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Abstract: Glioblastoma multiforme (GBM) represents the deadliest tumor among brain cancers. It
is a solid tumor characterized by uncontrolled cell proliferation generating the hypoxic niches in
the cancer core. By inducing the transcription of hypoxic inducible factor (HIF), hypoxia triggers
many signaling cascades responsible for cancer progression and aggressiveness, including enhanced
expression of vascular endothelial growth factor (VEGF) or antioxidant enzymes, such as heme
oxygenase-1 (HO-1). The present work aimed to investigate the link between HO-1 expression and
the hypoxic microenvironment of GBM by culturing two human glioblastoma cell lines (U87MG
and A172) in the presence of a hypoxic mimetic agent, deferoxamine (DFX). By targeting hypoxia-
induced HO-1, we have tested the effect of a novel acetamide-based HO-1 inhibitor (VP18/58) on
GBM progression. Results have demonstrated that hypoxic conditions induced upregulation and
nuclear expression of HO-1 in a cell-dependent manner related to malignant phenotype. Moreover,
our data demonstrated that the HO-1 inhibitor counteracted GBM progression by modulating the
HIFα/HO-1/VEGF signaling cascade in cancer cells bearing more malignant phenotypes.

Keywords: HO-1 gene; HO-1 inhibitors; glioblastoma multiforme; hypoxia; angiogenesis; vascular
endothelial growth factor

1. Introduction

Glioblastoma multiforme (GBM) is classified as grade IV astrocytoma and represents
the deadliest brain cancer, affecting adults with poor prognosis [1,2]. Based on a histological
and molecular approach, the World Health Organization (WHO) has classified this type of
glioma as glioblastoma isocitrate dehydrogenase (IDH)-wild type. The median survival of
the affected patient is between 14 and 17 months due to cancer relapse. The difficulty in
treating it is mainly due to the self-renewal ability of cancer cells that are responsible for
tumor development, therapeutic resistance, and recurrence after treatment. To date, the
gold standard therapy consists of a combined approach represented by surgery followed
by radio- and chemotherapy [3]. This latter consists of a combined approach represented
by surgery followed by radio- and chemotherapy [3]. The gold standard molecule used
for pharmacological treatment is temozolomide (TMZ), which unfortunately shows many
limitations as it is related to hematological and hepatic impairment [4,5]. Furthermore,
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TMZ is now sidelined due to increased chemoresistance phenomena mediated by Poly
(ADP-ribose) Polymerase-1 (PARP-1) [6]. Comorbidities associated with chemotherapy as
well as the recurrence rate of treated GBM highlight the demand to identify new glioma
molecular targets able to improve/restore cancer cell sensitivity to standard therapy.

The uncontrolled cell proliferation characterizing GBM induces the formation of
hypoxic niches inside the cancer core. The hypoxic microenvironment, by inducing tran-
scription of hypoxia-inducible factors (HIFs), triggers the activation of different signaling
cascades, making the tumor highly aggressive [7]. The pivotal role exerted by HIF activa-
tion has been summarized in many recent reviews that have highlighted its involvement in
driving GBM progression [8–11].

More specifically, low oxygen tensions induce transcription of hypoxia-inducible
factors (HIFs), including HIF-1α, that translocate into the nucleus, where it binds to consti-
tutively expressed β subunit (HIF-1 β), forming an active complex. The latter, through the
activation of hypoxia-responsive element (HRE), regulates many downstream target genes,
including vascular endothelial growth factor (VEGF), which is the main factor responsible
for aberrant neovascularization characterizing GBM progression. Besides activating the
HIF1α–VEGF pathway, hypoxia also modulates gene expression of many other factors,
with consequent upregulation of protective enzymes, such as human heme oxygenase 1
(HO-1) [12–14].

HO-1 is the enzyme responsible for endogenous heme degradation with consequent
generation of three metabolites, including carbon monoxide (CO) and biliverdin [15], which
exert anti-apoptotic, anti-inflammatory, and antiproliferative activity, resulting in an overall
cytoprotective effect [16]. However, the role exerted by this enzyme is controversial and
depends on the cellular microenvironment and the pathophysiological context in which
it is expressed [17]. To address this concern, it has been demonstrated that HO-1 plays a
pivotal role in regulating redox homeostasis, especially in cancer cells, which can generate
excessive ROS as a result of abnormally rapid proliferation. HO-1 overexpression has been
observed to be involved in the development of several types of cancer, including pancreatic
and prostatic cancer, renal carcinoma, myeloma, and lung adenocarcinomas [18–21], and it
has been widely associated with chemoresistance insurgence [22].

