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Abstract: Alzheimer’s disease (AD) is a debilitating neurodegenerative disease characterized by
the accumulation of extracellular amyloid-β peptides (Aβ) within the cerebral parenchyma and
vasculature, which is known as cerebral amyloid angiopathy (CAA). This study utilized confocal
imaging to investigate heparan sulfate (HS) expression within the cerebrovasculature and its associ-
ations with Aβ, gender, and ApoE4 genotype in AD. Our investigation revealed elevated levels of
HS in the cerebrovasculature of AD patients with severe CAA. Additionally, these patients exhibited
higher HS colocalization with Aβ in the cerebrovasculature, including both endothelial and vascular
smooth muscle cell compartments. Intriguingly, a reversal in the polarized expression of HS within
the cerebrovasculature was detected in AD patients with severe CAA. Furthermore, male patients
exhibited lower levels of both parenchymal and cerebrovascular HS. Additionally, ApoE4 carriers
displayed heightened cerebrovascular Aβ expression and a tendency of elevated cerebrovascular HS
levels in AD patients with severe CAA. Overall, these findings reveal potential intricate interplay
between HS, Aβ, ApoE, and vascular pathology in AD, thereby underscoring the potential roles
of cerebrovascular HS in CAA development and AD pathology. Further study of the underlying
mechanisms may present novel therapeutic avenues for AD treatment.

Keywords: Alzheimer’s disease; heparan sulfate; amyloid-β; cerebral amyloid angiopathy;
cerebrovasculature; gender; ApoE; endothelial cell; smooth muscle cell

1. Introduction

Alzheimer’s disease (AD) is a debilitating neurodegenerative disease that is charac-
terized by the accumulation of extracellular amyloid-β peptides (Aβ) within the cerebral
parenchyma and vasculature, which is known as cerebral amyloid angiopathy (CAA), and
intracellular neurofibrillary tangles consisting of hyperphosphorylated tau [1–4]. While
tau aggregation shows a stronger correlation with cognitive decline in patients, mounting
evidence suggests that Aβ accumulation, which precedes tau aggregation, may serve as the
major initiating event in AD pathogenesis [1]. Aβ accumulation leads to the formation of
Aβ senile and neuritic plaques, which stem from misfolded Aβ peptides aggregating over
time. Accumulated Aβ peptides disrupt cellular communication, trigger inflammatory
responses, and ultimately lead to neuronal cell death, contributing to cognitive decline [1–5].
Significant efforts have been devoted to understanding the mechanisms underlying Aβ

accumulation and exploring potential treatments for AD [1–5]. One more recent promis-
ing therapeutic avenue is anti-Aβ antibody immunotherapy, which targets and clears
Aβ plaques from the brain. Antibodies like lecanemab, donanemab, aducanumab, and
gantenerumab have either received FDA approval for AD treatment or are undergoing
clinical trials [4–10]. Evidence suggests that these therapies can slow AD progression
and improve cognitive function by enhancing Aβ clearance from the brain tissue [4,6–10].
However, it is important to note that these treatments also carry various potential side
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effects, including some that may be life-threatening [11]. Among the most common side
effects are cerebrovascular problems, particularly amyloid imaging abnormality-related
edema and hemorrhages, which can increase the risk of strokes [12–14]. Interestingly,
anti-amyloid treatments have been associated with exacerbating CAA in some patients,
suggesting a possible link between worsened CAA and the development of cerebrovascular
complications in the context of anti-Aβ therapy [5]. The precise mechanisms underlying
CAA development in AD and their interaction with anti-Aβ treatments remain unclear,
emphasizing the need for further research in this area.

Heparan sulfate (HS) is a linear polysaccharide with various sulfation modifications,
forming covalent bonds with protein cores to generate heparan sulfate proteoglycans
(HSPGs) [15,16]. These HSPGs, which are distinguished by their protein cores, are found on
cell surfaces and in the extracellular matrix engaging with various protein ligands. These
interactions, which are mediated mainly by their HS chains, play crucial roles in regulating
numerous biological processes, including organ development, angiogenesis, tumorigenesis,
leukocyte trafficking, and lipid metabolism [17–23].

In AD patients and mouse models, HS co-deposits with Aβ in plaques within the brain
tissue and blood vessels [24–34]. Biochemical analyses and in vitro cell studies demonstrate
that HS directly binds to Aβ and accelerates Aβ aggregation [35–40]. Furthermore, HS
facilitates the internalization of Aβ into cells, leading to subsequent cytotoxic effects [41–45].
In AD mouse models, reducing neuronal HS expression or overexpression of heparinase
(HPSE), an enzyme that breaks down HS into smaller fragments, decreases brain Aβ

levels [46–48]. These observations highlight the functional role of HS in promoting the
accumulation of Aβ in the brain [46–48]. Interestingly, the depletion of neuronal HS or the
overexpression of HPSE paradoxically exacerbates Aβ deposition in cerebral blood vessels,
leading to the development or worsening of CAA. These vascular phenotypes mirror the
effects of anti-Aβ treatments, suggesting a potential involvement of vascular HS in the
development of CAA in AD and during anti-Aβ therapy.

In this study, we investigated the expression of HS within the prefrontal cortex cere-
brovasculature and its correlation with CAA in AD and AD risk factors, including gender
and ApoE isoform.

