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Abstract: In the area of drug research, several computational drug repurposing studies have high-
lighted candidate repurposed drugs, as well as clinical trial studies that have tested/are testing drugs
in different phases. To the best of our knowledge, the aggregation of the proposed lists of drugs by
previous studies has not been extensively exploited towards generating a dynamic reference matrix
with enhanced resolution. To fill this knowledge gap, we performed weight-modulated majority
voting of the modes of action, initial indications and targeted pathways of the drugs in a well-known
repository, namely the Drug Repurposing Hub. Our method, DReAmocracy, exploits this pile of
information and creates frequency tables and, finally, a disease suitability score for each drug from
the selected library. As a testbed, we applied this method to a group of neurodegenerative diseases
(Alzheimer’s, Parkinson’s, Huntington’s disease and Multiple Sclerosis). A super-reference table with
drug suitability scores has been created for all four neurodegenerative diseases and can be queried
for any drug candidate against them. Top-scored drugs for Alzheimer’s Disease include agomelatine,
mirtazapine and vortioxetine; for Parkinson’s Disease, they include apomorphine, pramipexole and
lisuride; for Huntington’s, they include chlorpromazine, fluphenazine and perphenazine; and for
Multiple Sclerosis, they include zonisamide, disopyramide and priralfimide. Overall, DReAmocracy
is a methodology that focuses on leveraging the existing drug-related experimental and/or com-
putational knowledge rather than a predictive model for drug repurposing, offering a quantified
aggregation of existing drug discovery results to (1) reveal trends in selected tracks of drug discovery
research with increased resolution that includes modes of action, targeted pathways and initial
indications for the investigated drugs and (2) score new candidate drugs for repurposing against a
selected disease.

Keywords: drug repurposing; clinical trials; neurodegenerative diseases; weight-modulated major-
ity voting

1. Introduction

“. . .And if you find her poor, Ithaka won’t have fooled you. / Wise as you will have
become, so full of experience, / you’ll have understood by then what these Ithakas mean.”
(C. P. Cavafy, “Ithaka” from C. P. Cavafy: Collected Poems. Translation copyright © 1975,
1992 by Edmund Keeley and Philip Sherrard. Princeton University Press, 1975.) These are
the last three verses of the poem “Ithaka” from the Greek poet Constantine Cavafy that
deals with the value of the journey in relation to the value of the destination. This is more
relevant than ever in the case of the countless journeys to discover new drugs where the
destination is often not what we have expected. Although the results of most of the drug
discovery trajectories are not successful, the question remains whether we can integrate
this knowledge and experience in a democratic way into computational methods that will
increase the chances for the next drug discovery efforts to deliver success.
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According to the literature, only a few studies have used this massive amount of
knowledge to gain further insight into the drug discovery process. Himmelstein et al.
constructed a network that integrated knowledge from a very large number of biomedical
studies [1]. Data were integrated from 29 public resources to connect compounds, diseases,
genes, pathways, side effects, symptoms and other information. This approach described
more than two million relationships among data points, which could be used to develop
models that predict which drugs currently used in the clinic might be best suited to
treating any of the 136 common diseases. Moreover, Kropiwnicki et al. created a tool,
named DrugShot (https://maayanlab.cloud/drugshot/, accessed on 29 April 2024), that
prioritises drugs and small molecules associated with biomedical search terms. Apart from
listing known associations, DrugShot predicts additional drugs and small molecules related
to any search term [2]. In another study, Zhu et al. integrated multiple drug-knowledge
databases to develop a drug-knowledge graph to predict drug repurposing candidates by
using machine learning models [3].

However, to the best of our knowledge, there have been no studies to date that
have collectively capitalised on the already available information that has been gener-
ated in both computational drug repurposing studies and clinical trials with increased
resolution, including modes of action, targeted pathways and initial indications for the
investigated drugs.

Drug repurposing or repositioning, which describes the identification of novel uses for
existing drugs, has attracted considerable attention during the past few decades, as it offers
a cost-efficient and time-effective alternative avenue to therapeutics compared to de novo
drug discovery [4–6]. In general, traditional drug repurposing attempts to reveal the effect
of a drug and its mechanism of action [7], screens available drugs against new targets to
reveal novel drug indications [8], investigates drug characteristics such as their structures
and side effects [9] or explores the relationships of drugs with diseases [10]. Up to now,
several in silico drug repurposing efforts have been developed including network-based
approaches, transcriptomic approaches, structure-based and ligand-based approaches,
machine learning approaches, etc. [11–14].

So far, there have been many studies on computational drug repurposing that have
attempted to highlight candidate repurposed drugs, as well as clinical trial studies that test
drugs in different phases. Both approaches result in long lists of drugs that are usually not
exploited further. To the best of our knowledge, this information has not been extensively
exploited collectively. We posed the following questions: (1) How can we integrate the
available information? (2) How can we leverage the integrated knowledge to generate a
knowledge-based model to assist drug discovery?

This available a priori knowledge can turn into novel information regarding a specific
drug of interest. To do so, we designed and developed a methodology named DReAmocracy,
which exploits this huge pile of information, in a resolution beyond the nominal reference
of the drug per study. Specifically, information such as the drugs’ mechanisms of action
(MoAs) with their initial indications (Inds), as retrieved from the Drug Repurposing Hub,
and the targeted pathways (Paths), as obtained from the KEGG Pathway Database, is
subjected to weight-modulated majority voting schemes to score and finally prioritise the
candidate drugs against a disease. This methodology is not a predictive model; yet, it
gives scoring power to the user based on user-selected preferences, offering a quantified
aggregation of existing drug discovery results.

DReAmocracy was applied to four diseases of the neurodegeneration spectrum as a
testbed to check the usefulness of this method. Neurodegenerative diseases are a group of
diseases that present many challenges in terms of the effective availability of treatments,
making them a great candidate for drug repurposing. For this reason, we chose two well-
studied diseases, Alzheimer’s Disease (AD) and Parkinson’s Disease (PD), for which there
is a lot of information available on repurposing studies and clinical trials, and two diseases
with less available information, Multiple Sclerosis (MS) and Huntington’s Disease (HD).

https://maayanlab.cloud/drugshot/
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2. Results
2.1. Reference Tables for Each Disease, Type of Analysis and Drug Feature

As previously discussed, lists of candidate repurposed drugs from computational drug
repurposing studies, as well as clinical trial studies for four neurodegenerative diseases
(AD, PD, HD, MS), were collected to utilise this integrated information available for the
better and more effective suggestion of repurposed drugs for a given disease.