The promoter region of the HO-1 gene (HMOX1 gene) contains sites for various tran-
scription factors, such as HIF-1α, nuclear factor erythroid 2–related factor 2 (Nrf2), and
nuclear factor-kappa B (NF-KB) [23,24]. They can all be considered HO-1 transcription
factors as they bind the HMOX1 promoter region under different conditions, including
hypoxia and oxidative stress [25], making HO-1 part of the cellular response to hypoxia [15].
It has been reported that hypoxia stimulates oxidative stress with consequent ROS gen-
eration that in an Nrf2-dependent manner induces HO-1 expression [26,27]. Moreover,
in vivo and in vitro studies have demonstrated that HO-1 upregulation under hypoxia
is driven by HIF1α mediation [28,29]. In more detail, it has been demonstrated that the
DNA coding sequence for HO-1 is localized downstream of HRE; therefore, their activation
via HIF-1α stimulates the HO-1 promoter, resulting in enzyme-increased expression in
vascular cells [30]. Recently, the HO-1 aberrant levels have also been associated with GBM
stemness and invasion features [31]. In this tumor, mRNA encoding HO-1 expression has
been shown to correlate with enhanced vascular density in high-grade gliomas because it
also increases VEGF expression. Therefore, the accumulation of HO-1 was proposed as an
indicator of neoangiogenesis [32–34].

It is worth noting that the upregulation of HO-1 reported in different human can-
cers induced suppression of apoptotic cell death through activation of mitogen-activated
protein kinases (MAPK) pathways determining poor prognosis and chemoresistance [35].
Based on this evidence, it is possible to sustain that HO-1 plays an important role in the
progression of GBM. Accordingly, Castruccio et al. 2019 [36], by using an in vitro model of
GBM, have demonstrated the involvement of HO-1 in the regulation of cancer progression,
showing that its overexpression is related to GBM cell proliferation and colony forma-
tion. Moreover, by comparing the transcriptome dataset of brain biopsies from different
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glioma grades, the authors have affirmed that HO-1 is overexpressed in human gliomas
compared to non-malignant samples, demonstrating the oncogenic role of HO-1 during
GBM development [36].

Taken together, all of this evidence suggests the inhibition of HO-1 as a possible
antitumor strategy [37]. Accordingly, it has been demonstrated that HO-1 inhibition leads
to antiproliferative activity in several tumoral cell lines [38,39] and tumor regression in
several animal models [40–43]. Therefore, the identification of new specific enzymatic
inhibitors able to target HO-1 activity could be useful in combined therapy. In line with
this suggestion, our research group recently identified a class of HO-1 inhibitors showing
antiproliferative activity toward GBM cells. The most interesting compound, named
VP18/58 (molecular structure reported in Figure 1) [44], was able to reduce HO-1 enzymatic
activity and the cell invasion rate by interfering with the angiogenesis in GBM cells. This
compound showed good drug-likeness properties due to its favorable ADME (absorption,
distribution, metabolism, and excretion) profile. This novel HO-1 inhibitor has also reduced
invasion potential as well as VEGF expression in GBM cells, allowing us to suggest its
involvement in counteracting different biological events underlying cancer progression [44].
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Figure 1. Chemical structure of VP18/58 [44].

Although the relationship among ROS, HIF1α, and HO-1 has been well-established in
different cellular types [29,45,46], the impact of HO-1 and the hypoxic microenvironment
has not yet been investigated in GBM. Therefore, in the present work, we aimed to investi-
gate the role of HO-1 in hypoxia-driven GBM progression by testing the effect of the new
synthesized azole-based HO-1 inhibitor VP18/58 on the hypoxia-triggered pathway. In this
work, we have used two human glioblastoma cell lines, U87MG and A172, characterized
by different tumorigenic potential [46], exposed to a hypoxic mimetic agent, deferoxamine
(DFX). Overall, the present data showed a correlation between HO-1 overexpression and
GBM cells bearing a malignant phenotype (U87MG). Furthermore, VP18/58 treatment
counteracted GBM progression by interfering with the hypoxic–angiogenic pathway in
U87MG cells.