2. Results
2.1. Cerebrovascular Aβ Accumulation in AD Patients Increases with Severe CAA

Extracellular deposition of Aβ is one of AD’s most extensively studied histopathologi-
cal features. In addition to its presence within the brain parenchyma, Aβ deposition also
occurs within the cerebrovasculature, leading to CAA in up to 98% of AD patients [1,5].
Aβ deposition was assessed using the pan anti-Aβ antibody D54D2 in conjunction with
anti-CD31 staining for ECs or anti-αSMA staining for vascular SMCs (Figure 1A). The aver-
age intensity of Aβ staining fluorescence was quantified to reflect Aβ deposition within
the stained regions and their adjacent parenchyma. In the parenchyma surrounding cere-
brovasculature in AD patients, the mean Aβ deposition was significantly elevated around
ECs compared to controls (control mean = 6.33, AD mean = 11.46, Z = −2.98292, p = 0.0029),
as well as in the vicinity of SMCs (control mean = 6.81, AD mean = 11.82, Z = −2.83511,
p = 0.0046) (Figure 1B), thereby confirming Aβ accumulation in the parenchyma of AD
patients. Mean vascular Aβ levels showed an upward trend in AD patients (Figure 1C),
although statistical significance was not reached in CD31+ area (control mean = 9.21,
AD mean = 17,82, Z = −1.85847, p = 0.0631) and αSMA+ area (control mean = 9.57,
AD mean = 40.55, Z = −1.90476, p = 0.0568).
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Figure 1. Cerebrovascular Aβ accumulation in AD with or without CAA. Representative im-
munofluorescence images staining of prefrontal cortex tissue sections of AD patients with no, mild,
or severe CAA or control patients for cerebral vascular ECs (CD31+), vascular SMCs (αSMA+),
total Aβ (anti-Aβ antibody D54D2), and HS (anti-HS antibody 10E4) (A). Aβ staining fluorescence
surrounding cerebrovasculature (parenchyma) and in EC and SMC compartments were quantified.
The mean levels of Aβ fluorescence are elevated in AD subjects in the prefrontal cortex parenchyma
and vasculature, encompassing both ECs and SMCs ((B) and (C), respectively). The colocalization
of Aβ fluorescence and vascular marker staining was assessed using Spearman’s correlation rank
analysis and is notably increased in AD patients (D). When stratified by CAA severity in AD groups,
augmented Aβ fluorescence within the vascular wall and its colocalization with CD31 or αSMA
staining was not observed in patients with no or mild CAA; however, such changes are evident only
in severe CAA cases, including EC and SMC compartments ((E) and (F), respectively). The data
are presented as mean ± SD. The p values for pairwise comparisons are provided. For significance
results, * = p ≤ 0.05, ** = p ≤ 0.01, *** = p ≤ 0.001. Scale bars = 25 µm.
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To gain a more comprehensive understanding of Aβ deposition in the cerebrovascula-
ture, we conducted a quantification of the vascular area with Aβ deposition in AD, which
was performed through Aβ and CD31+ or αSMA+ colocalization analysis. Notably, CD31
fluorescence and Aβ fluorescence colocalization significantly increased in patients with
AD (control mean = 0.30, AD mean = 0.35, Z = −2.01, p = 0.044) in Spearman’s correlation
rank analysis (Figure 1D). In Manders’ coefficients colocalization analysis, Manders’ M2
exhibited a significant increase in Aβ colocalization with CD31 in AD patients. At the same
time, M1 indicated that CD31 colocalization with Aβ remained unchanged (Figure S1A).
In SMCs, a heightened colocalization of αSMA and Aβ immunofluorescence was noted
in AD patients (control mean = 0.21, AD mean = 0.36, Z = −2.32, p = 0.0204) (Figure 1D).
Manders’ coefficient analysis revealed a tendency for the colocalization of Aβ and αSMA
to increase in both M1 and M2 parameters (Figure S1A). These analyses revealed elevated
Aβ deposition or a trend within the cerebrovasculature of AD patients preselected based
on their CAA severities, which was in agreement with their clinical CAA diagnosis.

To further characterize Aβ deposition within the cerebrovasculature in AD, we ex-
tended the analysis to Aβ deposition in AD patients categorized according to CAA severity.
Upon stratifying AD samples by the extent of CAA, escalated vascular Aβ deposition
exclusively emerged in AD patients with severe CAA, but not those with no or mild CAA.
This is evident in the mean Aβ intensity within the CD31+ area (H(3) = 19.18, p = 0.0003;
mean control = 9.21, mean AD no CAA = 8.83, mean AD mild CAA = 9.51, mean AD severe
CAA = 30.63) and αSMA+ area (H(3) = 17.92, p = 0.0005; mean control = 10.15, mean AD
no CAA = 12.59, mean AD mild CAA = 9.74, mean AD severe CAA = 90.25) (Figure 1E). As
expected, marked increases in vascular Aβ were observed in AD patients with severe CAA
when compared to control patients (Z = 3.53, p = 0.0004) and those with no CAA (Z = 3.32,
p = 0.0009) or mild CAA (Z = 3.32, p = 0.0009) in the CD31+ area. Similarly, significant
increases in vascular Aβ in the αSMA+ area were seen in AD patients with severe CAA
when contrasted with control patients (Z = 3.26, p = 0.0011) and AD patients with no CAA
(Z = 2.58, p = 0.0099) or mild CAA (Z = 3.51, p = 0.0005).