By calculating the DC score for the aggregated MoAs, Paths and initial Inds, we
detected the top-ranking ones per disease and drug collection method. The DC-matrix for
the AD CDRS list revealed as top scoring drug features the serotonergic synapse, serotonin
receptor antagonism and hypertension for Paths, MoAs and initial Inds, respectively.
Serotonin receptor antagonism was also found in the top four MoAs for PD CDRS and
CTS DC-matrices, with a DC score of 0.56 and 0.75, respectively. For the initial Inds,
hypertension was detected as not only the highest scoring one for AD but also for the PD
CDRS DC-matrix table (Figure 1). There are many studies and meta-analyses available
that show the association between antihypertensives and AD and specifically the effect
that they have in decreasing the risk of AD [15–17]. Moreover, antihypertensives, such as
centrally acting dihydropyridine and high cumulative doses of ACEIs, were shown to have
a possible association with reduced PD incidence in hypertensive PD patients [18].

The cAMP signalling pathway, which was identified as the highest scoring pathway
in HD CTS DC-matrix tables (with a score of 1) and in the top three of PD CDRS and
CTS (0.9 and 0.79, respectively), has been shown to play an important role in mediating
neurotransmitters and regulating numerous cell functions, such as synaptic plasticity in
neurons. In PD, the dysregulated cAMP signalling pathway is associated with levodopa-
induced dyskinesia, whereas its dysfunction is also found in HD [19,20].

Moreover, topoisomerase inhibitor was detected as the highest scoring MoA in
both the HD and MS CDRS reference tables, with a score of 1 in both diseases. The
DNA topoisomerase inhibitor mitoxantrone is a drug used for patients with worsening
relapsing–remitting and secondary progressive Multiple sclerosis and hepatocellular carci-
noma [21,22]. On the other hand, in the CTS DC-matrix, glutamate receptor antagonist and
sodium channel blocker were detected as the top ones, respectively (Figure 2). As shown by
Abd-Elrahman et al. (2017), blocking the metabotropic glutamate receptor in an HD mouse
model showed an improvement in cellular, motor, and cognitive skills [23]. In addition, the
sodium channel blocker safinamide, which was tested in phase III trials for PD, could also
be used for MS to protect against axonal degeneration according to Morsali and colleagues,
as it preserved the integrity and function of the axon in two rat models of MS [24]. Full lists
of DC-matrices for CDRS and CTS per disease are available in Supplementary Tables S1–S8.

2.2. Common Signatures in CTS vs. CDRS for Neurodegenerative Diseases

As a next step, we compared the CDRS and CTS signatures (MoAs, Inds and Paths)
detected for each disease independently. The top signatures were selected using a hy-
pergeometric test and a p-value of <0.05, as shown in Figure 3. For AD, commonalities
in CDRS and CTS were found across all components of the signature. For MoAs, six
commonalities were found, some of which are highly associated with AD. These include
the serotonin receptor antagonist, acetylcholinesterase inhibitor and HMGCR inhibitors.
All three MoAs have been associated with neurodegeneration, specifically AD [25–27].
Moreover, at present, acetylcholinesterase inhibitors, such as donepezil and rivastigmine,
are the main class of drugs used for the treatment of AD [27].
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Figure 1. DC-matrix for CDRS. DC-matrices were generated for each disease per signature (Paths, 
MoAs and Inds) using the CDRS lists. The top 10 scored features are shown for each disease in a 
bubble grid chart. The number in the bubbles indicates the DC score of each modality (also encoded 
as the bubble size). Blue colour depicts Paths, red colour depicts initial Inds and green colour depicts 
MoAs. 

Figure 1. DC-matrix for CDRS. DC-matrices were generated for each disease per signature (Paths,
MoAs and Inds) using the CDRS lists. The top 10 scored features are shown for each disease in a
bubble grid chart. The number in the bubbles indicates the DC score of each modality (also encoded
as the bubble size). Blue colour depicts Paths, red colour depicts initial Inds and green colour
depicts MoAs.
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Figure 2. DC-matrix for CTS. DC-matrices were generated for each disease per signature (Paths, 
MoAs and Inds) using the CTS lists. The top 10 scored modalities are shown for each disease in a 
bubble grid chart. The number in the bubbles indicates the DC score of each modality (also encoded 

Figure 2. DC-matrix for CTS. DC-matrices were generated for each disease per signature (Paths,
MoAs and Inds) using the CTS lists. The top 10 scored modalities are shown for each disease in a
bubble grid chart. The number in the bubbles indicates the DC score of each modality (also encoded
as the bubble size). Blue colour depicts Paths, red colour depicts initial Inds and green colour
depicts MoAs.
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heart disease, exercise-induced bronchoconstriction (EIB) and myocardial infarction. 
HDAC inhibitors such as romidepsin and vorinostat, used for the treatment of CTCL, have 
been reported to exhibit neuroprotective actions, either through the suppression of pro-
apoptotic factors or through the release of pro-inflammatory factors of activated microglia 
[28,29]. Furthermore, a history of depression may increase the risk of developing AD later 
in life [30]. Additionally, ten common Paths were found: serotonergic synapse, the AMPK 
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Figure 3. Signature comparison across different diseases. CDRS represents signatures detected from
drugs in computational drug repurposing lists and CTS represents signatures detected from drugs in
current clinical trials for each disease, respectively. CDRS lists are depicted using a darker colour and
CTS lists are depicted with a lighter colour for each property of the drugs (Pathways, Indications
and MoAs).