2. Results
2.1. HO-1 Is Overexpressed in Human GBM Glioblastoma Cells Exposed to Hypoxia

To determine the correlation between HO-1 and hypoxia, we used two human GBM
cell lines, U87MG and A172, possessing two different tumorigenic potentials [47]. The
expression levels of HIF-1α, the main hypoxic transcription factor, have been evaluated
at three different time points of 24 h, 48 h, and 72 h after DFX (100 µM) addition to the
cells. As shown in Figure 2, HIF-1α was differently expressed in U87MG and A172 in basal
conditions (control group). Based on the time course evaluation of HIF-1 α levels, and
according to a previous investigation by [48], we chose to perform further experiments at
24 h as it represented the time point showing higher expression of HIF-1α in GBM cells
(Figure 2 ** or *** vs. control).
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Figure 2. HIF-1α expression in human U87MG and A172 GBM cells exposed to hypoxia. (A,B) Rep-
resentative immunoblots of signals detected by HIF-1α antibody obtained using cell homogenate
from U87MG and A172 cultured in normoxia (control) and in DFX-induced hypoxia (DFX) at 24 h,
48 h, and 72 h. (C,D) The bar graphs show a quantitative analysis of signals obtained by three
independent experiments. The ImageJ software was used to quantify the relative band density
obtained by normalizing the protein levels to β-actin, representing a loading control. The values
are expressed as the mean ± SEM by setting the control group value to 1 (* p < 0.05, ** p < 0.01, or
*** p < 0.001 vs. control, as determined through One-Way ANOVA followed by Tukey’s post hoc test).

To characterize the correlation between HO-1 and hypoxia, we performed the Western
blot and immunofluorescence analysis of U87MG and A172 cells exposed to hypoxia for
24 h. The HO-1 protein expression was higher in DFX-treated U87MG cells than in the
control group (*** vs. control) (Figure 3A,B), whereas its expression was unchanged in
A172 cells (Figure 3C,D). To detect its cellular distribution, we performed an immunofluo-
rescence analysis. Cell serial sections obtained through confocal laser scanning microscopy
showed a predominant localization of HO-1 in the perinuclear area of the U87MG control
group (Figure 3E). In contrast, DFX-induced hypoxia prompted its expression into the
nucleus (Figure 3F). On the contrary, HO-1 immunoreactivity was faintly and exclusively ex-
pressed in the cytoplasm and perinuclear area of A172 cells in both experimental conditions
(Figure 3G,H). The different results regarding HO-1 distribution could be ascribable to the
specific cell genotypes as the U87MG overexpresses nestin and vimentin, two malignancy
markers, whereas the A172 cells are less tumorigenic [47].
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Hypoxia-Driven Signaling Cascade 

Figure 3. HO-1 expression and distribution in U87MG and A172 GBM cells exposed to hypoxia for
24 h. (A,C) Representative immunoblots of signals detected by HO-1 antibody obtained using cell
homogenate from U87MG and A172 cells cultured in normoxia (control) and in DFX-induced hypoxia
(DFX). (B,D) The bar graphs show a quantitative analysis of signals obtained in three independent
experiments. The ImageJ software was used to quantify the relative band density obtained by
normalizing the protein levels to β-actin, representing a loading control. The values are expressed as
the mean ± SEM by setting the control group value to 1 (*** p < 0.001 vs. control, as determined by
unpaired two-tailed Student’s t-test). (E,G) Photomicrographs show the immunofluorescence signal
of HO-1 expression (green fluorescence) in U87MG (E) and A172 (G) cells cultured in normoxia and
in DFX-induced hypoxia (F,H, respectively). (1–8): Serial section obtained through confocal laser
scanning microscopy as previously described by [49]; each image represents a serial section along
the z-axis of the same cell, with each section being 0.33 µm thick. Graph (9) shows the fluorescence
intensity of HO-1 (green line) and DAPI (blue line) along the red line indicated in (10). (11) shows the
3D section along the red line in the same cells (scale bars, 10 µm).