In the Aβ and CD31 colocalization analyses using Spearman rank correlation coef-
ficient, Aβ and CD31 colocalization (H(3) = 12.48, p = 0.0059, mean control = 0.30, mean
AD no CAA = 0.30, mean AD mild CAA = 0.32, mean AD severe CAA = 0.40) was higher
in patients with severe CAA compared to control patients (Z = 3.40, p = 0.007) and AD
patients with mild CAA (Z = 2.49, p = 0.0127) and trending compared to AD patients with
no CAA (Z = 1.83, p = 0.068) (Figure 1F). Aβ and αSMA also significantly colocalized more
in AD patients with severe CAA (H(3) = 18.24, p = 0.0004, mean control = 0.21, mean AD
no CAA = 0.25, mean AD mild CAA = 0.24, mean AD severe CAA = 0.54) compared to
control patients (Z = 3.40. p = 0.0007) and AD patients with mild CAA (Z = 3.40, p = 0.0007)
or no CAA (Z = 2.83, p = 0.0046) (Figure 1F). In Manders’ coefficient analysis, AD patients
with severe CAA showed increased Aβ colocalization with CD31 and αSMA in M1, as
well as with αSMA, but not with CD31 in M2 (Figure S1B). Our immunostaining showed
that increased Aβ deposition is only seen in AD patients with severe CAA. This could be
because most CAA is found in the posterior cortex, and the prefrontal cortex is less affected
at the mild stage (47).

2.2. Cerebrovascular HS Is Elevated in AD Patients with Severe CAA

Bulk tissue analysis has determined that HS level is elevated in AD patients [24,25,49,50],
but it remains unknown if HS level in cerebrovasculature is altered in the patients [33].
This was determined by the co-staining of HS and CD31 or αSMA. HS densities were not
significantly changed in the parenchyma in patients with AD surrounding ECs (control mean
= 7.74, AD mean = 8.30, Z = 0.48414, p = 0.6283) or surrounding SMCs (control mean = 6.80,
AD mean = 11.82, Z = 0.32486, p = 0.7453) (Figure 2A). HS levels in the cerebrovasculature are
also not significantly changed in AD either in EC (control mean = 11.24, AD mean = 16.07,
Z = −0.67155, p = 0.5019) or SMC compartments (control mean = 36.49, AD mean = 54.36,
Z = −1.28461, p = 0.1989), although there appear tendencies of increase in both compartments
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(Figure 2B). In the CAA-stratified subgroup analysis, the mean HS level in AD patients with
severe CAA showed a significant increase in EC compartment (Z = 1.973013, p = 0.0485)
when compared to the AD patients with no CAA (Z = 1.973013, p = 0.0485) (Figure 2C).
Interestingly, mean HS in the SMA compartment was not significantly altered in AD patients
among the CAA-stratified AD patients (H(2) = 2.6442, p = 0.2666), although the severe CAA
group showed a tendency of increase.

Figure 2. Cont.
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Figure 2. Cerebrovascular HS in AD. The HS densities surrounding cerebrovasculature and in
the vascular EC and SMC compartments are not significantly different between AD and control
patients but have a strong tendency of increased HS density in the SMC compartment ((A) and (B),
respectively). In the CAA-AD subgroup analysis, vascular HS density in the EC compartment was
increased in the severe CAA group, and there was a tendency for increased HS density in the SMC
compartment (C). In co-localization analysis, HS showed significant increases in staining overlapping
with CD31 and αSMA (D). In the CAA-AD subgroup analysis, the increased HS-CD31 and HS-
αSMA staining overlap was seen only in AD patients with severe CAA (E). The data are presented as
mean ± SD. For significance results, * = p ≤ 0.05; ns, not significant.

In parallel, we carried out HS and vascular marker colocalization analyses. When
CD31 fluorescence was examined, its overlap with HS fluorescence significantly increased
in AD patients compared to control subjects (control mean = 0.4326, AD mean = 0.51,
Z = −2.28, p = 0.001) (Figure 2D), indicating that more ECs express or are covered with
above-background HS in AD. Similarly, αSMA fluorescence and HS fluorescence over-
lap also increased in AD patients compared to control subjects (control mean = 0.34,
AD mean = 0.45, Z = −2.41, p = 0.0161) (Figure 2D), indicating that SMCs express or are
covered with above-background HS in AD. Mander’s coefficients revealed that HS over-
lap with above-background αSMA, not background CD31, is increased in AD patients
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(Figure S2A). When AD patients with varying CAA severity were grouped, CD31 fluores-
cence colocalization with HS was not significantly different between the no CAA and mild
CAA subgroups (H(2) = 4.53, p = 0.1038, mean AD no CAA = 0.51, mean AD mild CAA
= 0.48, mean AD severe CAA = 0.55) but significantly increased in the severe CAA group
(Z = 2.06, p = 0.0392) (Figure 2E). Similarly, αSMA and HS colocalization were increased
considerably based on the severity of CAA in AD patients (H(2) = 11.23, p = 0.0036, mean
AD no CAA = 0.41, mean AD mild CAA = 0.39, mean AD severe CAA = 0.53). AD patients
with severe CAA had a significantly increased overlap of HS and αSMA compared to
patients with mild CAA (Z = 3.13, p = 0.0018) and no CAA (Z = 2.32, p = 0.0201) (Figure 2E).
Mander’s coefficients indicate that the overlap of HS with EC and SMC channels was
increased in the presence of severe CAA (Figure S2B). In summary, these data show that HS
in the cerebrovasculature, in both EC and SMC compartments, is elevated in AD patients
with severe CAA, revealing a positive correlation between HS level and CAA severity.

