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Abstract: Global warming has caused such problems as the poor coloration of grape skin and the
decreased production of high-quality berries. We investigated the effect of synephrine (Syn) on
anthocyanin accumulation. Anthocyanin accumulation in cultured grape cells treated with Syn at
concentrations of 1 mM or higher showed no significant difference, indicating that the accumulation
was concentration-independent. On the other hand, anthocyanin accumulation was dependent on
the compound used for treatment. The sugar/acid ratio of the juice from berries treated with Syn
did not differ from the control. The expression of anthocyanin-biosynthesis-related genes, but not
phytohormones, was increased by the treatment with Syn at 24 h or later. The Syn treatment of
cultured cells increased SOD3 expression and hydrogen peroxide (H2O2) production from 3 to 24 h
after treatment. Subsequently, the expression of CAT and APX6 encoding H2O2-scavenging enzymes
was also increased. Treatment of cultured cells with Syn and H2O2 increased the expression of
the H2O2-responsive gene Chit4 and the anthocyanin-biosynthesis-related genes mybA1 and UFGT
4 days after the treatment and increased anthocyanin accumulation 7 days after the treatment. On the
other hand, the treatment of berries with Syn and H2O2 increased anthocyanin accumulation after
9 days. These results suggest that Syn increases anthocyanin accumulation through H2O2 production
without changing phytohormone biosynthesis. Syn is expected to improve grape skin coloration and
contribute to high-quality berry production.

Keywords: CAT; Chit4; global warming; grape skin coloration; high-quality grape; mybA1; sugar/acid
ratio; SOD3; UFGT

1. Introduction

Preventing the global-warming-induced decrease in crop quality is an urgent issue.
Grapevine (Vitis spp.) is an economically important plant widely grown globally for
wine production and consumption as table grapes. The increase in average temperature
due to global warming has decreased grape skin coloration by inhibiting anthocyanin
accumulation [1,2]. It is predicted that further increases in average temperature would
cause significant economic damage not only to grape growers but also the winemaking
industry [3]. Thus, it is necessary to prevent the decrease in grape skin coloration due to
global warming.

Simple cultivation techniques for preventing grape skin coloration decrease are de-
sired because the existing methods, such as girdling [4], leaf removal [5,6], and cluster
thinning [7], require specific skills and intensive labor. The direct application of biologically
active compounds that increase grape skin coloration, such as allantoin [8], amino acids [9],
and vanillyl acetone [10], has stirred up interest in recent years. Therefore, we screened for
biologically active compounds and found that synephrine (Syn) increases grape skin col-
oration (Enoki, personal communication). Syn (4-[1-hydroxy-2-(methylamino)ethyl]phenol)
is an alkaloid with a phenethylamine skeleton. It is found in some orange species [11,12]
and used as a dietary supplement because of its lipolytic effect [13,14]. However, there are
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no reports on its effects on crops. To develop new technology for increasing grape skin
coloration during ripening, it is necessary to examine and clarify the mechanism of the
coloration effect of Syn.

Such phytohormones as abscisic acid (ABA), ethylene (ET), and jasmonic acid (JA)
increase berry skin coloration in response to sunlight [15], water [16], and temperature [17].
For example, ABA and ET promote ripening [8,10,18,19], which is characterized by antho-
cyanin accumulation and increased sugar content in the berry, whereas JA increases disease
resistance but increases anthocyanin accumulation as a side effect [20]. ABA, but not ET,
increases anthocyanin accumulation during grape berry ripening [4,21–26]. Therefore, we
hypothesize that Syn increases grape skin coloration via ABA.

In this study, we clarified the mechanism of Syn-mediated skin coloration for grape
quality improvement. We performed field studies on the coloration effects of Syn and
measured gene expression in berries and cultured cells. Contrary to our hypothesis,
we found that Syn increases anthocyanin accumulation via the production of hydrogen
peroxide (H2O2), not phytohormones. We propose a mechanism underlying Syn-mediated
grape skin coloration and discuss the coloration effect of H2O2.

2. Results
2.1. Syn Increases Anthocyanin Accumulation in VR Cells

We used VR (Vitis Red) cells to investigate the effect of Syn on anthocyanin accu-
mulation (Figure 1). Anthocyanin content was significantly higher in VR cells treated
with Syn concentrations of 1 mM or higher than in the control (n = 3, Tukey, p < 0.01
or 0.05; Figure 1a). We found no significant difference among VR cells treated with Syn
concentrations of 1 mM or higher.

