15-HETE upregulated and downregulated the MAP kinase signaling pathway, respec-
tively, in prostate cancer PC3 cells. Ultimately, 15-HETE reduced PPARγ phosphorylation,
whereas 13-HODE produced its decrease. Hence, ALOX15 metabolites have contrasting
effects on modulating the MAP kinase pathway and downstream factors such as PPARγ.
Furthermore, the role of EGF and EGFR in these mechanisms is a subject of interest, as is
the role of IGF-1, which is known to activate both MAPK and Akt pathways [225].

9. Inhibitors of ALOX in Anti-Cancer Therapies

The use of small molecule inhibitors to target complementary pathways have gained
interest in cancer therapy [226]. Epidermal growth factor receptor (EGFR), ALOX5 and
COX-2 are overexpressed in PDAC. Gefitinib (EFGR inhibitor) and licofelone (dual COX-
ALOX5 inhibitor) significantly inhibited the incidence of PDAC in genetically engineered
mice. Synergistic treatment led to the complete inhibition of PDAC [227]. In vitro and
in vivo experiments respectively in MiaPaCa-2, AsPC-1 human pancreatic cancer cell
lines, and athymic mice xenograft models, show that inhibitors of ALOX5 (Rev-5901)
and ALOX12 (baicalein) induce growth inhibition while activating apoptosis via the mito-
chondrial pathway [228]. Furthermore, these same two inhibitors in addition to general
lipoxygenase inhibitor (NDGA) induced apoptosis as well as noticeable altered cellular
morphological changes concordantly with increased activity of carbonic anhydrase in four
pancreatic cancer cells (Capan2, MiaPaca2, HPAF and PANC-1) [229]. In enzalutamide-
resistant prostate cancer cells, the inhibition of ALOX5 interferes with c-Myc signaling,
killing cells by enhancing caspase-mediated apoptosis [230]. Triple targeting of ALOX5,
COX-2 and double mutant EGFR by novel quinazolinone tethered phenyl urea derivatives
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demonstrate anti-inflammatory and anti-cancer activities in numerous cancer cell lines,
not limited to BT-459 breast cancer cell line [231]. The invasive and metastatic role of
ALOX5 in the progression of pancreatic cancer have been demonstrated both in vitro and
in vivo using an approved ALOX5 inhibitor, Zileuton. The study discovered a signification
correlation between increased levels of ALOX5 and poor survival, perhaps due to the
activation of JAK/STAT signaling in macrophages which reprograms macrophages to the
M2 phenotype. Inhibition of ALOX5 by low-dose Zileuton led to the inhibition of invasion
and metastasis in PANC-1 pancreatic cancer cells, and mitigated the M2-like phenotype
through the JAK/STAT pathway in macrophages [232]. Following zileuton treatment in
nude mouse model of in situ transplantation tumor of pancreatic cancer, mice exhibited im-
proved survival and reduced liver metastasis. These findings show that ALOX5 regulates
TAMs polarization through the JAK/STAT pathway, promoting invasion and metastasis in
pancreatic cancer [232].

In the evaluation of lipoxygenases as targets in malignant pleural mesothelioma cell
lines (NCI-H2052, NCI-H2452, and MSTO-211H), expression of ALOX12 and ALOX5 is
highly upregulated in the majority of the samples. Inhibition with baicalein was effective in
all three cell lines at low concentrations with IC50 between 9.6µM and 20.7µM respectively.
Thus, baicalein holds promise in therapy for malignant pleural mesothelioma [233]. Similar
studies have demonstrated the use of both ALOX12 and ALOX5 inhibitors in pancreatic
cancer cells PANC-1 and Capan2, which were shown to express ALOX5 and ALOX12.
Along with their respective metabolites (5-HETE and 12-HETE) and substrates (arachidonic
and linoleic acids), they all stimulate pancreatic cancer cell proliferation, and there was
direct reversal of inhibitor-induced grown inhibition by both 5-HETE and 12-HETE [234].

Blocking of arachidonic acid metabolism via the use of NDGA (ALOX inhibitor) or
ETYA (a dual COX and ALOX inhibitor), inhibits cell proliferation, matrix metallopro-
teinase activity and invasion in head and neck cancers [235]. Endothelial cell-specific
overexpression of ALOX15 in Lewis Lung Carcinoma induces necrosis and apoptosis in
primary and metastatic tumors by elevating the expression of PPARγ and P21 in neighbor-
ing cancer cells in mice [236]. Combination of ALOX12 inhibitors (baicalein and BMD122)
and radiation therapy have synergistic inhibitory effects on the growth of LNCaP and PC-3
prostate cancer cells as well as prostate cancer xenografts in SCID mice [237]. In a syngeneic
tumor model of non-small cell lung cancer and melanoma, ALOX12 inhibition was showed
to mitigate the effect of pre-radiation on the growth of pulmonary tumor nodules [238].