2.3. Co-Deposition of Cerebrovascular HS with Aβ Is Increased in AD

The co-deposition of HS with Aβ within the cerebrovasculature raises the intriguing
question of whether Aβ deposition influences HS levels and HS-Aβ colocalization in the
cerebrovasculature or vice versa in AD. Analyzing high-resolution confocal images of HS
and Aβ colocalization in both parenchymal and cerebrovasculature, we uncovered elevated
HS and Aβ colocalization in the presence of AD in both the EC (control mean = 0.20, AD
mean = 0.27, Z = −2.72, p = 0.0066) and SMC compartments (control mean = 0.16, AD mean
= 0.26, Z = −2.23, p = 0.0258) in the Spearman rank correlation analysis (Figure 3A). Similar
to the patterns observed in the vascular Aβ deposition in CAA-stratified AD patients, the
colocalization of Aβ and HS was significantly increased only in the SMC compartment of
AD patients with severe CAA (H(2) = 14.98, p = 0.0006, mean AD no CAA = 0.20, mean
AD mild CAA = 0.19, mean severe CAA = 0.38) compared to those with no CAA (Z = 3.56,
p = 0.0004) or mild CAA (Z = 2.75, p = 0.006). An increased tendency for CD31 compartment
in severe CAA patients was also observed (Figure 3B).

Upon examining the colocalization of HS and Aβ above-background levels using
Mander’s M1 and M2 coefficients, we noted that Aβ fluorescence exhibited increased
colocalization with above-background HS fluorescence in both EC and SMC compartments
of AD patients compared to controls (Figure 3C). However, the overlap of HS fluorescence
with above-background Aβ fluorescence remained unchanged in the presence of AD
(Figure 3C). In the analysis of CAA subgroups of AD patients, Mander’s coefficients
indicated that in the presence of severe CAA, Aβ fluorescence overlap with HS fluorescence
increased in both EC and SMC compartments, while the overlapping of HS with Aβ was
augmented only in the SMC compartment, not the EC compartment (Figure 3D).

Together, these data show that HS co-disposition with Aβ in cerebrovasculature is
increased in AD, especially in the severe CAA subgroup and the SMC compartment. In
addition, these data also suggest that the HS level in the SMC compartments is heightened
by Aβ deposition.

2.4. Polarized HS Expression in Cerebrovasculature Is Reversed in AD with Severe CAA While No
Polarization of Vascular Aβ Deposition Is Observed

HS is not evenly distributed within blood vessel walls, with much lower HS density
in the luminal side, as reported in the skin [51]. The relative expression levels of HS in the
various compartments within the cerebrovasculature remain unexplored. By analyzing
2.38 µm stacks of stained tissues, we examined HS expression in different compartments
within the cerebrovascular walls (Figure 4A). Employing the immunofluorescence his-
togram method as reported by Stoler-Barak et al. [52], we initially quantified HS expression
in the EC compartment versus the nonendothelial compartment within the vascular wells
based on the CD31+ signal (Figure 4B). In control and AD patients with no or mild CAA,
the ratios of HS expression in the EC to non-EC compartments were consistently below
one, indicating higher HS expression in the non-EC compartment. However, the ratios
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were increased to more than two in AD patients (low amyloid mean = 0.7835, high amyloid
mean = 2.4685, Mann–Whitney U = −1.699824, p = 0.0238) (Figure 4C). In CAA stratified
groups, only AD patients with severe CAA displayed ratios greater than two, showing the
reversal of HS expression polarity in the cerebrovasculature occurs most significantly in
this patient subgroup (Figure 4D).

We also analyzed HS expression within the compartment of vascular SMCs. Con-
sidering their proximity to endothelial cells, we split the vascular SMC layer equally into
internal and external compartments based on the αSMA+ signal (Figure 4E). Analogous to
the findings based on EC staining, the ratio of HS expression in the internal to the external
compartment was consistently less than one in both normal controls and AD patients with
no or mild CAA, and these ratios were higher than one in AD patients (low amyloid mean
= 0.7959, high amyloid mean = 1.332, Mann–Whitney U = −0.527625, p = 0.0238) (Figure 4F).
Similarly, in the CAA-stratified AD subgroups, the internal to external ratios of HS ex-
pression within the vascular SMC compartments were greater than one only in the severe
CAA subgroup, showing that the reversed polarity of HS expression also occurs within
the vascular SMC layer in AD (Figure 4G). These compelling observations underscore
the disruption and reversal of polarized HS expression within the cerebrovasculature in
AD patients with severe CAA, suggesting a potential role of the reversed HS polarity in
contributing to CAA development in these patients.

Figure 3. HS colocalization with Aβ is increased in cerebrovasculature in AD. HS and Aβ colo-
calization in the EC and SMC compartments between AD and control (A) and CAA-stratified
AD subgroups (B). Mander’s coefficient analysis to compare the overlap coefficients of the above
background staining of HS and Aβ between AD and control (C) and between CAA-stratified AD
subgroups (D). The p values for pairwise comparisons are provided. The data are presented as mean
± SD. For significance results, * = p ≤ 0.05, ** = p ≤ 0.01, *** = p ≤ 0.001, **** = p ≤ 0.0001.
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Figure 4. HS expression and Aβ deposition in different compartments within the cerebrovascular
wall in AD. Representative images of cerebrovasculature with no/low and high CAA are stained
for CD31, αSMA, HS, and Aβ (A). The immunofluorescence histogram analysis of HS staining in
EC to non-EC compartments (B–D) and the rations of the HS and Aβ staining in the internal (Int)-
to the external (Ext) SMC compartments (E–G). The immunofluorescence histogram analysis of Aβ

staining in EC to non-EC compartments (H) and the internal to the external SMC compartments (I).
The data are presented as mean ± SD. For significance results, * = p ≤ 0.05; ns, not significant. Scale
bars = 25 µm. Jn CAA separated analyses, control patients are denoted with square, AD patients
with no/mild CAA are denoted with triangle and AD patients with severe CAA are denoted with
asterisk datapoints.