Syn is biosynthesized through the phenylalanine (Phe) and tyrosine (Tyro) pathways
via L-(-)-tyrosine (L-Tyro), tyramine (Tyra), and octopamine hydrochloride (Oct) using Phe
as the substrate [27]. Anthocyanin accumulation tended to decrease in the order of Phe,
Syn, Oct, Tyra, and L-Tyro treatments. Anthocyanin contents were significantly higher
in Syn- and Phe-treated VR cells than in the control (n = 3, Dunnett, p < 0.05 or 0.01;
Figure 1b). The results indicate that Syn increased anthocyanin accumulation in VR cells in
a concentration-independent and molecular-structure-specific manner.
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Figure 1. Effects of Syn on anthocyanin accumulation in VR cells. (a) Effects of Syn at concentrations 

of 0, 0.01, 0.1, 1, 5, and 10 mM on anthocyanin accumulation. Different letters (a,b) above the bar graphs 

indicate statistically significant differences (Tukey, p < 0.01 or 0.05). (b) Effects of Phe, L-Tyro, Tyra, 

Oct, and Syn (each 5 mM) on anthocyanin accumulation. * and ** indicate significant differences at p < 
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Figure 1. Effects of Syn on anthocyanin accumulation in VR cells. (a) Effects of Syn at concentrations
of 0, 0.01, 0.1, 1, 5, and 10 mM on anthocyanin accumulation. Different letters (a,b) above the bar
graphs indicate statistically significant differences (Tukey, p < 0.01 or 0.05). (b) Effects of Phe, L-
Tyro, Tyra, Oct, and Syn (each 5 mM) on anthocyanin accumulation. * and ** indicate significant
differences at p < 0.05 and 0.01, respectively, relative to control (Dunnett). VR cells were cultured at
27 ◦C, 54.2 µmol m−2 s−1/16 h/day for 7 days. Data are shown as means ± S.E. for three biological
replicates (n = 3).

2.2. Syn Increases Anthocyanin Accumulation in Grape Skin in Field Trials

We investigated whether Syn promotes grape ripening in the field by conducting field
trials in 2019 and 2021 (Figure 2a). In 2019, anthocyanin content was significantly higher
in Syn-treated berries than in the control on days 10 and 20 after treatment (n = 3, t-test,
p < 0.01 or 0.05; Figure 2b). Similarly, in 2021, anthocyanin content was significantly higher
in Syn-treated berries than in the control on day 20 after treatment (n = 3, t-test, p < 0.01;
Figure 2c). However, the sugar/acid ratio, a ripeness index, was not significantly different
between Syn-treated berries and the control, even though the scale on the y-axis differed
between the two years (Figure 2d,e). The results indicate that Syn increased anthocyanin
accumulation in grape skin but not berry ripening.
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Figure 2. Effect of Syn on berry quality. Photographs of grape bunches 10 and 20 days after 1 mM
Syn treatment in 2019 and 2021 (a). Anthocyanin content in berry skin (b,c). Sugar/acid ratio of juice
(d,e). Data are shown as means ± SE (n = 3). * indicates significant difference at p < 0.05 and **, at
0.01 (t-test).

2.3. Syn Increases Anthocyanin-Biosynthesis-Related Gene Expression

We measured the expression of genes in anthocyanin-biosynthesis-related pathways
(Figure 3). In the phenylpropanoid biosynthetic pathway, the relative expression of PAL
encoding phenylalanine ammonia-lyase [EC 4.3.1.24] and 4CL encoding 4-coumarate-CoA
ligase [EC 6.2.1.12] was significantly higher (n = 4, t-test, p < 0.01 or 0.05) in Syn-treated VR
cells than in the control at 24 h after treatment or later. In contrast, the relative expression
of C4H encoding cinnamate-4-hydroxylase [EC 1.14.14.91] was significantly higher in Syn-
treated VR cells than in the control at 72 h after treatment or later (n = 4, t-test, p < 0.01
or 0.05).

