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Abstract: In exploring the challenges of bone repair and regeneration, this review evaluates the
potential of bone tissue engineering (BTE) as a viable alternative to traditional methods, such as
autografts and allografts. Key developments in biomaterials and scaffold fabrication techniques, such
as additive manufacturing and cell and bioactive molecule-laden scaffolds, are discussed, along with
the integration of bio-responsive scaffolds, which can respond to physical and chemical stimuli. These
advancements collectively aim to mimic the natural microenvironment of bone, thereby enhancing
osteogenesis and facilitating the formation of new tissue. Through a comprehensive combination of
in vitro and in vivo studies, we scrutinize the biocompatibility, osteoinductivity, and osteoconductiv-
ity of these engineered scaffolds, as well as their interactions with critical cellular players in bone
healing processes. Findings from scaffold fabrication techniques and bio-responsive scaffolds indicate
that incorporating nanostructured materials and bioactive compounds is particularly effective in
promoting the recruitment and differentiation of osteoprogenitor cells. The therapeutic potential
of these advanced biomaterials in clinical settings is widely recognized and the paper advocates
continued research into multi-responsive scaffold systems.

Keywords: bone tissue engineering; biomaterials; scaffold fabrication; bio-responsive scaffolds;
regenerative medicine

1. Introduction

Bone tissue engineering (BTE) has emerged as a vital interdisciplinary field that
addresses significant challenges in regenerative medicine by developing scaffolds that
support and enhance bone regeneration. This domain synthesizes principles from biology,
materials science, and engineering to innovate beyond the limitations of conventional bone
repair methods, such as autografts and allografts. These methods often fail to meet clinical
needs due to donor site morbidity, limited availability, potential for disease transmission,
and suboptimal integration with host bone tissue—particularly in cases of extensive bone
loss or complex defects [1–6]. Hence, advancements in scaffold design are prompted by
the complexity of bone physiology and the need for scaffolds that can adequately mimic
biological functions.

Recent advancements have seen significant progress in scaffold designs that incorpo-
rate dynamic and bio-responsive features, reflecting a shift towards scaffolds capable of
adapting to and mimicking the natural extracellular matrix (ECM) of bone. This adaptability
is pivotal, as static properties—such as mechanical stability, porosity, biocompatibility, and
degradation rate—while essential, are designed to remain relatively unchanged throughout
the healing process. These properties are indispensable for the effective integration and
functionality of scaffolds in therapeutic contexts and ensure that scaffolds can support and
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guide bone growth effectively under normal physiological conditions [7,8]. However, the
persistent focus on enhancing these static characteristics highlights a critical area for ongo-
ing research and development, suggesting that fully harnessing the potential of dynamic
responsiveness in scaffolds might more effectively meet the complex requirements of the
bone healing process.

This review critically examines the development of novel, smart scaffold systems
that incorporate both bioactive materials and responsive elements capable of adjusting
their properties in real time, alongside a review of recent studies that have demonstrated
significant progress in this field. These innovations are specifically designed to facilitate
initial bone tissue integration and dynamically adapt to the evolving healing environment,
thus promoting optimal regeneration throughout the recovery process. The significant
advancements in BTE that provide scaffolds that are both structurally supportive and
functionally dynamic represent substantial progression towards addressing the current
limitations in the field.

Following the introductory exploration of bone anatomy, physiology, remodeling,
and repair, this review is structured into several sections to provide a comprehensive
understanding of the current landscape and future directions in BTE. Section 2 discusses
criteria for the selection of scaffold biomaterials, as well as polymers, ceramics, metals, and
composites. Section 3 explores technological advancements in scaffold fabrication, such
as 3D printing and additive manufacturing techniques, as well as surface modification
and the integration of cells and bioactive molecules within the scaffold matrices. Section 4
includes a detailed investigation of recent strategies in bio-responsive scaffolds, whereby
each strategy is examined for its potential to respond to different physical and chemical
stimuli. Finally, Section 5 synthesizes the current trends and advancements, proposing
directions for future research and potential clinical applications.