Of interest, despite increased colocalization with HS, the ratios of Aβ depositions
within the EC to non-EC, as well as the ratios of internal to external SMC compartments,
were not different between AD patients and controls (Figure 4H). Stratifying patients based
on CAA severity yielded no significant differences in Aβ deposition within the endothelial
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or vascular SMC compartments either (Figure 4I), underscoring that the disrupted and
uneven HS expression does not correlate with Aβ deposition within the cerebrovasculature
and are most likely consequential events following Aβ deposition.

2.5. Male AD Patients Have Lower Parenchymal and Cerebrovascular HS

There are no significant disparities in cerebrovascular Aβ intensities between patients
of different genders (49). However, a notable contrast emerges regarding HS intensity,
which is not correlated with other variables, such as ApoE genotype or CAA severity.
Specifically, in male patients, HS intensity shows a substantial reduction in the parenchymal
regions adjacent to both EC (female mean = 11,58, male mean = 4.37, Z = −2.4376, p = 0.0148)
(Figure 5A,C) and vascular SMC compartments (female mean = 11.30, male mean = 10.09,
Z = −2.3647, p = 0.018) (Figure 5B,D). Correspondingly, a parallel diminution is observed in
HS intensity within the cerebrovasculature of male patients. Although the EC compartment
only presents a tendency of lower HS intensity in males, albeit without achieving statistical
significance (female mean = 18.83, male mean = 10.48, Z = −1.8146, p = 0.0696) (Figure 5E),
the SMC compartment unequivocally exhibits significantly lower HS intensity in male
patients (female mean = 62.90, male mean = 37.31, Z = −2.9181, p = 0.0035) (Figure 5F). In
summary, these data reveal lower cerebral parenchymal and vascular HS expression in
male AD patients than in female AD patients.

Figure 5. Cont.
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Figure 5. Cerebrovascular HS expression in male vs. female patients. Representative male and
female brain tissue images stained for CD31, αSMA, and HS (A,B). Quantitation of HS fluorescence in
the compartments surrounding ECs (C) and SMCs (D), as well as in the compartments of ECs (E) and
SMCs (F). The p values for pairwise comparisons are provided. For significance results, * = p ≤ 0.05,
** = p ≤ 0.01. Scale bars = 25 µm.

2.6. ApoE4 Correlates with Elevated Cerebrovascular Aβ and a Tendency of Higher HS Expression
in AD

ApoE4 is a well-established genetic risk factor that significantly increases the likelihood
of developing AD, whereas ApoE2 is AD-protective [53]. Currently, the molecular mecha-
nism through which ApoE4 exacerbates AD remains obscure. We stratified our AD samples
based on ApoE genotypes, including ApoE3/3, ApoE3/4, and ApoE4/4, and examined
if vascular Aβ deposition and HS density correlate with the ApoE genotypes (Figure 6A).
We only had three patients who had ApoE 2/3 alleles, and they were not included in the
analyses. A positron emission tomography (PET) study did not observe a difference in Aβ

deposition based on ApoE genotype [54]. However, we observed a significant grouping effect
of ApoE genotype on Aβ deposition in the parenchyma surrounding ECs (H(2) = 7.6374,
p = 0.022, ApoE3/3 = 8.56, ApoE3/4 mean = 10.83, ApoE4/4 mean = 15.87). Aβ deposition
significantly increased with one (Z = 1.9557, p = 0.0482) or two (Z = 2.2755, p = 0.0229) ApoE4
alleles compared to two ApoE3 alleles (Figure 6B). ApoE4 also has a grouping effect on Aβ

deposition in the parenchyma surrounding SMCs (H(2) = 8.9892, p = 0.0112, ApoE3/3 mean
= 8.10, ApoE3/4 = 9.34, ApoE4/4 = 18.20), and two ApoE4 alleles had significantly higher
parenchymal Aβ compared to two ApoE3 alleles (Z = 2.50, p = 0.0124), and one ApoE4 allele
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with one ApoE3 allele had a trending increase of parenchymal Aβ compared to two ApoE3
alleles (Z = 1.84, p = 0.0656), as well as a trending increase with two ApoE4 alleles compared
to one ApoE3/4 allele (Z = 1.92, p = 0.0549) (Figure 6C). When examining cerebrovascu-
lar Aβ, the EC compartment of ApoE4/4 carrier had a significant increase of Aβ intensity
compared to the ApoE3/3 carriers (Z = 2.0654, p = 0.0389, ApoE4/4 mean = 32.33, ApoE3/3
mean = 11.95) and a trending ApoE4 dose effect (Z = 1.8593, p = 0.063, ApoE3/4 mean = 11.42,
ApoE4/4 mean = 32.33) (Figure 6D). Similarly, the SMC compartment of ApoE4/4 carri-
ers had a significant increase of Aβ intensity compared with ApoE3/3 carriers (Z = 2.500,
p = 0.0124, ApoE4/4 mean = 101.50, ApoE3/3 mean = 16.95) and a trending ApoE4 dosing
effect (Z = 1.8263, p = 0.068, ApoE3/4 mean = 23.31, ApoE4/4 mean = 101.50) (Figure 6E).
These results support previous findings that indicate that ApoE4 increases vascular Aβ and
CAA [55] and may exacerbate AD development.

Figure 6. Cerebrovascular HS expression in AD patients with different ApoE genotypes. Represen-
tative brain tissue images depicting various ApoE genotypes, stained for CD31, αSMA, Aβ, and HS
(A). Quantitation of Aβ- and HS fluorescence in the compartments surrounding ECs (B,F) and SMCs
(C,G), as well as in the compartments of ECs (D,H) and SMCs (E,I), respectively. The p values for
pairwise comparisons are provided. For significance results, * = p ≤ 0.05. Scale bars = 25 µm.