Upstream of the flavonoid biosynthetic pathway, the relative expression of CHS en-
coding chalcone synthase [EC 2.3.1.74] in Syn-treated VR cells was significantly different
from that in the control only at 72 h after treatment, whereas the relative expression of CHI
encoding chalcone isomerase [EC 5.5.1.6] showed a significant difference as early as 24 h
after treatment (n = 4, t-test, p < 0.01). Midstream of the flavonoid biosynthetic pathway,
the relative expression of F3’H encoding flavonoid 3′-monooxygenase [EC 1.14.14.82] and
F3’5’H encoding flavonoid 3′,5′-hydroxylase [EC 1.14.14.81], which are related to red and
blue anthocyanin pigment biosynthesis, differed in Syn-treated VR cells; F3’H showed a sig-
nificant difference from the control at 48 h after treatment or later, whereas F3’5’H showed
a significant difference at 96 h or later (n = 4, t-test, p < 0.01 or 0.05). The relative expression
of F3H encoding flavanone 3-hydroxylase [EC 1.14.11.9] in Syn-treated VR cells was signifi-
cantly different from that in the control at 48 h after treatment or later (n = 4, t-test, p < 0.01
or 0.05). Downstream, the relative expression of DFR encoding dihydroflavonol 4-reductase
[EC 1.1.1.219] and LDOX encoding leucoanthocyanidin dioxygenase [EC 1.14.20.4] in Syn-
treated cells was significantly different from those in the control at 72 h after treatment
or later (n = 4, t-test, p < 0.01). In the flavonoid biosynthetic pathway, significant differ-
ences in the relative expression levels of these genes were observed in the early stages of
the pathway.
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Figure 3. Expression levels of genes in anthocyanin-biosynthesis-related pathways in Syn-treated VR
cells: PAL, C4H, and 4CL in the phenylpropanoid biosynthetic pathway; CHS, CHI, F3’H, F3’5’H, F3H,
DFR, and LDOX in the flavonoid biosynthetic pathway; and mybA1 and UFGT in the anthocyanin
biosynthetic pathway. VR cells were cultured in a medium containing 5 mM Syn for 120 h (27 ◦C,
54.2 µmol m−2 s−1/16 h/day). Gene expression level was estimated by real-time RT-PCR. Data are
expression levels relative to actin and are shown as means ± S.E. of four biological replicates (n = 4).
* and ** indicate significant differences at p < 0.05 and 0.01, respectively (t-test).

The relative expression of UFGT encoding UDP-glucose:anthocyanidin/flavonol 3-
O-glucosyltransferase [EC 2.4.1.115], a key enzyme in the anthocyanin biosynthetic path-
way [28], and its transcription factor mybA1 encoding Myb-related transcription factor
A1 [29] was analyzed. The relative expression of mybA1 in Syn-treated VR cells was signif-
icantly higher than that in the control from 24 h after treatment, and that of UFGT from
48 h after treatment (n = 4, t-test, p < 0.01 or 0.05). Overall, the results demonstrate that
Syn increased the expression of genes in the anthocyanin-biosynthesis-related pathways as
early as 24 h after treatment.



Int. J. Mol. Sci. 2024, 25, 5912 6 of 15

2.4. Syn Does Not Increase the Production of Phytohormones That Promote
Anthocyanin Accumulation

We measured the relative expression of NCED1 encoding 9-cis-epoxycarotenoid dioxy-
genase [EC 1.13.11.51] and ACS3 encoding 1-aminocyclopropane-1 carboxylate synthase
[EC 4.4.1.14], the rate-limiting enzymes of ABA and ET, respectively, in VR cells. We
found that Syn did not increase NECD1 expression or ABA content at 24 h after treatment
(Figure 4a,b). The relative expression of ACS3 in Syn-treated VR cells was not significantly
different from that in the control at 0 and 12 h after treatment but was significantly different
at 24 h after treatment (n = 4, t-test, p < 0.05) (Figure 4c). Because of technical difficul-
ties in the quantification of volatile gas ET, we measured the relative expression level of
ACO2 encoding aminocyclopropanecarboxylate oxidase [EC 1.14.17.4], a key enzyme in
ET biosynthesis, and found that the expression was not significantly different between
Syn-treated VR cells and the control from 0 to 24 h after treatment (Figure 4d).
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Figure 4. Expression levels of phytohormone biosynthesis genes and phytohormone contents in
Syn-treated VR cells. Relative expression level of NECD1 encoding ABA biosynthesis rate-limiting
enzyme (a) and ABA content 24 h after treatment (b). Relative expression levels of ACS3 (c) and
ACO2 (d), which encode the rate-limiting enzyme of the ET biosynthetic pathway and the enzyme
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that biosynthesizes ET, respectively. Relative expression level of LOX encoding JA biosynthesis
rate-limiting enzyme (e) and JA content 24 h after treatment (f). VR cells were cultured for 24 h
(27 ◦C, 54.2 µmol m−2 s−1/16 h/day) in a medium containing 5 mM Syn. Gene expression levels
were estimated by real-time RT-PCR. Data are expression levels relative to actin. Phytohormone
content was determined by ELISA. Data are shown as means ± S.E. of four biological replicates
(n = 4). * indicates significant differences at p < 0.05 (t-test).