For initial Inds, eight commonalities were detected. These include cutaneous T-cell
lymphoma (CTCL), depression, heart attack, ankylosing spondylitis, bursitis, coronary
heart disease, exercise-induced bronchoconstriction (EIB) and myocardial infarction. HDAC
inhibitors such as romidepsin and vorinostat, used for the treatment of CTCL, have been
reported to exhibit neuroprotective actions, either through the suppression of pro-apoptotic
factors or through the release of pro-inflammatory factors of activated microglia [28,29].
Furthermore, a history of depression may increase the risk of developing AD later in
life [30]. Additionally, ten common Paths were found: serotonergic synapse, the AMPK
signalling pathway, dopaminergic synapse, viral myocarditis, ovarian steroidogenesis, glyc-
erophospholipid metabolism, the PPAR signalling pathway, circadian rhythm, arachidonic
acid metabolism and notch signalling pathway.

For PD, commonalities in CDRS and CTS were found across all components of the
signature, as shown for AD. For MoAs, five commonalities were detected such as dopamine
receptor agonist, serotonin receptor antagonist, dopamine precursor, aromatic L-amino
acid decarboxylase inhibitor and norepinephrine precursor. Several dopamine receptor
agonists have been approved by the FDA for PD [31].

For the initial Inds of PD, two commonalities were found between CDRS and CTS of
PD and AD. Furthermore, 20 common Paths were identified, such as the dopaminergic
synapse, serotonergic synapse, cAMP signalling pathway, neuroactive ligand–receptor
interaction, calcium signalling pathway and others, some of which will be discussed in the
next sections.

For HD, commonalities in CDRS and CTS were found only in MoAs. Specifically,
one common element was detected, the dopamine receptor antagonist. One of the two
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FDA-approved drugs for HD, known as tetrabenazine, depletes dopamine by inhibiting
the vesicular monoamine transporter 2 (VMAT2) [32]. On the other hand, for MS, no
commonality was detected in either signature. These commonalities across CDRS and CTS
suggest that repurposing studies and clinical trials are partially in agreement; however,
there are also many unique findings. A hypergeometric test was conducted between the
CDRS and CTS for the different diseases and modalities in order to assess the significance
of overlap between the two lists. Statistically significant differences were detected for AD
and PD across all modalities and for HD, only for MoAs (p-value < 0.05). Detailed p-values
for all comparisons can be found in Supplementary Table S9.

We have also performed linear regression analysis to test the fit of frequencies between
CDRS and CTS, and we can see that the ranking of values is consistent (Supplementary
Table S10 and Figure S1).

2.3. Commonalities and Differences in Signatures across Neurodegenerative Diseases

For the next part of the analysis, we wanted to find commonalities across the four
neurodegenerative diseases under investigation to detect common patterns that could
possibly be observed behind neurodegeneration.

A disease–disease network was created to show commonalities between CTS and
CDRS for all diseases (Figure 4). In CTS, results are more consistent and all components of
the signature (MoAs, Paths and Inds) are shared by all four neurodegenerative diseases.
On the other hand, for CDRS lists, for the two diseases (AD and PD) for which data were
more abundant, we observed a stronger consistency in all components of the signature.
Connections with MS and HD are weaker, with AD and HD sharing only Inds, HD and MS
sharing MoAs and Inds and MS and PD sharing Paths and MoAs, whereas PD and HD
have zero commonalities.
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Figure 4. Commonalities across the four neurodegenerative diseases. Disease–disease network.
Nodes are the four neurodegenerative diseases, and edges are the MoAs, Paths and Inds. (A). Network
of CDRS commonalities. (B). Network of commonalities of CTS. Edges indicate the number of MoAs,
Paths and Inds that are shared between diseases. The size of the nodes indicates the number of drugs
available for each disease. Red colour edges indicate the Paths, orange colour indicates the MoAs
and blue colour indicates indications.
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More specifically, for disease comparisons for initial Inds using the CDRS lists, com-
monalities were only found pairwise. For example, for AD and HD, acute lymphoblastic
leukaemia (ALL) and schizophrenia were detected, among others. One of the drugs that
is used to treat leukaemia in adults is amsacrine, a topoisomerase inhibitor. As previ-
ously discussed, mitoxantrone, which is also a topoisomerase inhibitor, is used for treating
worsening relapsing–remitting and secondary progressive MS [33]. Hence, a connection
between ALL and neurodegenerative diseases could be indicated.

For AD and PD, depression, hypertension and others were detected. For MoAs, the
serotonin reuptake inhibitor was detected as the common MoA among AD, PD and MS.
Drugs in this category are used in neurology/psychiatry, such as the anti-depressants
paroxetine, trazodone and others. For AD and HD, angiotensin receptor antagonist and
dopamine receptor antagonist were detected. For AD and PD, 10 common MoAs, such as
acetylcholinesterase inhibitor and serotonin receptor antagonist, were identified. Inhibitors
of the acetylcholinesterase enzyme, which breaks down the neurotransmitter acetylcholine,
are frequently used for the treatment of neurodegenerative diseases [31].

For Paths, amphetamine addiction, serotonergic synapse and others were detected
for AD, PD and MS. For AD and MS, ABC transporters and tight junction pathways were
detected. In addition, for PD and MS, phenylalanine metabolism was detected. The ABC
transporters pathway is targeted by diabetes mellitus and hyperglycaemia drugs, such
as repaglinide. There is evidence to support the idea that people with type II diabetes
are at increased risk of developing all types of dementia [34]. For AD and PD, a total
of 22 Paths were detected; AMPK signalling pathway, calcium signalling pathway and
dopaminergic synapse were detected, among others. AMPK activation has been shown to
play a preventive role in AD, as many studies have shown [35]. On the other hand, other
studies have reported that AMPK activation has an aggravating effect on the development
of AD [36]. These findings make the therapeutic potential of AMPK in AD controversial.

For disease comparisons for Inds using the CTS lists, Alzheimer’s disease was found to
be a common indication for all four neurodegenerative diseases. In addition, mastocytoma
was found to be common in AD and MS. Friedreich’s ataxia, among others, was found to be
common in PD and MS. Senile dementia was found to be common in AD and PD, whereas
Amyotrophic Lateral Sclerosis (ALS) and hypercholesterolemia were found to be common
in MS and HD, among others. The norepinephrine transporter inhibitor was found to be a
common MoA among the four neurodegenerative diseases. Changes in norepinephrine
reuptake, which are carried out by the norepinephrine transporter, are observed in many
neurodegenerative diseases, such as AD and PD [37,38].

