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Abstract: The synthesis, antioxidant capacity, and anti-inflammatory activity of four novel N-benzyl-
2-[4-(aryl)-1H-1,2,3-triazol-1-yl]ethan-1-imine oxides 10a–d are reported herein. The nitrones 10a–d
were tested for their antioxidant properties and their ability to inhibit soybean lipoxygenase (LOX).
Four diverse antioxidant tests were used for in vitro antioxidant assays, namely, interaction with the
stable free radical DPPH (1,1-diphenyl-2-picrylhydrazyl radical) as well as with the water-soluble azo
compound AAPH (2,2′-azobis(2-amidinopropane) dihydrochloride), competition with DMSO for hy-
droxyl radicals, and the scavenging of cationic radical ABTS•+ (2,2′-azino-bis(3-ethylbenzothiazoline-
6-sulfonate) radical cation). Nitrones 10b, 10c, and 10d, having the 4-fluorophenyl, 2,4-difluorophenyl,
and 4-fluoro-3-methylphenyl motif, respectively, exhibited high interaction with DPPH (64.5–81%
after 20 min; 79–96% after 60 min), whereas nitrone 10a with unfunctionalized phenyl group showed
the lowest inhibitory potency (57% after 20 min, 78% after 60 min). Nitrones 10a and 10d, decorated
with phenyl and 4-fluoro-3-methylphenyl motif, respectively, appeared the most potent inhibitors
of lipid peroxidation. The results obtained from radical cation ABTS•+ were not significant, since
all tested compounds 10a–d showed negligible activity (8–46%), much lower than Trolox (91%).
Nitrone 10c, bearing the 2,4-difluorophenyl motif, was found to be the most potent LOX inhibitor
(IC50 = 10 µM).

Keywords: anti-inflammatory activities; antioxidant activities; lipoxygenase inhibitors; lipid peroxi-
dation; nitrones; synthesis

1. Introduction

Oxidative stress (OS) is a state of imbalance between the production and accumulation
of free oxygen radicals in cells and tissues and the ability of the antioxidant system to
remove them [1]. Antioxidants are chemical compounds that effectively neutralize the
formation of free radicals. Their task is primarily to protect the body against free radicals,
the excess of which may increase the risk of inflammation, arteriosclerosis, heart attacks,
stroke, as well as neurodegenerative diseases (e.g., Parkinson’s and Alzheimer’s), among
others [2–4]. The action of antioxidants is multidirectional, however, and the individual
antioxidants differ in their mode of action. They may act either by multiple mechanisms or
by a predominant mechanism [5–7]. Moreover, the biological importance of antioxidants is
closely related to understanding the mechanisms of their action, which in turn determines
the possibility of their practical use.

A vast number of natural and synthetic compounds have been tested for their an-
tioxidant properties over decades. Among them, nitrogen-containing five-membered
heterocyclic compounds, including 1,2,3- and 1,2,4-triazoles [8,9], are of special importance
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due to the relatively simple method for their preparation and the possibility to modify their
structure by incorporation into the more complex molecules (Figure 1). For example, the
hybrids of functionalized 1,2,4-triazoles and phenothiazone 1 (Figure 1) appeared to be
good antioxidants [10]. Furthermore, 1,2,4-triazoles 2 (Figure 1) conjugated with two other
heterocyclic systems, namely benzimidazole and thiophene, have been recognized to ex-
hibit very good (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) (ABTS) scavenging
activity [11]. Compound 3 (Figure 1) showed high 1, 1-diphenyl-2-picrylhydrazyl radical
(DPPH) scavenging activity with the percent inhibition of 93.751 ± 0.47 at a concentration
of 100 µg/mL, and with IC50 value 7.12 ± 2.32 µg/mL was found to be more active than
the standard antioxidant BHA (butylated hydroxyanisole) [12]. 4H-Chromene-containing
1,2,3-triazoles 4 (Figure 1) showed good antioxidant activity by DPPH and hydrogen perox-
ide radical scavenging methods [13]. Moreover, 1,2,3-triazoles containing both pyrazole
and thiazole moieties 5 (Figure 1) have also been recognized as potent DPPH scavenging
agents [14]. Ferrocene-1H-1,2,3-triazole hybrids 6 and 7 (Figure 1) exhibit antioxidant
effects on mitochondrial free radicals and anti-inflammatory effects on rat mesangial cells
(RMCs) [15].
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Figure 1. Structures of selected 1,2,4- and 1,2,3-triazole-containing compounds 1–7 with antioxidant
activity.