We found that the relative expression of LOX encoding linoleate 13S-lipoxygenase
[EC 1.13.11.12], the rate-limiting enzyme in the JA biosynthetic pathway, was significantly
different between Syn-treated VR cells and the control at 12 h after treatment (n = 4, t-test,
p < 0.05, Figure 4e). We also investigated the effect of Syn on the biosynthesis of JA, a
phytohormone that increases berry skin coloration and disease resistance. Endogenous JA
content in Syn-treated VR cells was not significantly different from that in the control at 24 h
after treatment (Figure 4f). The results indicate that Syn is not involved in the biosynthesis
of phytohormones that increase skin coloration.

2.5. Syn Increases Anthocyanin Content via H2O2

The relative expression of SOD3 encoding the H2O2-generating enzyme superoxide
dismutase [EC 1.15.1.1] was significantly higher in Syn-treated VR cells than in the control
as early as 3 h to 12 h after treatment. H2O2 content in the Syn-treated cells was significantly
higher than that in the control from 3 h to 24 h (n = 4, t-test, p < 0.01 or 0.05; Figure 5a,b).
We also measured the relative expression of APX6 and CAT encoding H2O2-scavenging
enzymes ascorbate peroxidase [EC 1.11.1.11] and catalase [EC 1.11.1.6], respectively, as
H2O2-responsive genes. The relative expression of APX6 was significantly higher (n = 4,
t-test, p < 0.01 or 0.05) at 24 h, and that of CAT at 24 h and 48 h, after Syn treatment
compared with the control (Figure 5c,d).
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Figure 5. Relative expression levels of H2O2-related genes and H2O2 contents in Syn-treated cells.
SOD3 encoding H2O2-generating enzymes (a) and H2O2 content (b). Expression levels of APX6 (c)
and CAT (d) encoding H2O2-scavenging enzymes. VR cells were grown in a medium containing
5 mM Syn up to 24 or 120 h (27 ◦C, 54.2 µmol m−2 s−1/16 h/day). H2O2 content was measured with
a fluorescence analysis kit. Gene expression levels were estimated by real-time RT-PCR. Data are
expression levels relative to actin. Data are shown as means ± S.E. of four biological replicates (n = 4).
* and ** indicate significant differences at p < 0.05 and 0.01, respectively (t-test).
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We measured the relative expression of H2O2-responsive gene Chit4 encoding class 4
chitinase [EC 3.2.1.14] in VR cells and found that it was significantly higher (n = 4, Dunnett,
p < 0.01) 4 days after the treatment with Syn and H2O2 than in the control (Figure 6a).
Similarly, the relative expression of mybA1 and UFGT in VR cells showed a significant
increase 4 days after the treatment with Syn and H2O2, and anthocyanin content was
significantly higher 7 days after the treatment (n = 4, Dunnett, p < 0.01 or 0.05) than in the
control (Figure 6b–d). The anthocyanin content in berry skin increased 9 days after the
treatment with Syn and H2O2 (n = 4, Dunnett, p < 0.01 or 0.05) (Figure 6e). The results show
that Syn increased anthocyanin accumulation via H2O2.
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Figure 6. Effects of Syn and H2O2 treatments on VR cells and berries. Expression levels of H2O2-
responsive gene Chit4 (a) and anthocyanin-biosynthesis-related genes mybA1 (b) and UFGT (c).
Anthocyanin content in Syn- and H2O2-treated VR cells (d). Anthocyanin content in Syn- and H2O2-
treated berry skin (e). VR cells were cultured in a medium containing 5 mM Syn and 10 mM H2O2

for 4 days (for gene expression levels) or 7 days (for anthocyanin content) at 27 ◦C, 54.2 µmol m−2

s−1/16 h/day. Berries were harvested 9 days after treatment with 1 mM Syn and 300 mM H2O2. Gene
expression levels were estimated by real-time RT-PCR. Data are expression levels relative to actin.
Data are means ± S.E. for four biological replicates (n = 4). * and ** indicate significant differences at
p < 0.05 and 0.01, respectively (Dunnett test).
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3. Discussion