Moreover, glutamate release inhibitor and serotonin receptor antagonist were found
to be common in AD and PD, among others. The glutamate inhibitor was found to be
common in HD and MS, while the calcium channel modulator was found to be common in
PD and MS, among others. Alterations in calcium channels have been implicated in several
neurodegenerative diseases, such as AD, PD and HD [39]. For disease comparisons for
Paths, dopaminergic synapse was found to be a common indication in all four neurodegen-
erative diseases. Alterations in the dopaminergic system are more common in PD, where
a large proportion of dopaminergic neurons in the Substantia Nigra pars compacta are
lost, but are also frequent in AD [40,41]. The complete lists of comparisons can be found in
Supplementary Tables S11 and S12.

2.4. Generation of the Super-Reference Table of Drugs

Once the individual tables for each signature were created, the next step was to
generate a single reference table for each disease, including a Total Composite Score for
all components of the signature (MoAs, Paths and Inds) for both collection methods.
A snapshot of the super-reference table generated using the drug library of the drug
repurposing hub is shown in Table 1 (Supplementary Table S13). The 100 highest-scoring
drugs for each disease were selected using the Total Composite Score.
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Table 1. Super-reference table. A snapshot of the super-reference table (top 20 drugs ranked by each
disease’s Total Composite Score separately). In this sub-table (See Supplementary Table S13), the final
Total Composite Score is shown for all four neurodegenerative diseases, using the Drug Repurposing
Hub as the input to DReAmocracy.

Drug Name
AD Total

Composite
Score

Drug Name
PD Total

Composite
Score

Drug Name
HD Total

Composite
Score

Drug Name
MS Total

Composite
Score

agomelatine 0.85 apomorphine 0.73 chlorpromazine 0.68 zonisamide 0.55

mirtazapine 0.85 pramipexole 0.73 fluphenazine 0.68 disopyramide 0.52

vortioxetine 0.83 lisuride 0.72 perphenazine 0.68 priralfimide 0.52

aripiprazole 0.83 terguride 0.70 trifluoperazine 0.68 dalfampridine 0.51

mianserin 0.80 bromocriptine 0.70 risperidone 0.63 chloroprocaine 0.49

sarpogrelate 0.77 ropinirole 0.68 pimozide 0.63 valproic-acid 0.48

cyamemazine 0.76 rotigotine 0.68 chlorprothixene 0.58 cinchocaine 0.46

clozapine 0.74 piribedil 0.68 clozapine 0.58 ibutilide 0.45

loxapine 0.73 fenoldopam 0.67 flupentixol 0.58 haloperidol–
decanoate 0.45

ketanserin 0.73 mirtazapine 0.66 iloperidone 0.58 troglitazone 0.44

methysergide 0.72 a-412997 0.64 levomepromazine 0.58 spironolactone 0.42

quetiapine 0.72 abt-724 0.64 olanzapine 0.58 tesaglitazar 0.42

ziprasidone 0.72 etilevodopa 0.64 pipotiazine 0.58 rosiglitazone 0.42

blonserin 0.72 ro-10-5824 0.64 pipotiazine–
palmitate 0.58 pioglitazone 0.42

paliperidone 0.72 metixene 0.64 promazine 0.58 flibanserin 0.41

gr-113808 0.72 agomelatine 0.64 spiperone 0.58 phenacemide 0.40

gr125487 0.72 mesulergine 0.63 thioproperazine 0.58 eslicarbazepine–
acetate 0.40

idalopirdine 0.72 talipexole 0.62 thiothixene 0.58 oxcarbazepine 0.40

r-1485 0.72 dr-4485 0.62 zuclopenthixol 0.58 procaine 0.40

rs-23597-190 0.72 sb-269970 0.62 amisulpride 0.57 amiloride 0.39

From the CDRS Composite scores, common drugs were detected between pairs of
diseases. For instance, three common drugs were detected between AD and PD (ketanserin,
agomelatine and mirtazapine). For AD and HD, 38 common drugs were found, such as
iloperidone, olanzapine, amisulpride and risperidone. For HD and MS, 11 common drugs
were found in the top 100 drugs for both diseases, including idarubicin, daunorubicin,
amsacrine and teniposide (Figure 5B).

Regarding the CTS Total Composite Scores, common drugs were detected between two
diseases, as observed in the CDRS lists; yet, commonalities were also detected among three
diseases. Two common drugs were detected in AD, HD and MS (pipotiazine–palmitate,
methylergometrine), while eight common drugs in PD, HD and MS (such as gyki-52466,
ly215490, sym-2206 and talampanel). Additionally, one common drug was detected in AD
and HD, as well as in PD and MS (clozapine and lamotrigine, respectively). Moreover, five
common drugs were found in PD and HD such as budipine, amantadine and topiramate.
Lastly, the highest number of commonalities was detected between AD and PD, with
36 common drugs, such as metergoline, tropisetron, zacopride and methysergide, detected
(Figure 5A).



Int. J. Mol. Sci. 2024, 25, 5319 10 of 22
Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 10 of 24 
 

 

 
Figure 5. Comparison of the top 100 drugs generated from the super-reference table: (A). Compari-
son of top 100 drugs using CTS and (B) Comparison of top 100 drugs using CDRS. The top 100 drugs 
generated from the super-reference table of the Drug Repurposing Hub for AD, PD, HD and MS 
were compared. Unique drugs for each disease are shown, as well as commonalities among diseases. 

Table 1. Super-reference table. A snapshot of the super-reference table (top 20 drugs ranked by each 
disease’s Total Composite Score separately). In this sub-table (See Supplementary Table S13), the 
final Total Composite Score is shown for all four neurodegenerative diseases, using the Drug Re-
purposing Hub as the input to DReAmocracy. 

