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Abstract: A robust predictive model was developed using 136 novel peroxisome proliferator-

activated receptor delta (PPARδ) agonists, a distinct subtype of lipid-activated transcription factors 

of the nuclear receptor superfamily that regulate target genes by binding to characteristic sequences 

of DNA bases. The model employs various structural descriptors and docking calculations and 

provides predictions of the biological activity of PPARδ agonists, following the criteria of the 

Organization for Economic Co-operation and Development (OECD) for the development and 

validation of quantitative structure–activity relationship (QSAR) models. Specifically focused on 

small molecules, the model facilitates the identification of highly potent and selective PPARδ 

agonists and offers a read-across concept by providing the chemical neighbours of the compound 

under study. The model development process was conducted on Isalos Analytics Software (v. 

0.1.17) which provides an intuitive environment for machine-learning applications. The final model 

was released as a user-friendly web tool and can be accessed through the Enalos Cloud platform’s 

graphical user interface (GUI). 

Keywords: PPARδ agonists; molecular docking; in silico modelling; machine learning; Isalos  

Analytics Platform 

 

1. Introduction 

PPARs are members of the nuclear receptor (NR) superfamily of proteins, whose 

functions are essential for cell signalling, survival, and proliferation, which comprises 48 

members in humans [1] and function as ligand-activated transcription factors. Their role 

is central in the regulation of diverse biological processes, encompassing immune system 

function, development, reproduction, and homeostasis [2], involving the control of gene 

expression related to fatty acid utilisation and storage [3]. Target gene regulation is 

achieved by PPAR binding to characteristic sequences of DNA bases, called peroxisome 

proliferator response elements (PPREs). PPREs are active as heterodimers with the 

receptor for 9-cis-retinoic acid (retinoid X receptor or RXR), and thus play a critical role in 

modulating the actions of hormones and ligands. Furthermore, PPARs participate in 
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various cellular processes, including glucose utilisation, cell proliferation, cell 

differentiation, inflammatory responses, and adipogenesis [4]. Depending on their tissue 

expression, they are classified into three subtypes, namely PPARα, PPARγ, and PPARβ/δ 

[5], which also reflects their distinct physiological roles. 

Although the PPAR subtypes exhibit a significant degree of amino acid sequence 

similarity, they vary in ligand selectivity and target genes in a species-specific manner [6]. 

For example, PPARδ exhibits significant expression levels in organs characterised by 

elevated rates of oxidative metabolism, such as the heart, skeletal muscle, and liver, while 

playing a regulatory role in the utilisation of fatty acids and glucose, as well as in 

antioxidant defence mechanisms [7]. 

Several attempts have been previously reported in the literature to construct QSARs 

for the establishment of statistically significant correlations for the prediction of PPAR 

agonists’ behaviour [8]. Specifically, classical (1D) and (2D)-QSAR models [9–11] were 

developed using a dataset evaluated by Wickens et al. [12], linking molecular properties 

and structural characteristics, respectively, to the activity of the compounds, with the 

predictions being confirmed through docking methods. In addition, QSAR modelling was 

represented using the three-dimensional (3D) properties of the ligands to predict the 

biological potency of PPARδ receptors by exploiting methods such as comparative 

molecular field analysis (CoMFA), which provides a visual display of the active centres in 

compounds that indicates the fragments contributing maximally to the activity profile of 

the compounds, and comparative molecular similarity indices analysis (CoMSIA), which 

expresses the fields in terms of molecular similarity indices rather than the usually applied 

Lennard–Jones- and Coulomb-type potentials, as used in CoMFA [13,14]. Other studies 

[15,16] employed a different dataset [17] comprising 34 PPARδ partial agonists, for the 

establishment of hologram QSARs (HQSARs) by using molecular holograms as variables 

for their predictive schemes. Lastly, Daadoosh et al. [18] employed a machine-learning 

method, iterative stochastic elimination (ISE), to perform the virtual screening of over 1.5 

million compounds and identified thirteen highly selective PPARδ agonists [19]. It was 

apparent from these studies that the inclusion of molecular docking calculations in the 

models appears to ameliorate their poor predictive performance in the absence of the 

molecular docking information. 