We propose a mechanism by which Syn increases anthocyanin accumulation via H2O2
production and not phytohormones to solve the problem of poor grape skin coloration due
to global warming (Figure 7).
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We showed that Syn increases SOD3 at a very early stage of treatment and generates
H2O2. The Syn analog β-phenylethylethylamine promotes the immediate and transient gen-
eration of H2O2 as a product of the phenylethylamine degradation reaction by monoamine
oxidase (MAO) in yeast [30,31], tobacco [32,33], and mesenchymal stem cells [34]. These
findings suggest that Syn is an early inducer of H2O2 in grape cells, similar to its analog
β-phenylethylethylamine.

We revealed that Syn increases anthocyanin accumulation in grapes in the same man-
ner as the treatment with H2O2. The accumulation of the antioxidant anthocyanin confers
H2O2-mediated oxidative stress tolerance to plants [35]. Consistent with our results, H2O2
increases anthocyanin accumulation in many plant species including grapes [36–40]. In
addition, anthocyanin from apple peel can remove H2O2 better than other phenolics [41].
On the other hand, Chit4 expression can be considered a marker of H2O2-mediated oxida-
tive stress response [42–44]. Our finding that Syn and H2O2 upregulated the expression of
Chit4 and anthocyanin-biosynthesis-related genes, which in turn increased anthocyanin
accumulation in grapes, suggests that Syn increases the accumulation of the antioxidant
anthocyanin by inducing H2O2-mediated oxidative stress in grape cells. However, the
balance between H2O2 production and removal is strictly regulated because excess H2O2
causes oxidative injury to cells [45,46]. Therefore, we assume that balancing H2O2 produc-
tion and oxidative stress by regulating Syn concentration is important for H2O2-mediated
anthocyanin accumulation by Syn because excess H2O2 may lead to anthocyanin degradation.

We indirectly showed that Syn did not increase ABA, ET, and JA contents, nor did it
increase the sugar/acid ratio, a ripeness index related to ABA and ET. Syn only increased
anthocyanin accumulation in grape berries. On the basis of these findings, we would
like to emphasize that Syn-derived H2O2 is a useful coloration factor independent of
phytohormones. Previous studies have focused on phytohormones to improve grape
skin coloration [4,6,9,17–21]. H2O2 is a signaling molecule that regulates physiological
processes such as plant growth and stress response, and crosstalk exists between H2O2 and
phytohormones [45,47,48]. This crosstalk requires further evaluation.

As one of the limitations of this study, we were unable to consider alternative pathways
to MAO for the generation of H2O2 from Syn. This is because there are no reports of Syn
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analogs producing H2O2 directly or indirectly via SOD except for the results of this study.
The quantification of superoxide and SOD activities is needed to clarify this. He et al. (2020)
reported a Syn–HCl-mediated reduction of H2O2 levels in postharvest litchi, in contrast to
our findings in grapes [49]. These differences in results may be attributed to differences in
Syn concentration, species-specific metabolic pathways, and H2O2 mitigation mechanisms.
Furthermore, the physiological state of the fruit before and after harvest may influence
these results. Comprehensive comparative studies with different plant species and growth
stages are needed to elucidate species-specific responses and verify the broad applicability
of Syn.

Syn has the potential to improve grape skin coloration by increasing H2O2 production
without undesirable side effects such as defoliation [20] caused by ABA agents. Although
there is concern about it being a health hazard because of its structural similarity to the
doping agent ephedrine, Syn can be safely used as a dietary supplement [50,51]. The
usefulness and safety of Syn as a grape color-enhancing agent should be evaluated by
further field trials and H2O2 residual analysis. Syn application is expected to contribute to
viticulture and the wine industry.