Recently, we have investigated the antioxidant capacity of N-[2-(4-aryl-1H-1,2,3-triazol-
1-yl)ethylidene]methanamine oxides 8 and N-[2-(4-aryl-1H-1,2,3-triazol-1-yl)ethylidene]-2-
methylpropan-2-amine oxides 9 (Figure 2) [16]. Among all the tested nitrones, N-tert-butyl
derivatives 9 (Figure 2) having the 4-fluorophenyl, 2,4-difluorophenyl, and 4-fluoro-3-



Int. J. Mol. Sci. 2024, 25, 5908 3 of 10

methylphenyl substituents at C4 in 1,2,3-triazole moiety appeared the most potent hy-
droxyl radical scavengers (~100%), more potent than Trolox (88%), used as a reference
compound. Moreover, N-{2-[4-(4-fluoro-3-methylphenyl)-1H-1,2,3-triazol-1-yl]ethylidene}-
2-methylpropan-2-amine oxide 9 (R = t-Bu, Ar = 3-Me-4-F-C6H3) (Figure 2) was identi-
fied as the most balanced and potent antioxidant agent, since it was an extremely effi-
cient and potent hydroxyl radical scavenger, the most potent 5-lipoxygenase (LOX) in-
hibitor, and one of the most potent lipid peroxidation inhibitors (LPis) and 2,2′-azino-bis(3-
ethylbenzothiazoline-6-sulfonate) radical cation (ABTS•+) scavenger of the whole series of
the tested nitrones.
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Figure 2. Structures of the compounds 8 and 9 encountered in the previous work [16].

In continuation to our studies to identify new nitrones for the therapy for pathological
inflammation and oxidative stress (OS), the nitrones 10a–d (Figure 3), N-benzyl analogs
of the previously reported compounds 8 and 9 [16] (Figure 2), have been synthesized
with the intention of testing their antioxidant potency. The newly prepared series of
compounds contains unfunctionalized nitrone 10a as well as derivatives substituted at
the C4 of 1,2,3-triazole moiety with 4-fluorophenyl (10b), 2,4-difluorophenyl (10c), and 4-
fluoro-3-methylphenyl (10d), which were selected from the previously synthesized nitrones
of series 8 and 9 [16] based on their observed antioxidant activity.
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Figure 3. Structures of the nitrones 10a–d reported in the present work.

2. Results and Discussion
2.1. Chemistry

Nitrones 10a–d were prepared following the reactions shown in Scheme 1 as previously
described [16], by reacting aldehydes 11a–b with N-benzylhydroxylamine. The progress of
the reaction was monitored by TLC and the full conversion of the aldehydes 11a–b into
respective nitrones 10 was achieved within 15 min, at room temperature (rt). All final
products were purified by crystallization and their structure and purities were established
by 1H, 13C, and 19F NMR (Supplementary Materials, Figures S1–S11), and IR techniques
and by elemental analysis (Section 3). In particular, nitrones 10a–d were isolated as pure Z-
stereoisomers at the double bond (CH=N), as determined and confirmed by the presence of
the single sets of the diagnostic signals of the respective protons CH=N (δ = 7.12–7.15 ppm)
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and CH2Ph (δ = 4.97–5.00 ppm) in the 1H NMR spectra of 10a–d. Based on a comparison of
the literature data for other acyclic nitrones [17], Z-configuration was assigned for (Z)-10a–
d; however, the corresponding signals for the E-isomeric nitrones necessary to provide full
correlation were not observed.
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Scheme 1. Synthesis of nitrones 10a–d. Reagents and conditions: a. details for preparation of aldehydes
11a–d given in [16]; b. BnNHOH × HCl, CH3CO2Na, rt, 15 min.