Targeting of sphingosine-1 phosphate (S1P) is now of growing interest following the
contribution of ALOX15-S1P signaling in exacerbating lymphomagenesis via polarization
of normal macrophages towards TAMs creating immunosuppressive microenvironment in
obesity-related lymphomas [209]. Interestingly, treatment of obesity-lymphoma mice with
a natural phenol (resveratrol) revealed marked effects of anti-lymphomagenesis through
downregulation of S1P-YAP axis and reprogramming macrophage polarization from M2 to
M1 phenotype [209].

In experimental cell lines, 13-HODE inhibited proliferation of MCF7 and MDA-MB-
231 breast cancer cell lines in a time/dose dependent manner. It was demonstrated that
mounting levels of 13-HODE were associated with cells accumulated in the G1 cell cycle
phase, PPARγ downregulation, and initiation of apoptosis [239]. Additionally, 13-S-HODE
has been identified to bolster doxorubicin resistance in MCF-7 cells, inducing apoptosis,
cell cycle arrest, and PPAR activation. An intriguing cascade occurs where there is auto-
activation of ALOX15, leading to an elevation in caspase 3/7 activity [240].

Differentiation of cells in normal tissues or quasi-differentiation processes in cancers
may be modelled by cell culture with some additives like butyrate—it has the capability to
amplify ALOX15 levels, thereby elevating 13-S-HODE. Moreover, treatment of undiffer-
entiated human neuroblastoma cells with sodium butyrate (histone deacetylase inhibitor)
markedly increased ALOX15 mRNA expression [241]. In contrast, DHA curtails tumor
growth and angiogenesis due to its inhibitory effect on 15-HETE synthesis [241].
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Collective evidence proposes a potent pro-cancerous influence of ALOX15/ALOX15B
and their reaction products in breast tumor tissues. This is primarily due to the increased
levels of cAMP, phosphorylation of p38-MAPK, and DNA synthesis, all of which are pro-
cancerous elements influencing spheroid formation, CREB activation, and TGF-α. This
entire cascade, however, remains sensitive to the availability of lipids and free acids [88]. It
is worth noting that dexamethasone, a compound frequently incorporated in oncological
therapeutic regimens to ameliorate side effects, intriguingly elevates mRNA and protein
levels of ALOX15B in monocyte-derived macrophage phenotypes, leading to production of
SPMs in inflammatory cells [242].

10. Control of Lipoxygenation in Cancer Prevention and Treatment

Diverting the arachidonic acid metabolism towards 15-HETE can be achieved via
COX-2 inhibition. In studies examining the role of ALOX15 and its metabolites across
five glioblastoma cell lines (namely, U251-MG, U87-MG, U138-MG, T98G, and A172), a
notable increase in 13-HODE levels was observed relative to other lipids analyzed. Using
two ALOX15 inhibitors (luteolin and nordihydroguaiaretic acid) resulted in a decrease in
glioblastoma growth, migration, and invasion while concurrently increasing in cell cycle
arrest in the G2/M phase [243]. The effect of other PUFAs (eicosapentaenoic and γ-linoleic
acids) have similarly been shown to reduce cell growth and regulate drug-resistant-ATP
binding cassettes (ABC) transporters in glioblastoma cells [244].

Utilizing small molecule inhibitors to simultaneously target multiple complementary
pathways has become a prominent approach in cancer treatment [226]. In the case of
PDAC, there is consistent overexpression of the Epidermal Growth Factor Receptor (EGFR),
ALOX5, and COX-2 [227]. Despite the fact that there are hurdles associated with the use of
tyrosine kinase inhibitors [245], the application of Gefitinib, an EGFR inhibitor, alongside
Licofelone, which inhibits both COX and ALOX5, has proven to be effective in hindering
PDAC carcinogenesis. This effectiveness was notably enhanced when these inhibitors were
used in combination in a genetically engineered mouse model, underscoring the potential
of multi-targeted therapy in cancer treatment [227].

11. Perspectives of ALOX15 Transgene, a Oncotherapeutic Booster

Overexpression of ALOX15 induces p53-dependent growth arrest in human colorectal
cancer cells, HCT-116 [246]. Using an adenoviral delivery system to express ALOX15
in-vitro and in vivo in colon cancer models (HCT-116, HT-29, LoVo xenografts) expression
and activities of ALOX15 were restored to therapeutic levels, expression of anti-apoptotic
proteins including BcL-XL, X-linked inhibitor of apoptosis protein (XIAP) were downreg-
ulated, and growth of colon cancer xenografts in vivo as well as survival of cancer cell
in vitro were inhibited [247].