In the present study, we introduce a robust predictive model utilising a set of 136 

novel PPARδ agonists that, according to the new OECD definition, includes per- and 

polyfluoroalkyl substances (PFAS) [20]. The model integrates diverse structural 

descriptors with docking calculations to predict the biological activity of PPARδ agonists, 

adhering to the criteria outlined by the OECD for the development of QSAR and read-

across models. Concentrating specifically on small molecules, the model aids in 

identifying highly potent and selective PPARδ compounds, employing a read-across 

concept to delineate the chemical neighbours of the compound under investigation and 

thus to classify it as active or non-active based on their biological potency score. 

2. Results 

The techniques mentioned in the Materials and Methods section for the development 

of the predictive model were implemented in the Isalos Analytics Platform. First, the 

initial dataset of 136 novel compounds was derived from the PubChem public repository 

using the Enalos+ KNIME node ‘Main PubChem’. Each small molecule or compound was 

accompanied by an extensive set of 777 molecular descriptors that encode their structural, 

topological, and geometrical characteristics, along with a calculation of their binding 

affinity for the human PPARδ protein structure. The dimensionality of the data was 

reduced after numerous descriptors were excluded from the set using the ‘Remove 

Column’ function and a low variance filter (20%). The 245 remaining descriptors’ values 

were transformed with a Gaussian normalisation function into a new set of values that lie 

on a similar scale and whose mean is zero and standard deviation is one. A clustering 

technique was employed for the distinction of the novel molecules into two classes that 
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represent biological potency. Through a greedy algorithm, the number of input 

descriptors was further reduced and the most relevant descriptors that exhibit optimal 

correlation to the target variable were distinguished. Following the pre-processing steps, 

a kNN classification algorithm was used as the modelling methodology, since it allows 

the observation of the five neighbouring instances of each test compound from the 

training set. This read-across approach allows the exploration of the adjacent chemical 

space of the compound under study [21], wherein the closest five neighbours are more 

likely to share physicochemical properties and structural patterns with the molecule of 

interest or test compound (Figure 1). 

 

Figure 1. Network of a test compound (PubChem CID: 44627413) with Euclidean distances from its 

five closest neighbours. 

2.1. Interpretation of the Selected Descriptors 

As mentioned above, the variables that were most pertinent to the modelling target 

were selected from a pool of 777 molecular descriptors after the ‘BestFirst’ function in 

Isalos was applied to the training dataset. Since the descriptors are mathematical 

representations of the molecules [22], the interpretation of the selected variables grants 

insight into the most significant factors that control the behaviour of chemicals against the 

PPARδ nuclear receptor. The eleven favoured descriptors, presented in Table S1, encode 

information mainly on the compounds’ bulk characteristics, their autocorrelation, and 

topological indices. 

Firstly, the Broto–Moreau spatial autocorrelation descriptor (ATSe,7), which 

emerged as the most significant descriptor overall, is a measure whereby the atoms of a 

molecule are represented by an atomic property such as the Sanderson electronegativity 

[23,24]. It provides information on how the atomic property is distributed on the 

topological structure of the molecule, thus a higher electronegativity distribution within 

the molecule contributes to the biological activity of PPARδ. The total information content 

(TICm) was also selected, which quantifies the complexity of a knowledge graph. Higher 

values amount to higher molecular graph complexity and highest effect concentrations 

(EC50s), evidenced from the positive correlation coefficient between the descriptor and the 

associated biological activity of the test compound. 

The Burden eigenvalues are also among the highly influential descriptors. This 

descriptor is computed as a solution to the characteristic equation of the Burden 

connectivity matrix (B), whose elements correspond to a topological distance between 

pairs of atoms [25], and its diagonal elements (Bii) are given by the van der Waals volume 

values. Another important descriptor correlated with PPARδ activity is the sum of 
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topological distances between the vertices of oxygen atoms and fluorine or sulphur atoms, 

calculated as the row sum of the distance matrix. Topological distances are the number of 

edges along the shortest path between two specific atoms, measuring the number of 

involved bonds [26]. 

Last but not least, the Kier shape index (S2k) was proven as a valuable variable that 

describes the shape of the molecule in terms of counts of two bond paths [27]. It captures 

the degree of star graph-likeness and provides information about the branching and the 

flexibility of the molecular structure. Higher S2k values indicate a greater degree of 

flexibility within the molecules. According to Xu et al. [28], PPAR activation is effective 

when the linked compound is flexible, thus less pliable compounds exhibit reduced 

potency (and thus have higher EC50 values). Even though we highlight the features that 

describe the biological system in an effective manner, further validation against 

experimental data is needed to establish meaningful correlations between the above-

mentioned descriptors and the biological potency. 