1.1. Bone Anatomy and Physiology

A bone is a rigid, mineralized organ that forms the skeleton of vertebrates and fulfills
critical mechanical and biological functions. The human body has 206 bones that offer
structural support, protect internal organs, and enable mobility. They also play key roles
in blood cell production (hematopoiesis), storing minerals, and executing essential en-
docrine functions [9]. Bones are primarily composed of an osteoid matrix enriched with
hydroxyapatite (HAp) [Ca10(PO4)6(OH)2] crystals, which impart structural hardness and
strength [10]. This matrix also contains organic collagen fibers that provide flexibility, along
with essential components such as water for nutrient and waste transport, non-collagenous
proteins, lipids, and specialized cells that maintain bone health and functionality.

The process of bone development starts between the sixth and seventh weeks of
embryonic growth through a process known as ossification or osteogenesis. Mesenchymal
Stem Cells (MSCs), or mesenchymal progenitors, are multipotent stem cells found in the
bone marrow and other tissues. MSCs have the capacity to differentiate into various cell
types, including those of the osteogenic lineage. As shown in Figure 1, four essential cells
play important roles in bone development and formation, each contributing distinctively
to the bone’s lifecycle and functional integrity. Osteogenic cells, or osteoprogenitor cells,
are the precursors in the osteoblastic lineage and reside primarily in the periosteum and
endosteum—key sites for bone growth and repair. These cells differentiate into osteoblasts,
which are responsible for bone formation. Osteoblasts synthesize and secrete an amorphous
material that gradually solidifies to form osteoid, a form of unmineralized bone tissue,
which is later mineralized through the deposition of calcium phosphate crystals in the
formed osteoid matrix. Osteoblasts are essential in the mineralization process that solidifies
the bone structure. As osteoblasts finish producing the bone matrix, they become embedded
within it and transform into osteocytes [11]. Osteocytes are the most abundant cells
in mature bone and function as mechanosensors and regulators of bone metabolism,
maintaining the mineral content of the matrix. Finally, osteoclasts are multinucleated cells
derived from the monocyte/macrophage lineage, responsible for bone resorption. Their
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activity is critical in bone remodeling, an ongoing process that balances bone formation
(by osteoblasts) and resorption (by osteoclasts). This dynamic cycle continuously replaces
old bone tissues with new ones and ensures the maintenance and renewal of the skeletal
system throughout life.
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Figure 1. Structure of a typical long bone (created with biorender.com).

1.2. Bone Remodeling

The bone is metabolically active tissue and undergoes a cyclic, continuous modeling
process that is necessary for maintaining skeletal integrity and metabolic functions within
vertebrates. As illustrated in Figure 2, the bone remodeling process is regulated by a
series of five stages: activation, resorption, reversal, formation, and termination. Each is
characterized by specific cellular activities and biochemical interactions.

The cycle initiates with the activation phase, where bone lining cells separate from
underlying bone to form a raised canopy over the site to be resorbed [10]. Osteoclast
precursors are recruited from circulation and activated at specific sites on the bone surface.
This process is often stimulated by signals following the apoptosis of osteocytes, which
are primary mechanosensing cells of bone that can initiate remodeling in response to
microdamage or mechanical strain [12]. The osteoclast precursor cells then differentiate
into multinucleated osteoclasts that firmly attach to the bone matrix, creating isolated
resorption pits. During the resorption phase, osteoclasts secrete protons and enzymes, like
cathepsin K, to dissolve bone minerals and degrade the matrix [10,13]. The programmed
cell death of osteoclasts terminates at this stage to ensure that excess resorption does not
occur. The reversal phase serves as a transition from bone resorption to formation. It
involves the preparation of the bone surface for new bone deposition, primarily facilitated
by cells of the osteoblastic lineage. These cells clean up the resorbed area, preparing it
for new matrix deposition. The onset of the formation phase is marked by the synthesis
of a new bone matrix (or osteoid) by osteoblasts. This osteoid, primarily composed of
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type I collagen, is subsequently mineralized through the deposition of HAp crystals. The
regulation of this process is complex, involving systemic and local factors that control
the availability of calcium and phosphate [10]. The completion of new bone formation
leads to the differentiation of osteoblasts into bone-lining cells or their entrapment within
the matrix as osteocytes. These newly formed osteocytes then secrete factors that signal
the termination of the remodeling cycle. All aforementioned stages are crucial. Any
abnormalities of bone remodeling can produce a variety of skeletal disorders such as
osteoporosis, hyperparathyroidism, hyperthyroidism, Paget’s disease, osteopetrosis, and
orthopedic disorders.
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Figure 2. Stages of bone remodeling.