4. Materials and Methods
4.1. In Vitro Trials

Cultured grape cells (VR cells, PRC00003) were provided by the RIKEN BioResource
Center Research (RIKEN BRC) through the National BioResource Project of MEXT/AMED,
Japan. The cell line was derived from Vitis hybrid cv. Bailey Alicante A, which has high
anthocyanin-biosynthesizing ability [52]. Modified Linsmaier and Skoog (LS) medium
(pH 6.1) containing 3% (w/v) sucrose, 0.05 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D),
and 0.2 g/L kinetin was used. The medium was autoclaved (1.06 kg cm−2) at 121◦C for
15 min, gelled with 1.2% (w/v) agar, and poured into disposable sterile plastic Petri dishes.
Only white VR cells without red coloration were subcultured every week under sterile
conditions and grown in a dark incubator at 27 ◦C.

In the coloration experiments, because phytohormones 2,4-D and kinetin inhibit antho-
cyanin accumulation during maturation, 10 mL of modified LS medium without phytohor-
mones was autoclaved and dispensed into 70 × 16.5-mm-diameter Petri dishes. One dish
was inoculated with 3–4 VR cells (each approximately 5 mm in diameter) under sterile condi-
tions and incubated for up to 7 days in an incubator at 27 ◦C, 54.2 µmol m−2 s−1/16 h/day.
The final concentrations of the test solutions in the medium were as follows: Syn concen-
trations of 0.01, 0.1, 1, 5, and 10 mM; molecular structure specificity, 5 mM each of pheny-
lalanine (Phe), L-(-)-tyrosine (L-Tyro), tyramine (Tyra), octopamine hydrochloride (Oct),
Syn, and control (Cont) (Tokyo Chemical Industry, Tokyo, Japan); H2O2 test, 10 mM H2O2
(30% H2O2, Fujifilm Wako, Osaka, Japan). Stock solutions of reagents were prepared and
sterilized by filtration using a sterile syringe (2.5 mL SS-02SZ, Terumo, Tokyo, Japan) and a
sterile filter (Minisart® 0.45 µm syringe filter, Sartorius, Göttingen, Germany). Each sterile
solution was added to the autoclaved medium and adjusted to the above concentrations.

4.2. Field Trials

Vitis vinifera cv. Syrah grapevines in the experimental vineyard (2019, 2021) of the Insti-
tute of Enology and Viticulture and an affiliated farm (2022) of the University of Yamanashi
(at 35 ◦N, 138 ◦E in Yamanashi, Japan) were used. The grapevines were approximately
30 years old and grown using the double-cordon-style training method.

A solution of 1 mM Syn with 0.01% (v/v) Approach BI (Kao, Tokyo, Japan) was
prepared. The grapevines were defoliated in the berry zone before veraison and sprayed
with 500 mL of water (control) or Syn solution per grapevine at veraison (30 July 2019;
18 July 2021). Thereafter, grape bunches were sampled every 10 days. The bunches were
photographed and stored at −80 ◦C until RNA analyses.

Solutions of 1 mM Syn and 300 mM H2O2 with 0.01% (v/v) Approach BI (Kao, Tokyo,
Japan) were prepared (10 August 2022). Nine grape bunches were randomly selected from
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one grapevine. Three bunches each were sprayed with water (control), Syn, and H2O2.
On days 0 and 9 after spraying, bunches were harvested and 10 berries per bunch were
randomly collected to determine anthocyanin content.

4.3. Total RNA Isolation

VR cells, 300 µL of Fruit-mateTM for RNA Purification (TaKaRa, Shiga, Japan), and
300 µL of Buffer RLT for use with an RNA extraction kit (RNeasy Plant Mini Kit, QIAGEN,
Hilden, Germany) were added to a 2.0 mL tube. The mixture was homogenized (30.0 Hz,
3 min) using TissueLyser II (QIAGEN) and centrifuged at 120 rpm for 3 min at 4 ◦C. Total
RNA was extracted from 450 µL of supernatant using QIAcube (QIAGEN) with the RNeasy
Plant Mini Kit and accessories following the product manual.