2.2. HO-1 Inhibition Affected GBM Cell Viability and Migration by Interfering with the
Hypoxia-Driven Signaling Cascade

Based on the observed pike of HIF-1α at 24 h, we performed a dose-response curve
in physiological conditions (normoxia) by treating GBM cells with VP18/58 for 24 h. As
shown in Figure 4, cell viability was significantly reduced at a concentration of 10 µM in
both cell lines (Figure 4 * or ** vs. control).

It is worth noting that when cells were exposed to hypoxic insult (DFX), the VP18/58
(10 µM) treatment reduced viability more in U87MG than in A172 cells (Figure 5, # or ###

vs. DFX).
To investigate the molecular mechanism underlying the effect of the HO-1 inhibitor

on GBM cells, we tested its impact on the hypoxic–angiogenic pathway. As shown in
Figure 6, the hypoxic microenvironment induced upregulation of HIF-1α, VEGF, and HO-1
in U87MG cells compared to the control, whereas their expression was significantly reduced
after VP18/58 treatment (Figure 6A,C; ** or *** vs. control, ### vs. DFX). In A172 cells,
hypoxia enhanced HIF-1α and VEGF levels compared to the control group, but it did not
affect HO-1 expression (Figure 6B,D; * or *** vs. control). The treatment with VP18/58
exclusively reduced HO-1 expression in both experimental conditions (Figure 6B,D; * or **
vs. control, ## vs. DFX).
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Figure 4. The dose–response curve of U87MG and A172 GBM cell viability following VP18/58
treatment. (A,B) Dose–response analysis of U87MG and A172 cell viability after 24 h of VP18/58
treatment (1 nM, 10 nM, 50 nM, 100 nM, 1 µM, 10 µM, 50 µM, 100 µM). The bar graphs show the
results of three independent experiments, and the values are expressed as a percentage (%) of control
(* p < 0.05, ** p < 0.01, or *** p < 0.001 vs. control, as determined through One-Way ANOVA followed
by Tukey’s post hoc test).

These data were corroborated by immunofluorescence analysis performed with con-
focal microscopy. The fluorescent signals for HO-1 (green fluorescence) and HIF-1α (red
fluorescence) in DFX-cultured U87MG cells were largely detected in both nuclear and
cytoplasmic compartments (Figure 7, Panel A). In contrast, HO-1 and HIF-1α were faintly
expressed in the cytoplasm of A172 cells, where HO-1 immunoreactivity was further re-
duced following VP18/58 exogenous administration in both experimental groups. No
difference in HIF-1α immunosignal was detected after VP18/58 treatment in this cell line.
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Figure 5. VP18/58 effect on U87MG and A172 cell viability exposed to hypoxia. (A,B) Effect of
VP18/58 compound (10 µM) on U87MG and A172 cell viability exposed to hypoxic insult (DFX). The
bar graphs show values expressed as a percentage (%) of control (* p < 0.05 or ** p < 0.01 vs. control,
# p < 0.05 or ### p < 0.001 vs. DFX, as determined through One-Way ANOVA followed by Tukey’s
post hoc test).
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Figure 6. HIF-1α, VEGF, and HO-1 expression in U87MG and A172 cells exposed to hypoxic insult
and treated with VP18/58. (A,B) Representative immunoblots of signals detected by HIF-1α, VEGF,
and HO-1 antibodies obtained using cell homogenate from U87MG (A) and A172 (B) cells cultured in
normoxia (control) and in DFX-induced hypoxia (DFX) for 24 h with or without VP18/58 compound
(10 µM). (C,D) The bar graphs show the results of three independent experiments. The ImageJ
software was used to quantify the relative band density obtained by normalizing the protein levels to
β-actin, representing a loading control. The values are expressed as the mean ± SEM by setting the
control group value to 1 (* p < 0.05, ** p < 0.01, or *** p < 0.001 vs. control, ## p < 0.01 or ### p < 0.001
vs. DFX, as determined through One-Way ANOVA followed by Tukey’s post hoc test).
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Figure 7. VP18/58 compound interferes with HO-1 and HIF-1α distribution in U87MG and A172
cells exposed to hypoxia. Photomicrographs show the immunofluorescence signal of HO-1 (green
fluorescence) and HIF-1α expression (red fluorescence) in U87MG cells (Panel A) and A172 cells
(Panel B) treated with 10 µM of VP18/58 showing either normoxia or DFX-induced hypoxia. Nuclei
were stained with DAPI (blue fluorescence). Scale bar, 20 µm.