2.2. In Vitro Antioxidant and Anti-Inflammatory Activity

Herein, we have investigated in vitro the antioxidant evaluation of nitrones 10a–d
with regard to their antioxidant ability as well as to their ability to inhibit soybean LOX on
several diverse antioxidant tests and in comparison to nordihydroguaiaretic acid (NDGA)
and Trolox as standards. All aerobic organisms produce free radicals that can attack and
damage lipids and DNA, inducing neurodegenerative diseases, cancer, and stroke. Since
OS and inflammation present a complex character, we decided to evaluate the in vitro
antioxidant activity of the synthesized molecules using four different antioxidant assays:

(a) Interaction with the stable free radical DPPH;
(b) Interaction with the water-soluble azo compound 2,2′-azobis(2-amidinopropane)

dihydrochloride (AAPH);
(c) Competition with DMSO for hydroxyl radicals;
(d) The scavenging of cationic radical ABTS•+.

All are spectrophotometric measurements which are simple, rapid, and convenient.
DPPH is a stable free radical, advantageous for testing compounds in an ethanolic

solution, which in its oxidized form presents a maximum absorbance at about 517 nm. The
DPPH method is independent of the molecule’s polarity. The reducing activity (RA) of the
examined compounds with the stable free radical DPPH is given in Table 1. This interaction
shows their radical scavenging ability in an iron-free system. Nitrones 10b, 10c, and 10d
highly interact with DPPH (64.5–81%) after 20 min, whereas 10a presents a lower value. In
general, the insertion of a substituent increases the reducing activity (RA). Thus, starting
from 10a, all the other compounds in which one or two fluorine atoms or a fluorine atom
and a methyl group are present, exhibit higher activities. It seems that an acceptor, such as
a fluorine atom, with small molar refractivity (MR) in the para position offers antioxidant
ability. The presence of a second fluorine atom as a substituent, 10c does not influence
the interaction values, whereas a methyl group in meta position acting as a donor lowers
activity (10b > 10d). RA is not influenced by lipophilicity within this nitrones group. The
interaction values are increased for all after 60 min (78–81%), showing time dependency.
For the sake of comparison, NDGA was used as a standard reference compound.
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Table 1. Antioxidant activity of nitrones 10a–d a, and standards Trolox and NDGA.
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10a 1.91 81 57/78 85 µM no 8

10b 2.09 75 81/81 62.5 µM no 46

10c 2.24 32 79/79 10 µM no 23

10d 2.59 87 64.4/79.5 45% no 23

NDGA 3.92 nt 88/96 0.45 µM nd -

Trolox 3.09 93 nd nd 73 91
a nitrones tested at 100 µM. Values are the means of three or four different determinations. no = no activity under
the experimental conditions. Means within each column differ significantly (p < 0.05). b BioByte Corporation,
C-QSAR database, 201 W Fourth Str., Suite # 204, Claremont CA 91711-4707, USA. nd, not determined.

In our studies, the water-soluble azo AAPH was used as a thermal free radical initiator
to induce the oxidative changes of linoleic acid to conjugated diene hydroperoxide. All
nitrones except for 10c presented inhibition values (75–87%) lower than the common stan-
dard Trolox (93%) (Table 1). The compounds 10a and 10d are the most potent. Lipophilicity
seems to play a significant role related to a positive result since the inserted methyl group
in compound 10b (75%) increases the lipophilicity of compound 10d driving it to higher
inhibition (87%). Nitrone 10c having two fluorine atoms and a clogP value of 2.24 exhibits
the lowest anti-lipid peroxidation activity.

Hydroxyl (•OH) free radical is counted as the most toxic. As a result, it reacts with
important biological molecules such as DNA, lipids, or carbohydrates. We found it inter-
esting to test the scavenging activity of the compounds in competition with DMSO. As
shown in Table 1, all the compounds do not exhibit any activity compared to the standard
compound Trolox.