2.2. Model Validation 

2.2.1. Metrics and Statistics 

Assessing the predictive performance of the model using several statistical criteria 

ensures that it can classify the instances effectively. After the implementation of the 

classification machine-learning algorithm, different statistics were employed for the 

evaluation of the model, based on the number of correct predictions and misclassifications 

of the test set [29]. Provided that the model aims to predict the potency class of a target 

compound, characterising it as either “active” or “inactive”, the problem boils down to a 

binary classification one. 

Therefore, a confusion matrix for the test set is presented, which is essentially a table 

recording the number of true positive (TP), true negative (TN), false positive (FP) and false 

negative (FN) predictions in comparison with the actual classes of the agonists (Table 1). 

Table 1. Confusion Matrix summarising the number of correct and incorrect predictions from the 

test set. 

Class Predicted Active  Predicted Inactive 

Actual Active 20 3 

Actual Inactive 2 16 

Based on the confusion matrix, various classification performance indications can be 

obtained, including accuracy, sensitivity, and precision, all synopsized in Table 2. The 

measurements for the goodness-of-fit and predictivity were higher than 0.80 when 

applying the kNN algorithm, with an optimised value of k = 5 to the test set, which denotes 

the ability of the model to accurately capture patterns and return reliable predictions. 

Table 2. Accuracy statistics of the predictive model. 

Metric Metric Formula  Metric Value 

Accuracy 
TP + TN

TP + TN + FP + FN
 87.8% 

Sensitivity 
TP

TP + FN
 87.0% 

Precision 
TP

TP + FP
 90.9% 

F1-Score 
2TP

2TP + FP + FN
 88.9% 

Matthews Correlation 

Coefficient  

TP × TN − FP × FN

√(TP + FP)(TP + FN)(TN + FP)(TN + FN)
 0.755 
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Cohen’s kappa 
2(TP × TN − FP × FN)

(TP + FP)(FP + TN) + (TP + FN)(TN + FN)
 0.754 

2.2.2. Internal and External Validation 

Internal validation was performed through the Y-randomisation procedure in order 

to ensure the robustness of the predictive model [30]. Specifically, the observed target 

feature’s values are randomly assigned to other compounds; thus, the original values of 

the descriptors now correspond to a different endpoint variable. Provided that the original 

model is robust, when it is applied on the test set it is expected that the predicted values 

are not close to the confounding ones, which is verified through the inadequate 

performance of the model. This technique was performed using the ‘Y-randomization’ 

node in KNIME contained in Enalos+ [31]. Calculations were repeated for five 

randomisations, ensuring that the model was not based on chance correlation and 

overfitting. When the algorithm was trained on disarranged targets, the predictive 

performance of the obtained models was statistically low, whereas the validation 

measurements of the original model were adequate (Figure 2). Specifically, the accuracy 

values derived fluctuated between 41.5% and 61.0% and were significantly lower 

compared to the accuracy value of 88.9% of the original model. 

 

Figure 2. The predictive power of the original model compared with the models obtained from the 

five Y-randomization tests. 

For external validation, the original subset was partitioned into the training set, 

which was used during model development, and the test set, which was used solely for 

validation. More precisely, the developed model was applied to the test set, which was 

not included in the development process and was later involved during the model’s 

performance assessment. This technique validates that the read-across model’s 

performance is satisfactory on unseen data that were not involved in the construction of 

the classifier. 

2.3. Applicability Domain 

The domain of applicability (APD) is defined after model validation and determines 

the area of reliable or unreliable predictions. It is essential for describing the limitations of 

a model and the degree of similarity between the compound of interest and the model 

training set, as determined by different approaches. A distance-based method is used in 

this work, which involves similarity measurements based on the Euclidean distances 

among all training data, compared to a predefined APD threshold [32,33]. 

0.00% 20.00% 40.00% 60.00% 80.00% 100.00%
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At first, the average value of all Euclidean distances is calculated and then the set 

whose distances are lower than the average value are excluded from further calculations. 