1.3. Bone Repair

Depending on the nature and extent of the fracture, bone healing can be primary or
secondary. Primary healing occurs when the fracture gap is minimal (less than 0.1 mm)
and the fracture site is rigidly stabilized, allowing direct ossification without visible cal-
lus formation [14]. This type of healing is less common and typically requires surgical
intervention to ensure the precise alignment and stabilization of the fracture. Secondary
healing occurs when the fracture gap is wider but not exceeding twice the diameter of the
bone [14,15]. This process involves a well-orchestrated series of biological events, leading
to the formation of a callus, which subsequently matures to restore the bone’s structural
integrity. While the underlying mechanisms of bone healing are complex, it is widely
acknowledged that for successful healing, there must be viable osteogenic cells, an ap-
propriate connective tissue matrix, sufficient vascularity, growth factors, and an adequate
degree of mechanical support. As shown in Figure 3, the mechanism of fracture repair can
be divided into four stages.
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1. Hematoma formation (1–5 days)

After a fracture, ruptured blood vessels bleed into and around the fracture site, forming
a hematoma. This clot seals the damaged blood vessels and forms a temporary frame for
healing. The hematoma environment stimulates the release of pro-inflammatory cytokines,
which attract immune cells like macrophages, monocytes, and lymphocytes. Such immune
cells not only clear debris (dead cells) but also secrete vascular endothelial growth factor
(VEGF). VEGF is a key mediator in stimulating angiogenesis (the formation of new blood
vessels), necessary for subsequent healing stages. It specifically stimulates endothelial cells,
which line the interior surface of blood vessels, to divide and migrate, leading to the growth
of new capillary networks within the damaged tissue area.

2. Fibrocartilaginous callus formation (5–11 days)

Driven by the angiogenic cues from VEGF, new capillaries grow into the hematoma.
This vascular invasion supports the influx of reparative cells, including fibroblasts and
osteoblasts. Fibroblasts produce collagen fibers that span between the broken bone ends,
while osteoblasts form spongy bone. The repair tissue between the broken bone ends is a
semi-rigid structure known as the fibrocartilaginous callus. It is made up of hyaline and
fibrocartilage and provides temporary stabilization of the fracture.

3. Bony callus formation (11–28 days)

The fibrocartilaginous callus is gradually resorbed into a bony callus of spongy bone,
and the broken bone ends are firmly joined together. This process is similar to the formation
of bone from cartilage and involves the coordinated activity of osteoblasts, which continue
to deposit new bone, and osteoclasts and remodel the immature bone to enhance structural
integrity. At the end of this stage, a hard, immature callus bone forms.

4. Bone remodeling (18 days to years)

The final phase involves the remodeling of the bony callus into mature lamellar bone,
restoring the bone’s natural architecture. This prolonged phase ensures the newly formed
bone can withstand normal physiological stresses. By the continuous activity of osteoclasts
and osteoblasts, the center of the callus is ultimately replaced by compact bone, creating
a bone tissue similar to the original, unbroken bone. This remodeling can take several
months, and the bone may remain uneven for years.

Although bone is a highly vascularized tissue and can repair itself, the ability of a bone
to heal naturally diminishes when the defect exceeds a critical size—generally considered to
be 2 to 2.5 times the diameter of the bone—which typically does not heal spontaneously [10].
This introduces complexities in treatment, necessitating more than just natural healing
processes. Large bone defects and injuries caused by accidents or old age are serious
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problems in orthopedics. Clinical interventions are required to treat fractures that are not
able to self-heal. Clinically, bone grafting is performed to repair the damaged bones and
involves a surgical procedure that uses bone tissues of similar materials to rebuild the
damaged bones. Autografts and allografts are the common treatment options, and the
former is regarded as the ‘gold standard’ procedure to heal bone [3]. The advantages of
autografts are that they are osteogenic, have histocompatibility, can provide structural
support, and reduce the risk of disease transmission. In contrast, the drawbacks are
their limited availability, blood loss, the requirement of anesthesia, donor site morbidity,
infection, prolonged wound drainage, reoperation, and pain [16].