Drug 
Name 

AD Total 
Composite Score 

Drug 
Name 

PD Total 
Composite Score Drug Name HD Total 

Composite Score Drug Name MS Total 
Composite Score 

agomela
tine 0.85  apomorp

hine 0.73  chlorpromazi
ne 0.68  zonisamide 0.55  

mirtaza
pine 0.85  pramipe

xole 0.73  fluphenazine 0.68  disopyramide 0.52  

Figure 5. Comparison of the top 100 drugs generated from the super-reference table: (A). Comparison
of top 100 drugs using CTS and (B) Comparison of top 100 drugs using CDRS. The top 100 drugs
generated from the super-reference table of the Drug Repurposing Hub for AD, PD, HD and MS were
compared. Unique drugs for each disease are shown, as well as commonalities among diseases.

2.5. Scoring New Candidate Drugs for Repurposing against a Selected Disease

To present an application of the scoring part of DReAmocracy, we scored different
groups of drugs that are related to AD, such as the current FDA-approved drugs, drugs that
previously failed in clinical trials for AD, and three different groups of candidate repurposed
drugs that we suggested in our previous work for stage-specific drug repurposing for AD
and for Braak stages I–II, III–IV and V–VI [42] (which were intentionally omitted from the
sources used to compile the CDRS reference table).

Based on the output of DReAmocracy, we compared the Composite Scores of the
different drug groups that were tested. Figure 6 shows the comparison of the different drug
groups, using the Composite Scores of selected AD-related drugs (Braak I–II, Braak III–IV,
Braak V–VI, FDA approved and Failed drugs) of the CDRS and CTS reference tables, as
illustrated with boxplots (Panel A) and distribution histograms (Panel B). The Wilcoxon
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test was carried out to test whether the DReAmocracy scores are significantly different
across the types of scores and groups of drugs of interest. Paired comparison of Braak I–II
data using CDRS and CTS shows statistical significance with a p-val = 0.004. Moreover,
paired comparisons of Braak III-IV and Braak V–VI data using CTS and CDRS data show
statistical significance with a p-val = 0.026 and 1.21 × 109, respectively. When comparing
the groups between them, statistical significance was found only for the comparison of
Braak I–II with Braak III–IV for the CTS reference table, with a p-val = 0.009.
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Figure 6. Plots of Composite Scores for AD case examples. (A). Box plots of Composite Scores of
selected AD-related drugs (Braak I–II, Braak III–IV, Braak V–VI, FDA-approved and Failed) were
generated using the CDRS and CTS reference tables. Black dots show the outliers. (B). Distribution
histogram of Composite Scores of selected AD-related drugs using the CDRS and CTS reference tables.
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The output of DReAmocracy in these test drug queries gives a snapshot of the trends
regarding the selected drug categories and the existing knowledge from CTS and CDRS;
FDA-approved drugs present higher Composite Scores, as expected, in CTS than in CDRS.
CTS are expected to include candidate drugs with more similarity to the already FDA-
approved drugs, whereas the candidate drugs from CDRS are expected to present higher
diversity from the already approved drugs.

Additionally, failed drugs for AD have a higher median of Composite Score values in
CDRS than in CTS. Failed drugs could be supported more by the a priori knowledge from
CDRS than by the a priori knowledge from CTS, as expected, since the diversity provided
by the CDRS is higher than the one by CTS.

Among the three stage-specific groups of candidate repurposed drugs from our pre-
vious study [42], the candidate drugs for Braak stage I–II (incipient AD stage) are shown
to be more unexpected based on the a priori knowledge from both the CDRS and CTS
collection methods. There is a noteworthy difference in the median values of the Scores
between the two collection methods in favour of CDRS, as expected. Candidate drugs for
Braak stages III–IV (moderate AD stage) and V–VI (severe AD stage) also present higher
Composite Scores in CDRS than in CTS, suggesting that our computational repurposing
study follows the trend of the a priori knowledge of the rest of the CDRS, as expected.

3. Discussion

In this work, we proposed a methodology, DReAmocracy, aiming to utilise a priori
knowledge to reveal trends in selected tracks of drug discovery research with an increased
resolution that includes MoAs, Paths and Inds for the investigated drugs, as well as to
score new candidate drugs for repurposing against a selected disease. This methodology
is not designed to be a predictive model but instead offers a quantified aggregation of
existing drug discovery results based on user-defined preferences. Four neurodegenerative
diseases have been used as a testbed for the application of this methodology. Our analysis
generated frequency tables, known as DC-matrices, for each disease based on the MoAs,
Paths and Inds of the drugs detected from the CDRS and CTS. Based on these frequency
tables, we constructed a super-reference table with drug suitability scores for each of
the four neurodegenerative diseases. Hence, a given set of drugs can be scored based
on the super-reference table concerning its proposal in other studies. Moreover, disease–
disease commonalities regarding Paths, MoAs and Inds were detected to highlight common
mechanisms of neurodegeneration.

Upon the detection of the top candidate repurposed drugs, an in-depth investi-
gation can take place using diverse tools and databases. Notably, ChEMBL (https://
www.ebi.ac.uk/chembl/, accessed on 29 April 2024) emerges as a pivotal resource, offer-
ing critical insights into the pharmacokinetics of the drugs of interest and their targets,
such as IC50 and Ki values. Through ChEMBL, users can search for a drug of interest
and access detailed drug profiles, including drug classification, structural representa-
tion (SMILES, Molfiles, InChi Keys), drug indications, drug mechanisms of action (high-
lighting targets and action types), structurally similar drugs and other pharmacokinetic
parameters. These pharmacokinetic parameters include the standard value for IC50 or
Ki, the assay description used, the target name and type, etc. Additionally, BindingDB
(https://www.bindingdb.org/rwd/bind/index.jsp, accessed on 29 April 2024) is another
resource providing insights into target interactions (e.g., Ki, IC50, Kd) and compound
properties (e.g., chemical structures, SMILES notation). Also, the Therapeutic Target
Database (TTD) (https://idrblab.net/ttd/, accessed on 29 April 2024) is another database
that provides essential information on the drugs and their therapeutic targets, focusing
on the associated pathways of the corresponding drugs. The AdmetSAR web applica-
tion (http://lmmd.ecust.edu.cn/admetsar2/, accessed on 29 April 2024) and SwissADME
(http://www.swissadme.ch/index.php, accessed on 29 April 2024) can be used to facilitate
in silico assessment of the absorption, distribution, metabolism, excretion and toxicity
(ADMET) properties of compounds, enabling the prediction of pharmacokinetic properties

https://www.ebi.ac.uk/chembl/
https://www.ebi.ac.uk/chembl/
https://www.bindingdb.org/rwd/bind/index.jsp
https://idrblab.net/ttd/
http://lmmd.ecust.edu.cn/admetsar2/
http://www.swissadme.ch/index.php
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and drug-likeness essential for drug discovery efforts. Moreover, the SIDER database
(http://sideeffects.embl.de/, accessed on 29 April 2024) can serve as a key resource for in-
vestigating the side effects of associated marketed medicines. SIDER provides insights into
side effect frequencies, drug classifications and links to detailed drug–target relationships.