Next, a new average value (d) and the standard deviation (σ) of the remaining distances 

sets is determined, thus the APD threshold is calculated as: 

APD = zσ + d,  (1) 

where, z is an empirical parameter whose default value is 0.5. In the case that the distance 

from an external compound to its nearest neighbour (among the test set data) is smaller 

than the APD threshold, then the prediction is considered reliable. The APD thresholding 

was performed in the Isalos platform, Statistics → Domain—APD. The selected APD 

model, developed from the training subset, was employed from Analytics → Existing 

Model Utilisation in order to be applied to the test subset. The obtained APD threshold 

value was equal to 3.682, while the predictions were regarded as reliable for all 

compounds included in the test set. Table S2 of the Supplementary Information File 

includes the selected descriptors, an indication of the actual class of each compound in the 

testing set, and the prediction obtained from the model. 

2.4. Model Availability 

In order to accelerate the assessment of small molecules and their activity towards 

the PPARδ nuclear receptor, the read-across predictive model was disseminated as a 

publicly available web application in the Enalos Cloud Platform. Several fully validated 

cheminformatics models [34,35] are hosted by the Enalos Cloud Platform, supporting the 

scientific community by making the predictive workflows easily accessible to anyone 

interested. The model’s functionality can be easily accessed through a user-friendly 

interface that requires limited input, and no coding skills, in order to provide predictions. 

Figure 3 portrays the initial interface, where a brief description of the model 

development is given, along with three different ways to insert compounds and initiate 

predictions. Either the SMILES notations can be entered manually or an SDF file that 

contains the structure of one or multiple compounds can be browsed and uploaded by the 

user. As a further option, users can use a drawing interface (Figure 3d) to design the 

molecule of interest. In the sketcher field, the user can also transform the initial molecule 

by adding different functional groups such as alkanes, amines and amides, benzene rings 

etc., or more complex chemical structures such as steroids and amino acids. 

 

Figure 3. PPARδ environment in the Enalos Cloud Platform: The Design Molecule field for input 

compounds (a), the SMILES (b) and the SDF (c) field for input compounds, along with a brief 

description of the model (d). 
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For the demonstration of the tool’s functionality, five compounds of interest—

including two substances with a perfluorinated methyl group (−CF3), i.e., PFAS—were 

selected from the PubChem library (CIDs: 155547595, 54764927, 51346913, 46230234, 

137464756). The selected chemicals share at least 95% Tanimoto similarity with active 

compounds from the initial dataset, and their SMILES notations (Figure 4a) were extracted 

with the Enalos+ ‘Main PubChem’ node in KNIME. A prediction is generated within 

seconds, and the output includes a table that presents the classification of the compound’s 

activity, the five nearest neighbours of the input compound from the training set, and the 

Euclidean distances from each of the neighbours (Figure 4). The distance of each 

submitted compound calculated according to the APD of the model is presented, along 

with an indication of the reliability of each prediction. As presented in Figure 4b, when 

the calculated domain of the small molecule is higher than the APD threshold, the web 

application highlights that the prediction is not reliable. As seen from this case study, the 

read-across model can be used within a virtual screening framework to identify whether 

similar chemicals can be potentially used as activators of the PPARδ receptor. 

In order to enhance the accessibility and programmability of the predictive model, a 

Representational State Transfer (REST) application programming interface (API) was 

incorporated (https://enaloscloud.novamechanics.com/scenarios/swagger-ui/index.html, 

accessed on 11 January 2024). This method is useful as it allows seamless integration of 

the computational workflow into various systems and platforms and enables users to 

explore the capabilities of the model without direct access to the original workflow. Users 

are, therefore, able to incorporate the model into their own workflows through the API 

(Figure 5). It is further used to communicate with the Isalos Analytics Platform to 

exchange data for the straightforward execution of the model. The API was implemented 

using the POST request method, since it is suitable for transferring substantial amounts of 

structured input data securely. The submission of a tuple of data input (i.e., containing 

either a single or multiple SMILES string(s) of the desired compound(s)) in JSON format 

is needed to use the PPARδ agonists bioactivity API: 

[ 

{ 

“smiles”: “Cc1c(ccc(c1)OCc2nc(c(o2)-c3ccc(cc3)OC(F)(F)F)-c4cnccc4)OCC(=O)O” 

} 

] 

The user is able to make a request through a data transfer software such as Client URL: 

 

curl -X POST “https://enaloscloud.novamechanics.com/scenarios/apis/ppardelta/smiles” -

H “accept: application/json” -H “Content-Type: application/json” -d “[ { \”smiles\”: 