To evaluate whether VP18/58 treatment affects GBM cell migration in the hypoxic
condition, we performed a wound-healing assay in both cell lines exposed to DFX for
24 h with or without the HO-1 inhibitor. In line with our previous investigation [50], DFX
treatment induced a significant increase in the number of cells moving into the wounded
area with respect to their relative controls (Figure 8B,D *** vs. control). Contrariwise, the
administration of VP18/58 to hypoxia-exposed cells reduced their migration rate more
efficaciously in U87MG cells compared to A172 cells (Figure 8, # or ### vs. DFX).
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monolayers of U87MG (A) and A172 (C) cells were scraped with a pipette tip and incubated with the
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VP18/58 compound for 24 h. The wounded area was visualized under a microscope for quantification.
Migration was calculated as the average number of cells observed in four random wounded fields
per well in duplicate wells. (B–D) The bar graphs show values expressed as a percentage (%) of cell
migration of U87MG (B) and A172 (D) compared to their relative controls. Data are represented
as means ± standard error of the mean (SEM) (** p < 0.01 or *** p < 0.001 vs. control, # p < 0.05 or
### p < 0.001 vs. DFX, as determined through One-Way ANOVA followed by Tukey’s post hoc test).

3. Discussion

Recent emerging evidence has reported aberrant levels of HO-1 in different human
cancers, including GBM [31], whose overexpression is linked to a poor prognosis [35,51–53].
Although the conventional therapeutic approach is direct to provoke oxidative stress to
promote cancer cell apoptosis [54,55], tumor cells respond to therapy by enhancing the
antioxidant defense through HO-1 overexpression, therefore counteracting the efficacy of
pharmacological treatment [25]. In line with the literature data [36], we reported HO-1’s
different expression in the two human GBM cell lines U87MG and A172 after 24 h of
hypoxia exposure. Accordingly, previous findings have also demonstrated that HO-1 was
highly expressed under hypoxic conditions in colorectal cancer [56].

Recently, it has been suggested that a non-canonical function of HO-1 is directly linked
to its nuclear translocation. More specifically, it has been demonstrated that HO-1 nuclear
expression in hypoxic conditions is linked to chemoresistance or tumor progression in
myeloid leukemia cells and human head and neck squamous cell carcinoma [57,58]. HO-1
nuclear expression under hypoxia is linked to antioxidant-responsive promoter activation
as well as transcription factor induction, which in turn regulate HO-1 expression [24,59,60].
In the present investigation, we have reported significant evidence showing an increased
HO-1 immunoreactivity at nuclear levels, especially in U87MG cells exposed to a hypoxic
microenvironment; on the contrary, no nuclear translocation was detected in A172 cells
characterized by a less malignant phenotype. These data suggest that HO-1 nuclear
expression in hypoxic conditions is related to cancer malignancy.

Based on data present in the literature [22,61], we support here the existing hypothesis
that HO-1’s nuclear expression is strictly linked to the regulation of gene transcription, in-
cluding induction of HIF-1α, which promotes tumor progression. Thus, the HO-1 promoter,
HMOX1, contains sites for various transcription factors activated under oxidative stress con-
ditions, including HIF-1α, making HO-1 part of the cellular response to hypoxia [23,25]. It
is known that HIF is an important metabolic regulator associated with glucose-6-phosphate
dehydrogenase (G6PD) [62], but it is also known, based on literature findings on the corre-
lation between HIF-1α and NAD(P)H Quinone Dehydrogenase 1 (NQO1), that increased
expression of the transcriptional factor is observed to be accompanied by an increase of
NQO1. Thus, it is plausible to conclude that the compound VP18/58’s inhibitory activ-
ity towards both HIF-α and HO-1 should reflect inhibition of downstream gene/protein
expression of this factor together with pentose-phosphate-pathway-related genes [62–65].