As revealed using our methodology, MoAs such as serotonin receptor antagonism and
serotonin reuptake inhibitor were found to be highly scored in AD, PD and MS. Serotonin
receptors are abundant in the central nervous system and specifically in cognitive and
learning brain regions. Common anti-depressants that are used in many neurodegenerative
diseases target specific serotonin receptors. Apart from the anti-depressive effect they have,
there have been pre-clinical studies that showed a strong impact of anti-depressants on
microglial cells, whose activation plays an essential role in the pathogenesis of several
neurodegenerative diseases. Investigating the effects of anti-depressants on microglial cells
showed a significant decrease in microglial activation markers after anti-depressant treat-
ment in in vitro and ex vivo models, showing that anti-depressants may have therapeutic
potential for treating diseases where activated microglia play a key role. However, it is
crucial to note that microglia activation is heterogeneous in humans and that different sub-
populations of microglia play different roles in both beneficial and harmful modes. Hence,
further investigations into the underlying mechanisms are needed to see if anti-depressants
could have benefits in neurodegenerative diseases [43,44].

Hypertension was detected as the highest scoring initial indication of drugs repur-
posed not only for AD but also for PD. There are many studies and meta-analyses available
that show the association between antihypertensives and AD and specifically the effect that
they have in decreasing the risk of AD [15–17]. Additionally, studies have shown that HD
patients taking antihypertensives had decreased motor, cognitive and functional symptoms
compared to HD patients who were untreated. In addition, these patients also presented
with a later age of onset of the disease. A more thorough investigation is necessary to
detect the underlying mechanisms of how antihypertensives can be used for the benefit of
patients with different neurodegenerative diseases [45].

Moreover, topoisomerase inhibitor was detected as the highest-scoring MoA in both
HD and MS. DNA topoisomerases are enzymes that control the topology of DNA in all
cells and are essential for the smooth function of the cells. Due to this essentiality, topoi-
somerases have become key drug targets for many diseases, and these include several
neurodegenerative diseases such as MS. The DNA topoisomerase inhibitor mitoxantrone
is a drug used for patients with worsening relapsing–remitting and secondary progres-
sive Multiple Sclerosis and hepatocellular carcinoma [21,22]. Additionally, it has been
shown that the use of topotecan, another topoisomerase I inhibitor, improves motor and
behavioural abnormalities of a transgenic HD mouse model, along with the gain of body
weight and brain weight [46]. Another topoisomerase inhibitor, amsacrine, is used to treat
acute leukaemia in adults. Acute lymphoblastic leukaemia (ALL) was one of the common
initial indications detected between HD and AD. Since topoisomerase inhibitors are used
for both neurodegenerative diseases and leukaemias, it could be indicative that there are
opportunities to repurpose drugs between these diseases.

Additionally, sodium channel blocker was detected as a highly scored MoA for MS
and HD. Sodium channel dysfunction is very common in many neurodegenerative diseases
such as AD, PD, ALS, MS and sodium channel blockers and could be potentially used for
treating a wide range of neurodegenerative diseases [47]. Further studies on neuropro-
tection as a therapeutic intervention aimed at slowing or even halting the progression of
neurodegeneration are needed in this direction.

Regarding pathways, amphetamine addiction was detected as highly scored for AD,
PD and MS. Amphetamine exposure has been shown to have addictive effects and be
associated with neuroinflammation, while studies have shown an increased risk of PD
in amphetamine abusers [48]. Additionally, it has been shown that exposure to a more
dangerous form of amphetamine causes Aβ42 formation, a key pathological hallmark in
AD [49], and tau protein increase [50].

http://sideeffects.embl.de/
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Lastly, glutamate release inhibitors were found in AD and PD, among others, whereas
glutamate inhibitors were found in HD and MS. Glutamate is the predominant excitatory
neurotransmitter, and in normal situations it is maintained at low levels since excessive
glutamate receptor activation can lead to cell death. In the case where there is excessive ac-
tivation of glutamate receptors present, known as excitotoxicity, it has been associated with
a variety of neurodegenerative diseases such as MS, AD and others [51]. Interventions that
target glutamate receptors would potentially prevent this excessive activation and, there-
fore, alleviate excitotoxicity, something that could be beneficial against neurodegenerative
diseases in the future.

Following the creation of the super-reference table, we detected groups of top drugs
for each disease based on the final Total Composite Score. From this analysis, we detected
common drugs at least in two diseases. For example, mianserin, with a score of 0.8 for AD
and a score of 0.7 for PD, was detected. Mianserin is a tetracyclic anti-depressant, and it
strongly stimulates the release of norepinephrine [52]. Furthermore, ketanserin, gr-113808,
gr125487, idalopirdine, r-1485, rs-23597-190, rs-39604, sb-203186, sb-258585, sb-271046,
sb-399885 and sb-742457 with a score of 0.7 for AD and PD, were detected. Ketanserin
is a selective serotonin receptor antagonist. Idalopirdine is a potent and selective 5-HT6
receptor that, however, has been discontinued for AD [53]. The majority of these drugs are
serotonin inhibitors or antagonists.