Furthermore, downregulation of PPAR-γ by the ALOX15 product 13-S-HODE sen-
sitizes apoptotic signaling pathway in colorectal cancer cells [137]. These results are
consistent with the works of Luo and colleagues who demonstrated that ALOX15 expres-
sion is negatively associated with infiltration of tumor-associated macrophages in cervical
cancers [205].

In approximately 70% of prostate cancer cases, there is an absence of ALOX15B expres-
sion. Interestingly, while transgenic introduction of ALOX15B can cause hyperplasia, it does
not lead to the development of prostate cancer, even when the p53 gene is inactive [120].
Moreover, the transgenic expression of ALOX15B in prostate cancer driven by the Myc
gene significantly reduces both prostatic intraepithelial neoplasia and prostate cancer [107].
Functioning as in a tumor suppressor mode in the prostate, the alternatively spliced vari-
ants of ALOX15B are found to induce cell-cycle arrest and senescence in the epithelial cells
of the normal human prostate. The downregulation of ALOX15B and its spliced isoforms
is closely linked to unchecked cell proliferation, a key factor in the development of prostate
cancer [248].
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It is already known that ALOX15B is significantly downregulated in head and neck
carcinoma [249]. As a candidate for radiotherapy booster in head and neck carcinoma, the
levels of ALOX15B and its major metabolite 15-S-HETE increased two-fold and three-fold
respectively in head and neck cancer cells following transfection with ALOX15B expression
shuttle and 4 Gy of radiation. This upregulation of ALOX15B led to increased apoptosis
enhancing the impact of radiotherapy in head and neck cancers. Overall, there was a
synergistic effect between ALOX15B and radiation in head and neck cancer models [250].

In bladder cancer, p53 activates ALOX15B by inhibiting SLC7A11, leading to the
induction of ferroptosis in bladder cancer cells [203]. In melanoma tumors, the blocking of
ALOX5 or ALOX12-associated eicosanoid production reverses Schwann cell-dependent
suppression of anti-tumor T cell activation [251]

Current clinical trials targeting malignant glioma have shown promising therapeutic
benefits from using herpes simplex virus thymidine kinase (HSV-TK) gene therapy [252].
However, when HSV-TK was combined with ALOX15 using adenoviral vectors in BT4C
malignant glioma cells, there was no notable increase in tumor growth inhibition. Instead,
the significant effect was observed in the altered migratory properties of the tumor cells,
leading to a decreased cell survival [253].

The actions of lipoxygenases have been efficiently harnessed in tumor-killing nanore-
actors [189]. The complete elimination of large and multiple-metastatic solid tumors post
radiofrequency ablation usually poses a challenge [254]. The development of cancer-
debris-fueled nanoreactors encapsulating lipoxygenases constantly produce cytotoxic lipid
radicals which suppress residual tumors via ferroptosis induction and priming of antitumor
immunity post radiofrequency ablation [189]. This approach opens up new avenues for
augmenting cancer treatments through innovative technological applications, especially if
these are fine-tuned to be active in a specifical tumor milieu such as in acidosis [255]. Some
of the ideas in favor for the use ALOX15B augmentation are shown in Figure 10.

Figure 10. Three general rationales for combining cancer therapies: Additive or synergistic effect of
multiple complementary drugs are effective in killing resistance-susceptible tumor cells. Secondly,
combinations of several drugs are effective in overcoming the clonal heterogeneity developed during
tumor development. This mechanism can be as simple as resistance of specific tumor cells to a specific
drug but sensitive to another drug with a different mechanism of action. The same logic can also play
out at the scale of patient-to-patient variability.

12. Conclusions

There is a growing recognition of a dual challenge facing healthcare systems world-
wide: simultaneously addressing infections and cancer. This complex scenario calls for
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extensive research into the interactions between pathogens and carcinogenic processes.
Emerging research indicates that cystic fibrosis survivors, often exposed to P. aeruginosa,
have an increased risk of developing colonic cancer. These intricate connections likely in-
volve critical factors like the dysregulation of eicosanoid signaling, highlighting the need for
a multi-disciplinary approach to effectively tackle both infections and cancer development.

Understanding the mechanisms that distinguish pre-cancerous tissues and benign
growths from aggressive malignancies capable of distant metastasis remains a significant
research gap. Focusing on differentiating these various stages is crucial for advancing
development of new cancer treatments.
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