\”Cc1c(ccc(c1)OCc2nc(c(o2)-c3ccc(cc3)OC(F)(F)F)-c4cnccc4)OCC(=O)O\” }]” 

 

and obtain the corresponding results of the GUI environment, as seen in Figure 4. The 

returned response includes class prediction, the closest neighbours, and the Euclidean 

distances from the molecule in question, and the APD indicating the reliability of the 

prediction: 

 

[ 

{ 

“id”: “cluster_0”, 

“idNN1”: “Entry 20”, 

“distNN1”: 0.7024641202204505, 

“idNN2”: “Entry 89”, 

“distNN2”: 0.8202558963827292, 

“idNN3”: “Entry 80”, 

“distNN3”: 0.8326502973790398, 

“idNN4”: “Entry 52”, 
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“distNN4”: 0.8342452655891001, 

“idNN5”: “Entry 5”, 

“distNN5”: 0.8364009145055961, 

“idNN6”: “Entry 46”, 

“distNN6”: 0.8772952879358424, 

“domain”: 2.714170703054797, 

“apd”: 3.4716837408236625, 

“predictionReliablility”: “reliable”, 

“knnprediction”: “inactive” 

} 

] 

 

Figure 4. Entering the SMILES notations of five different compounds as input to the web application 

(a) and the generated output page (b). Out of the five compounds tested, the kNN algorithm 

identified only the two PFAS congeners (CID 54764927 and 51346913) as active. 

 

Figure 5. The REST API environment (accessed on 11 January 2024) for the PPARδ agonist 

bioactivity prediction. 
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3. Discussion 

In summary, in the present study an in silico predictive model that correlates novel 

PPARδ agonists’ two-dimensional chemical structures to their biological potencies in 

terms of nuclear receptor activation (PPARδ) was successfully developed. PPARδ, a 

subtype of the nuclear receptor superfamily, plays a pivotal role in regulating cellular 

metabolic functions and in modulating diseases associated with changes in lipid and 

glucose homeostasis. The search for highly potent and selective compounds that act as 

PPARδ activators is still ongoing [36]; hence, the development of computational methods 

that assist in the identification of such compounds is crucial. 

The predictive model in this study uses an initial dataset sourced from the PubChem 

BioAssay public repository that consists of 136 novel molecules tested in human 293T cells 

co-transfected with Gal4-DBD via a process called luciferase transactivation. The chemical 

structure of each compound of the dataset is represented through a comprehensive set of 

777 molecular descriptors, generated using the EnalosMold2 specialised module in 

KNIME. Apart from the structural properties of the molecules, docking calculations were 

included as a supplementary variable. All analysis steps, including the normalisation of 

the descriptors, the selection of the most correlated variables, the algorithm selection, and 

the validation of the final model were executed within the Isalos Analytics software (v. 

0.1.17), an advanced platform for machine-learning applications. The model underwent 

internal and external validation, through the use of different subsets for training and 

testing and Y-randomization tests, demonstrating strong performance. Fully adhering to 

the guidelines posed by the OECD, the domain of applicability was described, defining 

the region in the chemical space where the generated predictions can be trusted. The 

interpretation of the molecular descriptors’ influence on the compounds’ biological 

activity is discussed. While the descriptors’ effect on the biological potency was 

emphasised, full comprehension of their effects on the biological potency requires 

additional experimental validation. The model is fully documented via a QMRF (S1) 

report, which was prepared for the reporting of the key information on this read-across 

model for regulatory use. 

Although successful attempts to derive statistically significant relationships on the 

biological activity of PPARδ have been reported in the past, the present work applies a 

different modelling approach. In comparison to the use of traditional QSAR 

methodologies, this work enables the categorising of an unknown compound into ‘active’ 

or ‘inactive’ and introduces a read-across paradigm that provides information on the five 

closest instances (neighbours) from the training data. The separation of the compounds 

into two distinct classes facilitates rapid decision-making in early drug discovery. While 

the current study is tailored to distinguishing compounds for the activation of PPARδ, the 

read-across methodology can be adapted for the identification of small molecules that can 

act as agonists or antagonists against other biological targets. The proposed read-across 

methodology can be extended across other proteins or enzymes to describe structure–

activity relationships with potential regulators. A similar in silico approach can be 

implemented for other nuclear receptors, such as the PPARα or PPARγ ligand-activated 

transcription factors, starting from the identification of experimental datasets that identify 

the agonists and antagonists of the target nuclear receptors. Recently, a computational 

tool [37] was developed for the prediction of chemical molecules’ binding class to multiple 

nuclear receptors, but the previous tool does not employ the read-across framework and 

does not distinguish between agonist and antagonist compounds regarding the PPARδ 

receptor. 