In addition, the group of the drugs iloperidone, pipotiazine–palmitate, clozapine,
olanzapine, blonserin, paliperidone, lurasidone and others show high scores in AD, PD
and HD with a score of 0.7 for AD and scores of 0.6 for both PD and HD. Iloperidone,
clozapine, olanzapine and paliperidone are atypical antipsychotics used for the treatment
of schizophrenia symptoms. Iloperidone was also detected by our previous computational
drug repurposing study [42] as the second highest scoring candidate drug for Braak stage
V–VI (severe) AD. Additionally, clozapine therapy appeared to be beneficial in treatment-
resistant agitation in patients with dementia [54]. Pipotiazine–palmitate is used for the
maintenance treatment of chronic non-agitated schizophrenic patients [55]. All of these
drugs are used in the treatment of psychotic and schizophrenia symptoms.

Moreover, we compared the output of our methodology with existing tools, such
as DrugShot [2] and DrugEnrichr [56]. When comparing our results with DrugShot, a
web-based server application that allows the extraction of ranked lists of drugs based on
the search of a biomedical term, such as the disease of interest, we find both common
and complementary outcomes. The top 200 drugs for AD based on the Total Composite
Score and the top 200 drugs based on the publication count extracted from DrugShot
were compared, and we detected 18 common drugs between the two lists. Most of these
drugs belong to the group of anti-depressive or antipsychotic drugs, such as mirtazapine,
aripiprazole, quetiapine, olanzapine, risperidone and others. Moreover, drugs such as
amitriptyline, which is used for pain syndromes such as fibromyalgia; lamotrigine, which
is used for epilepsy and bipolar disorder; and celecoxib, a nonsteroidal anti-inflammatory
drug, were detected as common between the two lists, among others.

In our current study, four neurodegenerative diseases were used as case studies. For
AD and PD, more data were available, specifically for CDRS, whereas for HD and MS,
the two more under-represented diseases, less data were available regarding the CDRS
collection method. This makes the use of DReAmocracy more informative for AD and PD
since more lists of repurposed drugs were available. The more drug lists there are available,
the more accurate the methodology. Additionally, DReAmocracy leverages the existing
knowledge to better understand where current research is currently focusing on in both
CTS and CDRS studies. Therefore, these findings do not include all possible mechanisms
behind neurodegeneration; yet, they provide an overview of what most of the studies
support at the current time.

Our method allows researchers to compare their drugs based on prior knowledge from
studies. What we can see from our findings is that most of the time, there is an analogous
trend in the frequency between the two. These results suggest that the CDRS and CTS
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are consistent but not redundant and, hence, complement each other. A combination of
the two can enrich the individual information that each collection method can give and,
therefore, can lead to a more complete result. Nevertheless, it is very important to note
that the addition of any other collection method such as experimental in vitro drug screens
could further enhance the output of DReAmocracy.

The limitations of the present study include the restriction of using a small, although
curated, library of 6798 molecules, known as the Drug Repurposing Hub Database. This
means that drugs that need to be tested may not be included in the database, and, therefore,
DReAmocracy cannot score them. Moreover, drug names are used in their generic form,
and, hence, a unique drug ID-based method, given that this is supported by the required
databases, should be used in the future. However, this study offers the ability to access
information on what has been discovered so far. Future research should focus on the
generation of other reference tables by collecting information on other diseases and also
using the final Total Composite Score in combination with other scores such as the scoring
scheme proposed in our previous work [42]. In addition, further experimental testing is
needed to validate the results of this study.

4. Materials and Methods

DReAmocracy integrates disease-specific drug lists generated by various drug discov-
ery approaches. The drug collection methods that are selected in this work are (1) drug
lists from the computational drug repurposing studies (CDRS) and (2) drug lists from the
clinical trial studies (CTS). In addition, there is an option to generate a consensus scheme
between the data from the two methods. The general pipeline of DReAmocracy is presented
in Figure 7. In Step 1, the construction of the reference score-matrix is carried out by
choosing the method of interest to collect lists of drugs. These lists could be from CDRS,
CTS, experimental drug discovery or any other method available that generates drug lists.
The selected diseases for this purpose belong to the spectrum of neurodegeneration, as
previously mentioned. For this purpose, we used CDRS and CTS for AD, PD, HD and MS.
In Step 2, for each drug list for each method, we identified the MoAs, Inds and Targeted
Paths for all the drugs in the list. In Step 3, we calculated a disease/collection-specific score
for each MoA, Ind and Path, known as the DC score, based on weight-modulated majority
voting. Lastly, in Step 4, a DC-matrix, which is a matrix of DC scores for MoAs, Inds and
Paths that is disease and method-specific, was generated.

The second part of the pipeline (Figure 8) included the assignment of a disease/collection-
specific score to a drug, based on the DC-matrices of DReAmocracy. For any drug or set of
drugs of interest, one can query the DReAmocracy-generated reference table to obtain the
respective Total Composite Scores of the drugs based on the disease of interest.

4.1. Data Selection

Drug lists, both CDRS and CTS, contain generic drug names, obtained either from
computational drug repurposing publications or clinical trials, respectively. Regarding
the CDRS, proposed tables of repurposed drugs from applicable research papers were
downloaded. Initial data were retrieved from PubMed (accessed on 8 January 2022) using
the query type: (repurpos*[tiab] OR reposition*[tiab]) AND (the disease of interest e.g.,
Alzheimer*[tiab]). The output of the query was filtered to keep only research papers de-
scribing computational drug repurposing results for each of the selected diseases published
in the past 10 years (Supplementary Tables S14–S17). To handle any inconsistencies, these
drug lists were parsed against the Drug Repurposing Hub Database, and the SMILES for-
mat of the drugs was extracted, along with their generic drug name. Drugs were manually
checked to see whether any drug synonyms were present. The same path was followed
for the CTS. Clinical trial information was downloaded from www.clinicaltrials.gov as of
24th of January 2022 for each disease separately. The resulting text tables were downloaded
and manually curated to keep only studies whose status was either “Completed”, “Ac-
tively Recruiting”, “Recruiting”, “Not yet recruiting” or “Active, not recruiting”. Studies

www.clinicaltrials.gov
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that were “Suspended”, “Withdrawn” or “Terminated” were discarded. Moreover, in
the interventions tab, only “drugs” were kept. Unique drugs were saved by keeping the
clinical trial that was in the highest phase if multiple studies were available for the same
drug. Information regarding the drug’s name, the status of the drug, and the phase in
the clinical trial pipeline were kept. Only small molecules (“drugs”) were kept using the
“interventions column”.
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4.2. Construction of the Reference Score Matrix (DC-Matrix)