In the ABTS•+ decolorization assay, the tested nitrones showed very low activity,
except for nitrone 10b which is a mono-substituted fluor derivative. The compounds 10c
and 10d exhibit equipotent results, lower activity than 10b (almost the half), and higher
lipophilicity values.

We evaluated the synthesized nitrones for their ability to inhibit soybean LOX by
the UV absorbance-based enzyme protocol, as shown in Table 1 [18]. The appropriate
stimulation of neutrophils cleaves arachidonic acid (AA) from membrane phospholipids,
producing leukotrienes through lipoxygenase. Leukotriene B4 (LTB4) is a potent mediator
of inflammation, considered to be important in the pathogenesis of neutrophil-mediated
inflammatory diseases with a marked relation to the severity of cardiovascular diseases,
stroke, and cancer [19]. The enzyme lipoxygenase catalyzes the first two steps in the
metabolism of AA, which is cleaved from membrane phospholipids to leukotrienes (LTB4).
LTB4 generation is important in the pathogenesis of neutrophil-mediated inflammatory dis-
eases. NDGA, a known inhibitor of soybean LOX, has been used as a reference compound
with IC50 0.45 µM. A perusal of the IC50′s inhibition values (Table 1) shows that the most
potent inhibitors are the compounds 10c (IC50 10 µM), 10b (IC50 62.5 µM), and 10a (IC50
85 µM). Compound 10d presents a lower activity of 45% at 100 µM. The structural moiety
that significantly influences the inhibition in compounds 10b and 10c is the fluorine atom.
In both compounds, this electronegative substituent is present. The most potent nitrone 10c
possesses two fluorine atoms whereas 10b has one. The loss of the second fluorine atom
(10b) lowers the activity as well as the absence of nitrone 10a. Substituents with low bulk,
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such as fluorine, and lipophilic contribution as π values increase the inhibitory activity.
The strong inhibition of 10c could be therapeutically useful in stroke or neurodegeneration
in combination with the high RA (%). It is worth mentioning that the high efficacy of the
fluorinated derivatives of PBN (α-phenyl-N-tert-butyl nitrone), namely 4-F-PBN and 4-CF3-
PBN, for spin-trapping experiments when compared to PBN has been recently described
by Durand and co-workers [20].

3. Materials and Methods
3.1. Chemistry

General information—The 1H, 13C, and NMR spectra were taken in CDCl3 on the
Bruker Avance III spectrometers (600 MHz, Bruker Instruments, Karlsruhe, Germany) with
TMS as the internal standard at 600 and 151 MHz, respectively. The 19F NMR spectra were
recorded in CDCl3 on the Bruker AvanceNEO (Bruker Instruments, Karlsruhe, Germany)
at 565 MHz. The IR spectra were measured on an Infinity MI-60 FT-IR spectrometer
(Bruker Optik GmbH, Ettlingen, Germany). The melting points were determined on a
Boetius apparatus and are uncorrected. The elemental analyses were performed by the
Microanalytical Laboratory of this Faculty on the Perkin-Elmer PE 2400 CHNS analyzer
(Perkin Elmer Corp., Norwalk, CT, USA). The following adsorbents were used: column
chromatography, Merck silica gel 60 (70–230 mesh); analytical TLC, Merck TLC plastic
sheets silica gel 60 F254 (Merck KGaA, Darmstadt, Germany).

The 1H-, 13C-, and 19F-NMR spectra of all the newly synthesized compounds are
provided in Supplementary Materials.

3.2. General Procedure for the Preparation of Nitrones 10a–d

The respective aldehydes 11a–d, obtained directly from corresponding diethyl acetal
according to the previously described procedure [13], were dissolved in ethanol (2 mL),
and CH3CO2Na (1.3 mmol) was added followed by N-benzylhydoxylamine hydrochloride
(1.1 mmol). The reaction mixture was stirred until the disappearance of the starting alde-
hyde was noticed on TLC. After that, 10% NaHCO3 was added (5 mL) and the product was
extracted with methylene chloride (3 × 5 mL). The organic extracts were combined, dried
(MgSO4), concentrated, and crystallized from diethyl ether to give the pure nitrone 10a–d.