The upregulation of HO-1 has been also related to the migratory abilities and metas-
tasis formation of non-small-cell lung cancer, pancreatic cancer, and oral squamous cell
carcinoma [66–68]. Therefore, the use of many pharmacological inhibitors of HO-1, includ-
ing metalloporphyrins, modified protoporphyrins, or imidazole-based compounds, has
been proposed to improve cancer cells’ response to conventional therapy [25]. Because
competitive HO-1 inhibitors, such as metalloporphyrins, showed poor selectivity towards
other heme-containing enzymes and HO-1 upstream induction phenomena, the medicinal
chemistry research focused on the development of non-competitive HO-1 inhibitors, such
as azole-based derivatives. As a consequence, there has been increasing attention paid
to the identification and/or rational design of new non-porphyrinic HO-1 enzyme in-
hibitors [44,69,70]. Fallica et al. recently designed, synthesized, and tested a new battery of
acetamide-based HO-1 inhibitors endowed with strong antiproliferative activity against a
panel of tumoral cells, including lung, prostate, and GBM cells [44]. Among these, VP18/58
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was selected because it was able to significantly reduce GBM cancer cell viability and
counteract the enzymatic activity of HO-1. Based on these findings, in the current study,
we have further characterized the molecular mechanism underlying VP18/58’s effects in
GBM cells.

It is well-known that tumor invasiveness is strictly linked to the induction of the
hypoxic–angiogenic pathway. In this regard, it has been reported that increased levels of
HO-1 are paralleled with the increased levels of HIF-1α and induction of its downstream
target gene, VEGF, in bladder cancer [71]. Moreover, it has been demonstrated that HO-
1 inhibitor Zinc protoporphyrin was able to reduce colorectal cancer cell proliferation
and migration by decreasing HIF-1α and VEGF levels [56]. In line with this, we have
confirmed a correlation between HO-1, HIF-1α and VEGF in human GBM cells. These
factors, overexpressed in GBM cells exposed to a hypoxic microenvironment [72,73], were
significantly downregulated by VP18/58 treatment in a tumorigenic cell line (U87MG).
Conversely, exogenous administration of VP18/58 to hypoxia-exposed A172 cells reduced
HO-1 levels, whereas it did not exert any modulatory effect on HIF-1α and VEGF expression.
These results were deepened by immunofluorescence analyses that have also revealed
inhibition of HO-1 nuclear expression after VP18/58 treatment in cells bearing a more
malignant phenotype, U87MG. This molecule also counteracted the migration rate of
U87MG cells exposed to hypoxia. This result is supported by studies showing that HO-1
upregulation represents a molecular mechanism to maintain homeostasis by sustaining
cell proliferation and migration [74,75]. Therefore, the strong inhibition of HO-1 could
be directly responsible for lower cell invasiveness recorded in the DFX-treated group.
VP18/58, being non-competitive and non-structurally related to the heme HO-1 inhibitor,
shows different effects on protein expression. It is known that canonical inhibitors of HO
catalytic activity, such as metalloporphyrin (e.g., SnMP, ZnPP, SnPP) [76], usually show
an increasing effect on HO-1 protein expression; however, this behavior can give rise to
opposite effects limiting these compounds’ clinical use. Here, we analyzed the effect of
a novel inhibitor whose efficacy is probably correlated to its ability to reduce both the
catalytic activity and protein expression of HO-1, which is found to be overexpressed in
glioblastoma. We observed an interesting ability of VP18/58 to reduce HIF-1α expression;
thus, we hypothesize that in vitro HO-1 protein reduction may be HIF-1α-dependent.

Although further studies are needed to better characterize the effects of the compound
VP18/58, in the present investigation, we have demonstrated that this novel inhibitor
exerts its activity by downregulating the hypoxic–angiogenic pathway in GBM, playing a
crucial role in counteracting cell cancer migration depending on cell phenotype. Therefore,
targeting HO-1 could be suggested as a novel strategy to improve cancer cell sensitivity to
conventional pharmacological approaches.

4. Materials and Methods
4.1. Human GBM Cell Lines and Treatments

Human GBM cell lines, U87MG (cat. no. HTB-14) and A172 (cat. no. CRL-1620),
were purchased from the American Type Culture Collection (ATCC). Cells were cultured
as previously described [50]. To mimic hypoxia, we used a hypoxia-mimetic iron chelator,
deferoxamine (DFX) (100 µM; Sigma-Aldrich, St. Louis, MO, USA). The use of exogenous
administration of DFX, representing a hypoxia-mimetic iron chelator, offers the advantage
of allowing the experimenter to open the culture plate or dish numerous times without
altering the hypoxic conditions compared to the cell incubation method in the hypoxic
chamber. Cells were treated with a novel acetamide-based HO-1 inhibitor named VP18/58
(10 µM), listed as 7l in a previous paper [44].