4.4. Real-Time RT-PCR

Single-stranded cDNA was synthesized from total RNA using a PrimeScriptTM RT
Reagent Kit with gDNA Eraser (TaKaRa) and TaKaRa Cycler DiceTM mini (TaKaRa) fol-
lowing the manufacturer’s manual. Real-time RT-PCR was performed using TB Green
Premix Ex Taq II (Tli RNaseH Plus) (TaKaRa) with Thermal Cycler Dice Real Time Sys-
tem III (TaKaRa) following the manufacturer’s manual. Data were analyzed using Ther-
mal Cycler Dice® Real-Time System Single Software ver. 5.11. Actin was used for nor-
malization because it is recommended as a reference gene for grapes, and expression
levels are shown as relative values [53]. The real-time RT-PCR conditions were as fol-
lows: 37 ◦C for 15 min for RT reaction and 85 ◦C for 5 s for cDNA synthesis, and then
40 cycles at 95 ◦C for 5 s and 60 ◦C for 30 s for PCR amplification. The nucleotide se-
quences of the primers were as follows: Vvactin (5′-CAAGAGCTGGAAACTGCAAAGA-3′

and 5′-AATGAGAGATGGCTGGAAGAGG-3′, GenBank accession no. AF369524), PAL (5′-
AAACAAGGTGGTGCCCTTCA-3′ and 5′-GGTGTTGATCCTCACGAGCA-3′, NM_001397918),
C4H (5′-AAAGGGTGGGCAGTTCAGTT-3′ and 5′-GGGGGGTGAAAGGAAGATAT-3′,
XM_002266202), 4CL (5′-AGATGGGGATCAAGCAAGGC-3′ and 5′-ATCTCGGCCGGCAT
GTAAAA-3′, XM_002272746), CHS (5′-TCTGAGCGAGTATGGGAACATG-3′ and 5′-CTGT
GCTGGCTTTCCCTTCT-3′, NM_001280950), CHI (5′-GACGGGTCGCCAGTATTCAG-3′

and 5′-GCTTTGGCTTCTGCGTCAGT-3′, NM_001281104), F3’H (5′-TATGGGCTGACCCTA
CAACGA-3′ and 5′-CCTGGGCAAACAACCTCATT-3′, NM_001280987), F3’5’H (5′-AGGG
TCGGAGTCAAATGAGTTC-3′ and 5′-CGCTGGATCCCTTGGATGT-3′, NM_001281235),
F3H (5′-CCAATCATAGCAGACTGTCC-3′ and 5′-TCAGAGGATACACGGTTGCC-3′,
NM_001281105), DFR (5′-AACTGCTCTTTCCCCGA-3′ and 5′-AACGTCCCTCTGCCTTA
GGATTC-3′, NM_001281215), LDOX (5′-GCGATATGACCATCTGGCCTAA-3′ and 5′-ATC
CCAACCCAAGCGATAGC-3′, NM_001281218.1), mybA1 (5′-GCAAGCCTCAGGACAGA
AGAA-3′ and 5′-ATCCCAGAAGCCCACATCAA-3′, AB111101), UFGT (5′-CTTCTTCAGC
ACCAGCCAATC-3′ and 5′-AGGCACACCGTCGGAGATAT-3′, NM_001397857.1), NCED1
(5′-GAGACCCCAACTCTGGCAGG-3′ and 5′-AAGGTGCCGTGGAATCCATAG-3′, NM_
001281270.1), ACS3 (5′-CCACCCCATACTACCCAGGA-3′ and 5′-TTGAGGCTGCGTTTTT
GAGC-3′, XM_003635528.3), ACO2 (5′-CAAATGGACGCTGTGGAAAA-3′ and 5′-ATGGC
GGAGGAAGAAGGTACT-3′, NM_001280942.1), LOX (5′-TGGGCTGAAGCTTTTGATAG-
3′ and 5′-CTTGGGCTTGGGTAGTAGT-3′, FJ858257) [54], SOD3 (5′-GGCGATTCATCTAC
GGTTGTC-3′ and 5′-CCTCCGCCGTTGAACTTG-3′, NM_001281206) [55], APX6 (5′-GCC
CACTCTCCCCATTCTC-3′ and 5′-TGGAGTTTTGGCGGGAAAT-3′, XM_002282641) [55],
CAT (5′-GGAGGATGAAGCCATAAGAG-3′ and 5′-GGCTGCAAGGGCAAGATA-3′, XM_
003631877) [56], and Chit4 (5′-CAATCGGGTCCTTGTGATTC-3′ and 5′-CAAGGCACTGA
GAAACGCT-3′, U97522).