3.2.1. N-Benzyl-2-(4-phenyl-1H-1,2,3-triazol-1-yl)ethan-1-imine Oxide (10a)

Yield 79%; white amorphous solid; m.p. 134–136 ◦C (recrystallized from diethyl ether);
IR (KBr, cm–1) νmax: 3398, 3347, 3130, 3033, 2948, 764, and 696. 1H NMR (600 MHz, CDCl3):
δ = 7.95 (s, 1H, HC5′), 7.84 (d, J = 7.3 Hz, 2H, Haromat.), 7.46–7.43 (m, 7H, Haromat.), 7.37 (t, J
= 7.3 Hz, 1H, Haromat.), 7.14 (t, J = 5.4 Hz, 1H, =CHCH2), 5.36 (d, J = 5.4 Hz, 2H, =CHCH2),
and 4.97 (s, 2H, CH2Ph); 13C NMR (151 MHz, CDCl3): δ = 148.12, 131.66, 130.93, 130.29,
129.56, 129.21, 128.86, 128.31, 125.78, 120.95, 69.80, and 45.78. Anal. calcd. for C17H16N4O
× 0.5H2O: C, 67.76; H, 5.69; N, 18.59. Found: C, 67.55; H, 5.60; N, 18.34.

3.2.2. N-Benzyl-2-[4-(4-fluorophenyl)-1H-1,2,3-triazol-1-yl]ethan-1-imine Oxide (10b)

Yield 93%; white amorphous solid; m.p. 129–131 ◦C (recrystallized from diethyl ether);
IR (KBr, cm–1) νmax: 3321, 3094, 3074, 2956, and 835. 1H NMR (600 MHz, CDCl3): δ = 7.95
(s, 1H, HC5′), 7.82–7.79 (m, 2H, Haromat.), 7.45–7.43 (m, 5H, Haromat.), 7.15–7.13 (m, 3H,
2 × Haromat., =CHCH2), 5.38 (d, J = 5.5 Hz, 2H, =CHCH2), and 4.99 (s, 2H, CH2Ph); 13C
NMR (151 MHz, CDCl3): δ = 162.78 (d, J = 246.6 Hz), 147.23, 131.63, 130.69, 129.56, 129.21,
127.52 (d, J = 7.8 Hz), 126.52 (d, J = 3.5 Hz), 120.75, 115.86 (d, J = 21.8 Hz), 69.85, and 45.69;
19F NMR (565 MHz, CDCl3): δ = −113.30–−113.35 (m). Anal. calcd. for C17H15FN4O ×
0.5H2O: C, 63.94; H, 5.05; N, 17.54. Found: C, 63.80; H, 4.91; N, 17.44.

3.2.3. N-Benzyl-2-[4-(2,4-difluorophenyl)-1H-1,2,3-triazol-1-yl]ethan-1-imine Oxide (10c)

Yield 78%; white amorphous solid; m.p. 112–113 ◦C (recrystallized from diethyl
ether); IR (KBr, cm–1) νmax: 3321, 3158, 3030, 2939, 2904, and 736. 1H NMR (600 MHz,
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CDCl3): δ = 8.27 (dt, J = 8.4 Hz, J = 6.4 Hz, 1H), 8.06 (d, J = 3.6 Hz, 1H), 7.44 (s, 5H), 7.12
(t, J = 5.4 Hz, 1H), 7.05–7.00 (m, 1H), 6.93 (ddd, J = 10.7 Hz, J = 8.4 Hz, J = 2.5 Hz, 1H),
5.41 (d, J = 5.4 Hz, 2H), and 5.00 (s, 2H, CH2Ph); 13C NMR (151 MHz, CDCl3): δ = 162.64
(dd, J = 250.4 Hz, J = 11.9 Hz), 159.28 (dd, J = 250.7 Hz, J = 11.9 Hz), 140.89 (d, J = 2.0 Hz),
131.62, 130.79, 129.59, 129.22, 128.80 (dd, J = 9.5 Hz, J = 4.7 Hz), 123.46 (d, J = 12.1 Hz),
112.04 (dd, J = 21.7 Hz, J = 4.1 Hz), 104.16 (dd, J = 25.9 Hz, J = 25.2 Hz), 69.79, and 46.03;
19F NMR (565 MHz, CDCl3): δ = −109.93–−110.01 (m), −110.70–−110.76 (m). Anal. calcd.
for C17H14F2N4O × 2H2O: C, 56.04; H, 4.98; N, 15.38. Found: C, 56.18; H, 5.01; N, 15.41.