Additionally, the present work enables export of the read-across model as a web tool 

via the Enalos Cloud Platform. The web tool can be easily accessed through the following 

link: http://www.enaloscloud.novamechanics.com/scenarios/ppardelta/ (accessed on 11 

January 2024). This comprehensive model allows users to provide input data by sketching 

a small molecule, entering and converting it to SMILES notation, or by uploading an SDF 

file containing a large number of small molecules. The web application offers the 
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possibility to use the predictive capabilities of the model from anywhere, assisting 

scientists and researchers in the continuing process of detecting PPARδ activators. 

4. Materials and Methods 

The comprehensive analysis for the development of the read-across predictive model 

was performed with the Isalos Analytics Platform [38]. Isalos is a simple, straightforward 

software developed by NovaMechanics Ltd (Nicosia, Cyprus) 

(https://isalos.novamechanics.com/, accessed on 4 December 2024), which allows the 

implementation of machine-learning workflows without requiring coding skills. The 

Isalos Platform provides a practical interface through the use of menus, tabs, and buttons, 

while each tab acts as a node and allows the transformation and transition of data in 

tabular form. All analysis steps, including data preparation, feature selection, algorithm 

building, and model validation, were performed using the special functions encoded in 

the software. Leveraging the built-in functions, along with the Enalos+ proprietary nodes 

[31] accessible through the KNIME Analytics Platform, results in a combined workflow, 

as illustrated in Figure 6. The final predictive model is fully validated according to the 

OECD guidelines [39] and its key information was summarised and reported using the 

QSAR Model Reporting Format (QMRF) template, following the guidance of the Joint 

Research Centre and the European Centre for Validation of Alternative Methods [40]. The 

completed reporting template can be found in the electronic Supplementary Information 

File (ESI S1). 

 

Figure 6. Implementation of the model development process in Isalos Analytics Platform. 

4.1. Dataset 

Epple et al. [41] performed a high throughput screening (HTS) of approximately 1 

million chemical compounds, defining hits as molecules that induced luciferase activity 

and utilising this assessment as an indicator of agonist activity against the human PPARδ 

ligand binding domain. The luciferase gene encodes a 61-kDa enzyme that oxidises D-

luciferin in the presence of ATP, oxygen, and Mg2+, yielding a fluorescent product that can 

be quantified by measuring the released light via a luminescence assay. The molecules 

were tested in a human embryonic kidney cell line, 293T, co-transfected with a chimeric 

plasmid with the yeast GAL 4 DNA-binding domain (DBD). The dataset was retrieved 
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from PubChem BioAssay, a public repository for the biological activities of small 

molecules and small interfering RNAs hosted by the National Institutes of Health (NIH), 

under the numeric identifier AID 469785 [42]. All 136 retrieved oxazole-based compounds 

from the initial dataset are accompanied by a standardised measure of potency, the half 

maximal effective concentration (EC50), which determines the agonist concentration 

needed to elicit half of its maximum biological effect, in this case cytotoxicity to human 

embryonic kidney cells. The EC50 value is inversely related to a compound’s potency [43]. 

It is important to note that Garcia et al. [13] and Nandy et al. [44] utilised the same 

experimental dataset to apply 2D and 3D QSAR methodologies for the assessment of the 

biological activity of PPARδ agonists. However, they used a subset that comprised just 

above 100 compounds, in contrast to the entirety of the dataset as used in this work. The 

inclusion of the complete dataset ensures the generalizability of our model and provides 

a broader applicability domain. Additionally, while the other studies focus on the 

derivation of regressive QSARs, aiming to predict the value of a potency metric, the read-

across model developed in this study deploys a different modelling approach, classifying 

the small compounds into the ‘Active’ and ‘Inactive’ categories and enabling prediction of 

which class an unknown small molecule fits into, based on the applicability domain. 