Previous studies have demonstrated that different ApoE isoforms have different bind-
ing affinities to HS, and ApoE4 has a threefold higher affinity for HS than ApoE2 and
ApoE3 [56,57]. However, it has not been determined previously if the ApoE isoform is
associated with HS expression in AD patients. Examination of the parenchyma surrounding
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ECs and SMCs has not revealed any difference of ApoE alleles on HS expression in the
parenchyma surrounding ECs and SMCs (Figure 6F and G). Interestingly, while examin-
ing HS expression in the cerebrovasculature, the EC compartment of ApoE4/4 carriers
shows a substantial trending increase (Z = 1.9253, p = 0.0542, ApoE 3/3 = 11.92, ApoE4/4
mean = 28.21) (Figure 6H). However, no significant difference in SMC HS expression was
detected among the ApoE4/4, ApoE3/4, and ApoE3/3 groups, although the ApoE4/4
group shows a tendency of increased HS density (Figure 6I). These observations suggest
a potential association of ApoE4/4 with higher HS expression in the cerebrovasculature
in AD.

3. Discussion

In AD, Aβ aggregates form neuritic and senile plaques within the brain parenchyma,
which serves as a disease hallmark. Additionally, Aβ deposition frequently occurs in the
cerebrovasculature, leading to the development of CAA. The development of Aβ depo-
sition in both the parenchyma and cerebrovasculature appears to be driven by impaired
clearance mechanisms, which are influenced by factors such as the rate and sources of Aβ

generation, its circulation within the interstitial fluid, and the efficiency of perivascular
drainage pathways. The initial buildup of Aβ sets the stage for a self-perpetuating cycle,
fostering further deposition of parenchymal Aβ plaques and worsening the progression
of CAA in AD. In clinical trials of anti-Aβ immunotherapy, approximately 30% of treated
patients develop amyloid-related imaging abnormalities caused by microhemorrhages
or edema, which cause similar inflammatory responses and leptomeningeal involvement
with CAA [12–14]. In fact, it is suggested that patients’ high vascular amyloid load may
induce amyloid-related imaging abnormalities. A large proportion of AD patients, es-
pecially ApoE4 carriers, have some level of CAA in post-mortem examinations [5,58,59].
This phenomenon is thought to result from an overload of Aβ perivascular clearance
pathways [12–14]. Considerable efforts have been dedicated to unraveling the molecular
mechanisms driving Aβ deposition in AD, revealing that the development of vascular and
parenchymal Aβ deposition may be governed by distinct regulatory pathways. This is
supported by variations in the isoforms of deposited Aβ [60–63] and specific co-deposited
proteins [5] in these two pathological manifestations.

In AD, HS co-deposits with Aβ in the parenchyma and the cerebrovasculature. In
this study, we investigated the expression of HS within the cerebrovasculature and its
potential correlation with CAA and AD risk factors in AD patients using immunofluo-
rescence and detailed analyses. Our investigation revealed elevated cerebrovascular HS
levels and increased cerebrovascular HS co-deposition with Aβ in AD patients with severe
CAA. Particularly noteworthy was the reversal in the polarized expression of HS in the
cerebrovasculature among AD patients with severe CAA, contrasting with the absence
of a corresponding polarization of vascular Aβ deposition, suggesting that the abnormal
cerebral HS expression might be a sequential event following Aβ deposition. Further-
more, male AD patients exhibited reduced levels of parenchymal and cerebrovascular HS
compared to females. Additionally, the presence of ApoE4 correlated with heightened
cerebrovascular Aβ expression and a tendency toward increased vascular HS expression in
AD. In summary, our findings emphasize aberrant HS expression in the cerebrovasculature
of AD patients and suggest diverse potential roles of vascular HS in AD pathogenesis,
including direct interactions with Aβ and under the influence of AD risk factors, including
patient gender and ApoE4 status.

Our research found heightened levels of cerebrovascular HS in AD, aligning with
previous findings [24,25,40,49]. For instance, Shimizu et al. noted a 9.3- and 6.6-fold increase
in total glycosaminoglycan levels in the hippocampus and the superior frontal gyrus,
respectively, in AD brains compared to nondemented controls [24]. In AD brains, HS is more
densely concentrated in the thickened basement membrane adjacent to endothelial cells of
capillary vessels and in the core of amyloid plaques [24,40]. These observations suggest
that the substantial increase in HS in AD brains primarily originates from the capillary
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basement membrane and senile plaques [24]. In our study, we focused on larger vessels.
Our data indicate that the elevation of HS levels in large vessels may also significantly
contribute to the marked increase in total HS levels observed in AD patients.

In addition to changes in expression levels, the structure of HS is also altered in AD,
as evidenced by modifications in growth factor binding capacities (46) and through the
direct chemical analysis of disaccharide and tetrasaccharide compositions [49]. The studies
by Wang et al. revealed a significant increase in multiple sulfated disaccharides and a
tetrasaccharide containing rare 3S in the human AD frontal cortex [49,50]. Examining
whether the structure of cerebral vascular HS is similarly altered in AD would be intriguing.
Such analysis could provide a structural framework for better understanding the potential
roles of cerebrovascular HS in the development of CAA and AD pathogenesis.