3.2.4. N-Benzyl-2-[4-(4-fluoro-3-methylphenyl)-1H-1,2,3-triazol-1-yl]ethan-1-imine
Oxide (10d)

Yield 85%; white amorphous solid; m.p. 131–133 ◦C (recrystallized from diethyl ether);
IR (KBr, cm–1) νmax: 3320, 3136, 3036, 2935, 820, and 736. 1H NMR (600 MHz, CDCl3):
δ = 7.93 (s, 1H), 7.68 (dd, J = 7.3 Hz, J = 1.6 Hz, 1H), 7.60–7.57 (m, 1H), 7.46–7.41 (m, 5H.),
7.13 (t, J = 5.5 Hz, 1H), 7.07 (t, J = 8.9 Hz, 1H), 5.37 (d, J = 5.5 Hz, 2H), 4.99 (s, 2H, CH2Ph),
and 2.35 (d, J = 1.7 Hz, 3H); 13C NMR (151 MHz, CDCl3): δ = 161.35 (d, J = 246.6 Hz),
147.43, 131.61, 130.82, 129.59, 129.22, 128.94 (d, J = 5.4 Hz), 126.12 (d, J = 4.1 Hz), 125.43 (d,
J = 18.4 Hz), 124.44 (d, J = 8.0 Hz), 120.68, 115.46 (d, J = 22.7 Hz), 69.83, 45.70, and 14.56
(d, J = 3.3 Hz); 19F NMR (565 MHz, CDCl3): δ = −117.65–−117.89 (br m). Anal. calcd. for
C18H17FN4O × H2O: C, 63.15; H, 5.59; N, 16.36. Found: C, 63.18; H, 5.46; N, 16.32.

3.3. In Vitro Assays

General biological assays: NDGA, Trolox, AAPH, and DPPH soybean LOX linoleic
acid sodium salt were purchased from the Aldrich Chemical Co., Milwaukee, WI, USA.
The phosphate buffer (0.1 M and pH 7.4) was prepared by mixing an aqueous KH2PO4
solution (50 mL, 0.2 M), and an aqueous NaOH solution (78 mL, 0.1 M); the pH (7.4) was
adjusted by adding a solution of KH2PO4 or NaOH. For the in vitro tests, a Lambda 20
(Perkin–Elmer-PharmaSpec 1700, Perkin-Elmer Corporation Ltd., Lan Beaconsfield, Bucks,
UK) UV–Vis double beam spectrophotometer was used. Each in vitro experiment was
performed at least in triplicate and the standard deviation of absorbance was less than 10%
of the mean.

3.3.1. Determination of the RA of the Stable Radical DPPH [21]

To an ethanolic solution of DPPH (0.05 mM) in absolute ethanol, 10 µL from a stock
solution (10 mM) in the DMSO of the compounds was added. The mixture was shaken
vigorously and allowed to stand for 20 min or 60 min; absorbance at 517 nm was deter-
mined spectrophotometrically and the percentage of activity was calculated. All tests were
undertaken on three or four replicates and the results were averaged (Table 1). NDGA was
used as a reference compound.