The drug collection for each disease (AD, PD, MS, HD) and each method (CDRS, CTS)
was searched within the Drug Repurposing Hub Database (https://repo-hub.broadinstitute.org/
repurposing, accessed on 2 February 2022), a comprehensive library with a total of 6798 drug
annotations that are hand-curated, and their entities have been experimentally confirmed
with the literature-reported targets. The types of data that were extracted from the drugs
include structural information (SMILES), molecular mechanisms of action (MoAs), targets
(and also pathways) and the initial indications that these drugs were used prior to drug
repurposing. Drug indications, modes of action and targets were extracted for each drug in
each list. Using the drug target information from the database, we mapped the pathways
that the drug targets are involved in using EnrichR R package (15), and we collected all
pathways of which the drug targets were members. Then, for each disease, a table of
ranked lists for (a) Indications (Inds), (b) Mechanisms of Action (MoAs) and (c) Pathways
(Paths) per disease were generated via (1) the CDRS method and (2) the CTS method.
These reference tables, also known as DC-matrices (Drug List Collection Matrices), were
prepared for each of the four neurodegenerative diseases. The frequency (Freq) of the drug
information (Ind, MoA, Path) and the number of initial studies (ListCount) introducing this
drug information were calculated. Both metrics, Freq and ListCount, were then normalised
in the unit interval. The lists were ranked based on the normalised frequency (Norm_Freq)
and the normalised count of lists (Norm_ListCount) according to the following equation
(Equation (1)):

DC Scorei = WF ∗ NormFreqi + WLC ∗ NormListCounti, i ∈ {moAs, inds, paths} (1)

where WF and WLC are the weights of importance of the normalised frequency and nor-
malised count of lists for the MoAs, Inds and Paths. In this first application of the method,
we set WF = 0.4 and WLC = 0.6. A higher weight was given to the ListCount because of
the assumption that the detection of a signature in as many drug lists as possible is more
important than the frequency of the signature for a single study/drug list.

https://repo-hub.broadinstitute.org/repurposing
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Finally, to avoid random insertions in the DC-matrix lists, these scored lists were
filtered using a hypergeometric test. Then, we kept only the MoAs, Inds and Paths with a
hypergeometric test p-value lower than 0.05.

4.3. Assign a Disease/Collection-Specific Score to a Drug

Figure 2 describes the case where we can ask DReAmocracy about (1) a drug or several
drugs of interest, (2) a well-defined group of drugs (e.g., FDA approved) and (3) a large
repository of drugs (e.g., the Drug Repurposing Hub). To proceed with the drug(s) scoring
against a selected disease, we extract the corresponding Inds, MoAs and Paths of the drug(s)
and we combine the corresponding MoAs, Paths and Inds scores from the DC-matrix into
a Composite Score for each drug against the selected disease using the following equation
(Equation (2)):

Composite Score = W1 ∗ ScoreOfPaths + W2 ∗ ScoreOfMoAs + W3 ∗ ScoreOfInds (2)

where, in this first application of the method, we set W1 = 0.4, W2 = 0.4 and W3 = 0.2. Paths
and MoAs were given equal and higher weights than the initial Inds since the first two
give an actual description of the features of the drug rather than the initial use of the drug.
The weights in Equation (2) are designed to be used as user-defined options to implement
different strategies for scoring the findings from previous drug discovery efforts.

In the case of the combination of all the drug collection methods, a Total Composite
Score can be calculated as an average of the Composite Scores for each data collection
method (e.g., CDRS and CTS), as shown in the following equation (Equation (3)):

Total Composite Score =
1
N
·∑i Composite Scorei (3)

i = 1, . . . , N possible collection methods of drug lists.
In DReAmocracy, N = 2 was used. However, this equation can be extended to cases

where more methods might potentially be used.

4.4. Drug Repurposing Hub through the lens of DReAmocracy

We performed a large-scale computation by calculating the Total Composite Score for
each drug in the Drug Repurposing Hub with a total of 4421 drugs for four diseases: AD,
PD, HD and MS. The whole pipeline of DReAmocracy, however, can be applied in multiple
diseases given the sufficient availability of drug-related a priori information. This can be
extended to a greater number of diseases, as shown in Figure 9 (N diseases), and any other
database with the same type of data can be used. Moreover, in addition to the different
diseases that can be tested, different methods to collect drug lists can be used, such as
experimental drug discovery studies. Notably, a better Composite Score can be given when
more data are available for the disease of interest, as a higher diversity can be added to the
methodology. Therefore, to obtain more reliable results, it is necessary to create a minimum
of three drug lists per disease to proceed with the creation of its reference table.

In case the user wants to use our approach while selecting different weights, a simple
R shiny web application is available. The user can choose a drug of interest for one of the
four diseases available, the weights of MoAs, Inds and Paths and the type of studies (CDRS
and/or CTS) using the GitHub code (see data and code availability).
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Figure 9. Schematic for a large-scale application of DReAmocracy for various diseases. By following
the DReAmocracy pipeline, the Total Composite Scores can be calculated for any disease of interest that
has available prior knowledge, either on clinical trial studies or on computational drug repurposing
studies. The Drug Repurposing Hub was used in this work to extract the available information
regarding the drugs. In the current scheme, the drugs in the table are considered sorted based on
their score in the first column (AD).

5. Conclusions

Overall, our study presents a novel methodology that takes advantage of the ag-
gregated information from the drug repurposing lists already available, as well as from
clinical trial studies, towards the generation of a dynamic reference matrix with enhanced
resolution regarding the disease-related frequencies of drug characteristics. We expect that
our proposed methodology will be applied to many diseases of interest in the future and
will serve as a reference for those interested in testing their drugs against the drug-related
information available on these diseases. We would like to state that this is a computational
methodology that highlight good candidates as possible repurposed drugs. Nevertheless,
further experimental testing is necessary to end up with lists of actual repurposed drugs.
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DC Score Drug/Collection-specific Score
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FDA Food and Drug Administration
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