4.2. Calculation of Descriptors 

The Mold2 [45] software package (version 2.0), accessed through the Enalos+ node 

‘EnalosMold2′ [31] node available in KNIME, was used for the retrieval of molecular 

descriptors representing characteristics of the small molecules. Requiring only the 

‘Simplified Molecular Input Line Entry System’ (SMILES) notations as input, in the 

Structure Data File (SDF) format, Mold2 calculates 777 molecular descriptors based on the 

one-dimensional (1D) and two-dimensional (2D) structure of each compound. The 

calculated 1D descriptors are related to counts of atoms, and the 2D descriptors mainly 

refer to bonds and functional groups, physicochemical properties, autocorrelation, 

charge, connectivity, and topological features of the molecules. 

4.3. Data Pre-Processing 

Data modification is a crucial step in data analysis, as it allows the cleaning, 

reduction, and transformation of data as a means of eliminating noisy data and improving 

the performance of machine-learning algorithms. Firstly, duplicates containing more than 

80% of the same repeated values of particular parameters were removed from the dataset 

using the Isalos’ ‘Remove Column’ function. Furthermore, the extracted raw data were 

pre-processed with a low variance filter in order to reduce the dimensionality of the 

dataset and filter out descriptors that have least impact on the target variable. An upper 

bound of 20% was chosen; thus, descriptors whose variance fell below the threshold were 

excluded from the following steps. 

4.4. Clustering into Distinct Classes 

Since the initial dataset’s potency score, EC50, was available as a continuous variable 

without predefined classes, an unsupervised clustering method was used to explore the 

natural groupings of the unlabelled compounds. The k-means algorithm was chosen to 

perform an initial analysis and divide the instances into appropriate groups according to 

their activity indicators. The k-means is a useful method for partitioning variables into k 

separated clusters, where each cluster is represented by its centroid average [46]. The 

algorithm begins by randomly selecting k observation compounds as the initial centroids, 

then proceeds by assigning each observation to the cluster whose centroid is closest to it. 

Euclidean distance is used as a distance-calculating method. The centroids are then 

recomputed as the average of the observations allocated to the cluster, and this process is 

repeated until the assignment of observations to clusters no longer changes [47]. 
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By employing a clustering method, an initial partitioning is created, assuming that k-

means partitions (k = 2) now distinguish all data as belonging to one of two biological 

activity classes (active or inactive) based on their log-transformed EC50 values given in 

micromolar (μΜ) units. The logarithmic transformation of the values was preferred, in 

order to reduce the skewness of the data [48]. Each cluster represents an activity class; 

therefore, the original regression problem is reduced to a simpler classification problem, 

assigning a class label to each observation. The higher the EC50 value, the more the 

concentration of a compound is required to obtain a 50% effect inducement, and the lower 

the potency. This designates that the compounds assigned in the cluster with a centroid 

of log(EC50) = 0.224 are considered inactive and those included in the cluster with a 

centroid of log(EC50) = −1.674 are regarded as active. The coverage of the two clusters is 

58 and 78 compounds, respectively, portraying a broadly balanced dataset. 

Feature scaling is another fundamental pre-processing step, which is performed after 

the k-mean clustering and normalises the range of the independent attributes. The 

selected method for normalisation is z-score scaling, used to transform the data to have a 

mean of zero and a unit standard deviation (Gaussian-distributed). In the Isalos Analytics 

Platform, Gaussian standardisation is available in Data Transformation → Data 

Manipulation → Z-score. Prior to further modelling, the collected data were also divided 

into two subsets, the training and test datasets, as an external validation procedure. The 

two representative sets were split 70/30%, respectively, using the Kennard–Stone 

algorithm [49,50], available in Isalos. 

4.5. Variable Selection 

The set of descriptors produced by the Mold2 Enalos+ is characterised by its 

considerable size and diversity, indicating the presence of numerous descriptors that may 

be redundant or unrelated to the forthcoming analysis. This issue renders feature selection 

a necessary step prior to modelling. By using ‘Best First’ as a search method, the most 

important variables out of the Mold2-derived descriptors are selected (from the 777 

available descriptors) based on the training set to be included in the model. This method 

uses a greedy algorithm, starting with an empty feature set and iteratively adding or 

removing features based on certain criteria, in order to choose the successor out of all 

combinations, and it is implemented using the Isalos Analytics Platform through 

Analytics → Feature selection. Table S1 in the Electronic Supplementary Information (ESI) 

describes the 11 selected attributes as per the Handbook of Molecular Descriptors [22]. As 

an additional descriptor, the molecular docking scores of the small molecules to the 

PPARδ receptor were also taken into consideration. Including the binding affinity values 

in the dataset seems to improve the results and contributes to the variability of the data, 

since it increases the dataset and provides a more thorough examination of the 

interactions with the receptor. 