3.3.2. Soybean LOX Inhibition Study In Vitro [22]

The tested compounds dissolved in DMSO were incubated at rt with sodium linoleate
(0.1 mL) and 0.2 mL of the enzyme solution (1/9 × 10−4 w/v in saline) in buffer Tris pH 9.
The conversion of sodium linoleate to 13-hydroperoxylinoleic acid at 234 nm was recorded
and compared with NDGA, the appropriate standard inhibitor (Table 1).

3.3.3. Inhibition of Linoleic Acid Lipid Peroxidation [16]

Ten microliters of the 16 mM linoleic acid sodium salt solution were added to the
UV cuvette containing 0.93 mL of the 0.05 M phosphate buffer, pH 7.4 prethermostated
at 37 ◦C. The oxidation reaction was initiated at 37 ◦C under air by the addition of 50 µL
of the 40 mM AAPH solution. Oxidation was carried out in the presence of 10 µL of the
compounds’ stock 10 mM solution in DMSO, in the assay. Lipid oxidation was measured
in the presence of the same level of DMSO. The rate of oxidation at 37 ◦C was recorded as
the absorption values at 234 nm and compared to Trolox (Table 1).
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3.3.4. Competition of the Tested Compounds with DMSO for Hydroxyl Radicals [23]

The hydroxyl radicals were produced by the Fe3+/ascorbic acid system and detected
by the determination of the formaldehyde produced from the oxidation of DMSO. EDTA
(0.1 mM), Fe3+ (167 µM), DMSO (33 mM) in phosphate buffer (50 mM, pH 7.4), the tested
compounds (100 µM) and ascorbic acid (10 mM) were inserted, mixed, and incubated in
test tubes at 37 ◦C for 30 min. The reaction was stopped by CCl3COOH (17% w/v) and the
% scavenging activity of the nitrones for hydroxyl radicals was recorded. Trolox was used
as a positive control (Table 1).

3.3.5. ABTS•+–Decolorization Assay in Ethanolic Solution for Antioxidant Activity [23]

ABTS•+ was produced according to the described procedure as follows. An ABTS
stock solution in water (7 mM) was mixed with potassium persulfate (2.45 mM) and left
in a dark at room temperature for 12–16 h before use. A total of 10 µL of the investigated
compounds were added to ethanol together with the cationic radical. The results were
taken at 734 nm, after 1 min of the mixing procedure. Trolox was used as a positive standard
(Table 1).

3.3.6. Estimation of Lipophilicity as Clog P

Bioloom of Biobyte Corp was used for the theoretical calculation of lipophilicity
as Clog P values (BioByte Home Page. Available online: http://www.biobyte.com, ac-
cessed on 1 April 2024). We followed this procedure because lipophilicity is an important
physicochemical property related to the biological activity and Absorbance–Distribution–
Metabolism–Toxicity (ADMET) properties.

4. Conclusions

The synthesized nitrones 10a–d were evaluated for their antioxidant activity using
different in vitro techniques. Their anti-inflammatory activity was also tested. Thus, the
inhibition of soybean LOX was developed as an indication of their anti-inflammatory
effect. The in vitro results revealed that compound 10c is the most promising LOX inhibitor
(IC50 = 10 µM) combining a significant anti-lipid peroxidation activity (79%). It seems that
10c could be a promising lead compound to confront inflammatory diseases where OS has
been identified to be crucial. Further research is now in progress in our laboratory and will
be reported elsewhere.
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AAPH, 2,2′-Azobis(2-amidinopropane) dihydrochloride; ABTS: 2,2′-azino-bis(3-ethylbenzothiazoline-6-
sulfonic acid); ABTS•+, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate) radical cation; ADMET, Absorbance–
Distribution–Metabolism–Toxicity; BHA, butylated hydroxyanisole; DMSO, Dimethyl sulfoxide; DPPH,
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dation; LOX, lipoxygenase; LPis, lipid peroxidation inhibitors; LTB4, leukotriene B4; MR, molar refractivity;
NDGA, Nordihydroguaretic acid; OS, oxidative stress; PBN, α-phenyl-N-tert-butyl nitrone; RA, reducing
activity; RMCs, rat mesangial cells.
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