HS exhibits direct binding to Aβ, which is a process that is known to accelerate
Aβ aggregation and facilitate Aβ internalization, thereby impacting Aβ metabolism and
pathogenesis [35–37]. Our study observed increased co-deposition of HS and Aβ in the
cerebrovasculature of AD patients, suggesting that heightened interaction may exacerbate
pathogenic processes, accelerating detrimental effects on cerebrovascular structure and
function and ultimately contributing to AD progression. Moreover, it is established that the
most prevalent Aβ isoforms, Aβ40 and Aβ42, preferentially deposit in cerebrovasculature
and parenchyma, respectively, although the underlying mechanisms remain elusive [60–63].
Interestingly, HS exhibits a higher affinity for binding to Aβ40 than to Aβ42 [64,65], and HS
has been shown to induce Aβ40, but not Aβ42, to form maltese-cross spherical congophilic
plaques identical to those observed in the AD brain [66]. This suggests that the difference
in HS-binding affinity may serve as a driving factor for the distinct deposition patterns of
Aβ40 and Aβ42 in the AD brain, a phenomenon potentially exacerbated by elevated levels
of cerebral vascular HS in AD.

Pathways for clearing soluble Aβ from the brain encompass transport across the blood–
brain barrier (BBB), phagocytosis, enzymatic degradation, and perivascular drainage [67].
Animal models and studies examining AD specimens suggest that BBB transcytosis and
perivascular drainage are vital mechanisms for Aβ elimination from the brain [68–70].
Currently, the roles of cerebrovascular HS in these processes are unknown. Elevated
levels of HS may potentially exacerbate Aβ deposition, leading to structural damage
to blood vessels and subsequent impairment of vascular function. This could include
increased vascular permeability, allowing toxins to access the brain parenchyma and
disrupt pathways crucial for BBB- and perivascular drainage-mediated Aβ clearance,
thereby promoting AD pathogenesis. Furthermore, our studies revealed a reversal in
the polarization of HS expression within the vascular wall. This abnormal polarization
might interfere with physiological Aβ clearance pathways, contributing to the deposition
of vascular Aβ. Further research aimed at elucidating these potential mechanisms may
significantly enhance our understanding of the role of HS in AD.

Sex-based disparities in HS expression under both physiological and pathological con-
ditions have been documented. A study comparing the structural and functional properties
of HS chains from male and female adult mouse livers revealed significant differences
in chain length and sulfation modifications, with male HS possessing longer chains and
female HS exhibiting higher N-sulfation modifications [71]. These structurally distinct
forms of male and female liver HS exert differential effects on human mesenchymal cell
proliferation and subsequent osteogenic differentiation [71]. In a recent study of a type 2 di-
abetes rat model, lower HS intensity was reported in male animals, potentially contributing
to glucose intolerance and decreased islet insulin secretion in the disease [72,73]. Currently,
it remains unknown whether HS levels and structure differ between male and female
individuals under normal physiological conditions and in AD patients. In our studies, we
observed a tendency for lower HS expression in the cerebrovasculature and parenchyma of
male controls compared to females, and this difference became significantly pronounced
among AD patients. Additionally, it is noteworthy that women have a higher susceptibility
to developing AD, whereas men are more prone to vascular dementia [74]. The disparity



Int. J. Mol. Sci. 2024, 25, 3964 17 of 23

in HS expression between males and females could be one of the potential molecular
mechanisms underlying the sex-based differences observed in AD and vascular dementia.

ApoE is a secreted protein crucial for regulating lipid transport within the brain.
Genome-wide association studies have identified ApoE4 as a major genetic risk factor for
AD, whereas ApoE2 is associated with a lower risk than the more common ApoE3 vari-
ant [53,75–79]. A growing body of evidence suggests that ApoE4 increases the risk of AD by
inhibiting Aβ clearance, promoting Aβ aggregation, and suppressing Aβ cellular uptake
and metabolism, although the precise molecular mechanisms remain unclear [80–85]. Our
study found that ApoE4 correlated with heightened cerebrovascular Aβ deposition and a
tendency towards increased vascular HS levels in AD. This observation agrees with early
reports that ApoE4 may modulate vascular Aβ deposition [55] and also suggests that ApoE
increases vascular HS expression to confer its pathogenic roles in AD.

In our research, we only analyzed a relatively small number of AD specimens and
exclusively prefrontal cortex tissues; this limitation has restricted our ability to make certain
definitive conclusions, particularly those indicating a strong tendency. It is imperative to
conduct additional studies with larger sample sizes, encompassing various AD-related
brain regions, and employing both in vitro and in vivo models to deepen our comprehen-
sion of the involvement of cerebrovascular HS in AD and CAA.

4. Materials and Methods
4.1. Human Brain Tissues

Paraformaldehyde-fixed, cryopreserved postmortem brain tissues from the prefrontal cor-
tex of deceased individuals were obtained from the Emory University Goizueta Alzheimer’s
Disease Research Center. All tissues were collected following the ADRC Neuropathology Core
protocol approved by the Emory University Institutional Review Board. The samples, which
have been summarized in Table 1, consisted of 10 brains from normal controls, 7 from AD
patients without CAA, 13 from AD patients with mild CAA, and 12 from AD patients with
severe CAA. Each sample was treated as an independent datapoint (n). Neuropathological
diagnoses were made according to established diagnostic criteria. Control participants were
individuals with no documented history of neurological disorders and no apparent neurode-
generative pathology upon postmortem examination. Comprehensive patient information in
Supplementary Table S1 includes details on AD and CAA diagnoses, gender, ApoE genotype,
Braak stage, onset and age at death, disease duration, postmortem interval, and associated
conditions such as neuritic and diffuse plaques, TAR DNA-binding protein-43 inclusions,
cerebral hemorrhage, infarcts, neurofibrillary tangles, and Lewy body dementia.

Table 1. Summary of the patients studied.