4.2. Cell Viability Assay

Cell viability was assessed using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium
bromide salt (MTT) (Sigma-Aldrich), as previously described [77]. Briefly, U87MG and
A172 GBM cells were seeded in 96-well plates at a density of 1 × 104 cells/well in 100 µL
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of culture medium for 24 h. Subsequently, cells were treated with eight different concen-
trations of VP18/58 (1 nM, 10 nM, 50 nM, 100 nM, 1 µM, 10 µM, 50 µM, 100 µM) for 24 h,
and then the medium was replaced with a fresh medium with MTT salt added to each
well for 3 h. Finally, dimethyl sulfoxide (DMSO) was used to dissolve formazan salts,
and absorbance was measured at 570 nm using a microplate reader (Biotek Synergy-HT,
Winooski, VT, USA). Six replicate wells were used for each group.

4.3. Wound-Healing Assay

Human GBM cells (U87MG and A172) were cultured in six-well dishes, and, after
reaching the confluence, they were scratched with a 200 µL pipette tip. Each well was
washed with PBS solution. Then, the cells were cultured in a medium containing DFX
with or without VP18/58 compound for 24 h. A quantitative valuation of the wound area
was executed as previously described [78]. Original microphotographs are reported in
Supplementary File S2.

4.4. Western Blot Analysis

Proteins were extracted by using RIPA buffer with a protease inhibitor cocktail (Roche
Diagnostics, Basilea, Switzerland). The cell lysates’ protein concentration was calculated us-
ing the Quant-iT Protein Assay kit (cat. no. Q33211; Invitrogen, Carlsbad, CA, USA). About
a 36 µg of each protein homogenate was processed to be separated through electrophoresis
on Precast Protein Gels (cat. no. 4561084), as previously described [79]. The primary
antibodies used were rabbit anti-HO-1 (1:200) (GeneTex, Irvine, CA, USA, GTX101147),
mouse anti-HIF-1α (1:200) (NB 100-105), goat polyclonal anti-VEGF (1:200, cat. no. sc-1836),
and rabbit polyclonal anti-β-actin (GeneTex GTX109639). The secondary antibodies used
were goat anti-rabbit IRDye 800CW (1:20,000, cat. no. 926-32211) and goat anti-mouse
IRDye 680CW (1:30,000, cat. no. 926-68020D; LI-COR Bio-sciences, Lincoln, NE, USA).
The membranes, 1 h after secondary antibody incubation, were scanned with the Odyssey
Infrared Imaging System, and ImageJ software (NIH, Bethesda, MD, USA; available at
http://rsb.info.nih.gov/ij/index.html, accessed on 2 May 2024) was used to analyze blot
density. The β-actin was used as a loading control. Original images are reported in
Supplementary File S1.

4.5. Immunofluorescence Assay

The human glioblastoma cell lines U87MG and A172 were cultured on glass coverslips
and processed to perform immunofluorescence analysis as previously described by [80],
allowing for the detection of HO-1 and HIF-1α distribution. The secondary antibodies
used were Alexa Fluor 488-conjugated goat anti-rabbit (1:20,000; Catalog #A-11008, Life
Technologies, Milano San Felice, Italy) or Alexa Fluor 594-conjugated goat anti-mouse
(1:30,000; Catalog #A-21203, Life Technologies). Cell nuclei were stained with diamidino-
2-phenylindole, DAPI (blue fluorescence). Immunolocalization was analyzed through
confocal laser scanning microscopy (Zeiss LSM700, Oberkochen, Germany). All acquisi-
tions were performed with ZEN-2010 software (https://zen-2010.software.informer.com/,
accessed on 2 May 2024) (Zeiss Germany). Original microphotographs are reported in
Supplementary File S3.

4.6. Statistical Analysis

Data are reported as mean ± S.E.M. Statistical significance was assessed via an un-
paired two-tailed Student’s t-test to compare the differences between two experimental
groups or through One-Way Analysis of Variance (ANOVA) to compare differences among
three or more groups, and statistical significance was assessed using the Tukey–Kramer
post hoc test. The level of significance for all statistical tests was p ≤ 0.05.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms25105389/s1.
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