4.5. Total Anthocyanin Content

Anthocyanins in berry skins or VR cells were extracted using the procedure of Yokot-
suka et al. (1999) [57] with modifications. Briefly, 10 randomly selected berries per bunch
were peeled and the skin was crushed with liquid nitrogen using a mortar and pestle.
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One gram of crushed skin (or weighed VR cells) was immersed in 10 mL (or 500 µL) of
1% HCl–methanol overnight in the dark. The mixture was centrifuged at 10,000 rpm for
5 min, and the supernatant was diluted with 1% HCl–methanol to bring it within the
absorbance measurement range. After mixing, absorbance was measured at 520 nm us-
ing a spectrophotometer (ASV11D-S, AS ONE, Osaka, Japan). Total anthocyanin content
(malvidin-3-O-glucoside equivalent) in skin and VR cells was calculated using a published
formula [58].

4.6. Sugar/Acid Ratio

Ten berries per bunch were pressed to obtain grape juice. The juice was centrifuged at
10,000 rpm for 5 min. The sugar (Brix)/acid ratio of the supernatant was measured using
a pocket refractometer (PAL-BX|ACID2, ATAGO, Tokyo, Japan) following the manufac-
turer’s instructions. Sugar content and acid content represent the percentage concentration
of soluble solids and that of total acid in the juice, respectively (Brix (%) and acid (%)).

4.7. Phytohormone Contents

Each phytohormone was quantified by ELISA. JA content in VR cells was measured
following the manual for plant JA using an ELISA kit (MyBioSource, San Diego, CA,
USA), as reported by Tsai et al. (2019) [59]. Briefly, VR cells cultured for 24 h and PBS
(100 µL of PBS/10 mg of tissue) were added to a 2 mL Eppendorf tube and homogenized
(30.0 Hz, 3 min) using TissueLyser II (QIAGEN). Then, 50 µL of the supernatant was
centrifuged in a tabletop centrifuge and dispensed into a 96-well plate. Within 15 min
after the addition of Stop Solution in the kit, absorbance was measured at 450 nm using
an absorbance microplate reader, and JA content was calculated by the calibration curve
method. Similarly, ABA content in VR cells cultured for 24 h was measured using a Plant
Hormone ABA ELISA kit (CUSABIO, Wuhan, China) as reported by Enoki et al. (2017) [10].

4.8. H2O2 Content

H2O2 content was determined using a Cell MeterTM Intracellular Fluorimetric Hy-
drogen Peroxide Assay Kit *Green Fluorescence* (AAT Bioquest, Sunnyvale, CA, USA)
following the method of Nie et al. (2020) [60] with modifications. Briefly, VR cells and
Component C assay buffer (200 mg/mL) were added to a 2 mL Eppendorf tube and the
mixture was homogenized (30.0 Hz, 3 min) using a TissueLyser II (QIAGEN). The ho-
mogenate was separated using a tabletop centrifuge, and 50 µL of the supernatant was
used as a test sample. After the reaction solution was added following the manufacturer’s
instructions, the mixtures were incubated at room temperature for 20 min, and fluorescence
intensity was measured at Ex/Em = 485/538 nm using a fluorescence microplate reader.
H2O2 content was calculated using the calibration curve method.

4.9. Statistical Analysis

Data are presented as means ± standard error (SE) of three or four independent
biological replicates. Statistical analysis was performed using BellCurve for Excel software
ver. 3.20. (Social Survey Research Information, Tokyo, Japan) with the Student’s t-test,
Tukey test, or Dunnett test.

5. Conclusions

We proposed a molecular mechanism for the Syn-mediated anthocyanin accumula-
tion in grapes. Anthocyanin accumulation was increased not by phytohormones but by
hydrogen peroxide and the upregulation of anthocyanin-biosynthesis-related genes in
Syn-treated cells. Syn increased the expression of chitinase-encoding gene, one of stress
response markers. The results suggest that Syn increases antioxidant anthocyanin accumu-
lation by inducing oxidative stress mediated by hydrogen peroxide. The application of Syn
to grape berries may be an alternative to the conventional use of phytohormone-related
agents for improving grape skin coloration.
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