Patient Diagnosis Total Number Gender (M/F) Age at Death (Ave ± SEM)

None AD 10 4/6 71.00 ± 5.62
AD, no CAA 7 3/4 76.43 ± 3.24

AD, mild CAA 13 8/5 76.46 ± 3.43
AD, severe CAA 12 7/5 77.75 ± 2.17

4.2. Immunofluorescence Staining

The paraformaldehyde-fixed, cryopreserved human brain tissues were frozen, sec-
tioned into 8 µm slices, and mounted onto charged glass slides. These sections underwent
immunofluorescent staining using two distinct sets of triple-staining protocols. One set
labeled CD31+ EC or αSMA+ SMC, combined with pan anti-Aβ antibody and anti-HS
antibody. For the EC triple-staining, an initial antigen retrieval step was performed using
10mM sodium citrate buffer at 95 ◦C for one hour, while for SMC triple-staining, antigen
retrieval was omitted. A consistent staining procedure was applied to all tissue samples,
including a one-hour blocking stage, using a mixture of 4% normal goat serum, 1% bovine
serum albumin, and 0.05% Triton in PBS. Subsequently, tissues were incubated overnight
with primary antibodies, including anti-CD31 (mouse IgG, WM59 clone, concentration 1:75,
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BioLegend, San Diego, CA, USA, catalog# 303102) and anti-αSMA (goat IgG, dilution 1:200,
Novus Biologicals, Centennial, CO, USA, catalog# NB300-978), in conjunction with pan
anti-Aβ antibody D54D2 (rabbit IgG, dilution 1:200, Cell Signaling, Danvers, MA, USA,
catalog# 8243) and anti-HS antibody 10E4 (mouse IgM, dilution 1:300, Amsbio, Milton,
UK, catalog# 370255-1). For the secondary staining phase, Invitrogen, Waltham, MA, USA
Alexa Fluor-conjugated antibodies were used at a dilution of 1:700. Specific secondary
antibodies included anti-mouse IgG 488 (catalog# A11029), anti-goat IgG 488 (catalog#
A11055), anti-rabbit IgG 594 (catalog# A11012), and anti-mouse IgM 647 (catalog# A21042).

4.3. Imaging and Image Analyses

The immunostained tissue images were captured using a Leica SP8 confocal laser
scanning microscope, with image acquisition performed using the Leica Application Suite
X software Version 5.1.0. For each sample, a total of eight images were acquired for analyses
of immunofluorescence intensity and colocalization. All samples were visually inspected
under the microscope, and representative images were obtained. These images were
obtained at a resolution of 1024 × 1024 using a 63× objective lens with 3× optical zoom.
For the analyses of HS compartmentalization, four stacks were gathered from each of the
10 samples. These stacks were acquired at a resolution of 1024 × 1024 with a 63× objective
and 2× optical zoom, resulting in 2.38 µm stacks composed of eight sequentially acquired
images. Following image acquisition, the acquired images underwent analysis using Image
J/Fiji (NIH) software Version 2.14.0, and figures were constructed using GraphPad Prism
9 and Adobe Illustrator 2023 Version 27.0 software. Due to imaging parameters set to not
oversaturate anti-Aβ intensity in severe CAA cases, more miniscule differences in anti-Aβ

intensity were not detected in samples with lower AB burdens. Regions of interest (ROIs)
were defined for EC+ or SMC+ areas by applying thresholds on the vascular markers. Areas
containing CD31+ white blood cells within blood vessels were excluded from the identified
vascular ROIs. In analyzing the parenchyma surrounding the vessels, the portions occupied
by the vessels were subtracted from the remaining parts of the images. The Fiji Coloc2
plugin was utilized to estimate colocalization. RGB profile plots were generated using
Fiji/ImageJ, and internal and external areas were determined based on the intensity of the
vascular markers in cross-sectional vascular images using Microsoft Excel, from which the
HS intensities in compartments were deduced.

4.4. Statistical Analyses

In the immunofluorescence intensity and colocalization analyses, each sample is
represented by the average of eight images, depicted as a single datapoint on the graphs.
The average of four images for HS compartmentalization analyses is illustrated as a single
point on the graphs. As the tissue samples were obtained from clinical patients, statistical
outliers were retained in the analyses. Given the nonnormal distribution nature of the
data, all analyses were performed using nonparametric two-tailed tests. The Wilcoxon
two-sample test was employed when comparing two groups, and the results are presented
as Z values along with corresponding p values. For scenarios involving three or more
groups, the Kruskal–Wallis H test was used, and the results include the degrees of freedom,
chi-square values, and p values. In colocalization analyses, the reported results encompass
Spearman’s correlation rank and Manders’ coefficients M1 and M2 values.

5. Conclusions

In conclusion, our study reveals a significant association between severe CAA and
elevated levels of HS in AD patients. This suggests a potential link between HS expression
and the severity of CAA. Furthermore, we observed heightened colocalization of HS with
Aβ in these patients, indicating a potential role for HS in the development of CAA. Of
particular interest is the discovery of a reversal in the polarization of cerebrovascular HS
expression in AD patients with severe CAA, irrespective of Aβ compartmentalization
patterns. Additionally, our study identified gender differences, with males exhibiting lower
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levels of HS compared to females. Moreover, carriers of the ApoE4 allele demonstrated
higher expression of cerebral vascular Aβ and a tendency towards increased HS levels in
severe CAA cases. These findings underscore the potential intricate interplay between HS,
Aβ, and vascular pathology in AD. Importantly, they may provide valuable insights into
potential therapeutic strategies aimed at targeting HS in the context of CAA-associated
AD pathology. Further research in this area holds promise for the development of novel
treatment approaches to combat this devastating neurodegenerative disease.
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com/article/10.3390/ijms25073964/s1.
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