4.6. Molecular Docking Calculations 

Molecular docking calculations were conducted using the Vina-GPU 2.0 software 

[51,52], on the set of compounds retrieved from PUBCHEM, by employing the PPARδ 

homo sapiens structure (PDB ID: 3TKM [53]). The structural preparation of PPARδ 

involved the Enalos Asclepios KNIME pipeline [54] (Figure 7), encompassing tasks such 

as the addition of missing residues, removal of heteroatoms, replacement of non-standard 

residues, and addition of heavy atoms using the PDBFixer software (version 1.9) [55]. 

Hydrogen atoms were subsequently added with the pdb4amber utility of AmberTools21 

[56]. Ligand preparation was performed using the Enalos Asclepios KNIME pipeline, 

incorporating steps such as the addition of missing hydrogen atoms via Open Babel [57], 

setting the pH value at 7.4, and conversion of 2D structures to 3D through energy 

minimization using AsclepiosGenerate3DCooords [54]. The Enalos Asclepios KNIME 

nodes and workflow used in this study are proprietary to NovaMechanics Ltd and require 

a licensing agreement for access. 
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Figure 7. The Enalos Asclepios KNIME pipeline for automation of the drug discovery pipeline, 

applied here to screening PPAR biological activity. 

The PPARδ structure and 136 compounds for docking were prepared using 

AutoDock Tools 1.5.7 python libraries [58,59], with partial atomic charges assigned based 

on the Kollman United Atom and Gasteiger–Marsili schemes, respectively, by previously 

merging non-polar hydrogens to heavy atoms. For the ligands, the torsion tree and the 

rotatable/non-rotatable bonds present were also set [58,59]. Calculations involved a 

docking box with dimensions set at 25 Å × 25 Å × 25 Å and 1 Å spacing, placing the centre 

of the grid at the centre of mass coordinates of the crystallographic ligand, which was used 

as a reference. The number of threads was set equal to 8000. 

4.7. Model Development 

Among the methodologies tested for the establishment of a correlation between the 

structural properties of, and the biological response to, PPARs, the k-Nearest Neighbours 

(kNN) classification algorithm emerged as the most appropriate. It is an easily 

implemented supervised machine-learning technique that is utilised in resolving 

problems for both continuous and categorical endpoints. The kNN algorithm operates on 

the principle of identifying the k-number of training data points that are most proximate 

to a new, unclassified observation based on Euclidean distances, and subsequently 

assigning the class label that is most frequently represented among the k-nearest 

neighbours [60]. 

kNN is considered a ‘lazy’ learning algorithm since it simply uses the training data 

for classification instead of building a new model beforehand for new data points and can 

be used under a read-across framework [61,62]. The optimised value of k, which denotes 

the number of nearest neighbours to consider, was set at k = 5 and the inverted distance 

was used as the weighting factor for the nearest k points. An overview of the flowchart 

conducted in Isalos is presented in Figure 6, where all the significant steps of the analysis 

were implemented with the software’s specified functions. 

5. Conclusions 

In this study, a dataset of novel thiazole- and oxazole-based compounds was 

enhanced with binding affinity calculations for the development of a read-across QSAR 

model to predict their activation of nuclear receptor PPAR. The predictive model attempts 

to predict the biological activity of small molecules and helps to identify highly potent 

and selective compounds that act as PPARδ agonists. Using a combination of molecular 

descriptors that correspond to the different physicochemical, topological, and structural 

characteristics of a compound, and defining the domain of applicability for new 

predictions, this model was carefully developed, validated, and documented to adhere to 

OECD guidelines for QSARs, including provision of a QMRF report. The read-across 
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model is readily available as a public web application within the Enalos Cloud Platform, 

a valuable resource for predictive workflows for the assessment of small molecules. A 

REST API environment is also provided in order to complement the model and offer the 

users a means to augment its potential. 
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DBD DNA-binding domain 

EC50 Half maximal effective concentration 

FN False negative 

FP False positive 

GUI Graphical user interface 

HQSAR Hologram quantitative structure–activity relationships 

ISE Iterative stochastic elimination 

MCC Matthews correlation coefficient 

NIH National Institutes of Health 
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