2. Criteria for the Selection of Scaffold Biomaterials

The selection of biomaterials used for the scaffold is of key importance. Figure 4 shows
the desired properties of a scaffold: biocompatibility, biodegradability, mechanical proper-
ties, pore architecture, stability, antimicrobial effects, osteoinductivity, osteoconductivity,
and osteointegration [17]. Research has focused on optimizing these scaffolds to support
cell growth, differentiation, and eventual tissue integration.
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1. Biocompatibility

Biocompatibility ensures that scaffolds do not elicit a harmful immune response upon
implantation. Materials must interact favorably with the body’s biological environment, sup-
porting cell attachment, proliferation, and differentiation without inducing cytotoxicity or in-
flammation. Recent studies also explore the scaffolds’ role in immunomodulation—designing
materials that can positively interact with immune cells to enhance healing and integra-
tion [18]. Innovations include surface modifications and the integration of bioactive signals
that can direct immune cell responses to favor regenerative processes.

In order to call a material biocompatible, it must facilitate the integration of new bone
tissue with the existing bone (osteointegration) and support the formation of new bone
tissue (osteogenesis). Materials like HAp and tricalcium phosphate are favored for their
bioactive and osteoconductive properties, promoting bone cell attachment and growth [17].
Additionally, scaffolds can be functionalized with bone morphogenic proteins (BMPs) and
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other growth factors to enhance osteoinductivity—inducing stem cells to differentiate into
osteoblasts, thus fostering bone regeneration [17,19].

2. Biodegradability

Biodegradability is essential for scaffolds as it allows them to gradually disintegrate,
giving way to newly formed tissue. The rate of degradation should match the rate of tissue
formation to ensure structural support during the healing process and to minimize chronic
inflammatory responses caused by material remnants. Materials such as poly(lactic-co-
glycolic acid) (PLGA) and polycaprolactone (PCL) are commonly used due to their known
degradation rates and by-products that are safely absorbed or excreted by the body [20,21].
Control over the scaffold’s biodegradation can be achieved through the manipulation of
polymer blends, molecular weights, and copolymer ratios, enabling customization for
specific tissue targets [22].

3. Mechanical Properties

The mechanical properties of scaffolds, including stiffness, elasticity, and tensile
strength, should mirror those of the target tissue to ensure functional integration and to
support physiological loads. This is particularly important in tissues subjected to dynamic
mechanical environments, like bone and cardiac tissue. It is preferable for scaffolding mate-
rials to have comparable values of bending strength and elastic modulus, which typically
range from 100 to 150 MPa and 7 to 25 GPa for human cortical bone, respectively [23].

Scaffold mechanics can be tailored through material selection, structural design (e.g.,
fiber alignment, pore size), and fabrication techniques, such as 3D printing, which allows for
precise control over the scaffold architecture. It has been documented that the mechanical
properties of scaffolds are inversely proportional to their porosity, whereby a porosity of
200–350 µm is deemed appropriate for scaffolds used in the regeneration of human bone
tissue [17,24,25].

4. Pore Architecture

Optimal pore size and porosity are critical for nutrient and oxygen diffusion, waste
removal, and vascularization—all of which are vital for cell survival and proliferation
within the scaffold. The interconnectivity of these pores also facilitates the integration of
the scaffold with surrounding tissue by enabling cell migration and the formation of a
new extracellular matrix. Techniques such as gas foaming, freeze drying, and particulate
leaching are employed to create scaffolds with specific porosity and interconnectivity
tailored to the needs of different tissues [17,22].

5. Stability

Chemical and physical stability in physiological conditions is crucial for maintaining
the scaffold’s structural integrity until the tissue is fully regenerated. Stability is influenced
by the chemical composition of the materials used and their resistance to biodegradation
and environmental stressors, such as pH and enzymatic activities. Advanced scaffold de-
signs incorporate crosslinking agents and composite materials to enhance stability without
compromising biocompatibility or functionality [22].

6. Antimicrobial Effects

Scaffolds may be designed with antimicrobial properties to prevent infections, a
common complication in implant surgeries. This can be achieved through the incorporation
of antimicrobial agents, such as silver nanoparticles, or through surface modifications that
resist bacterial adhesion and proliferation [26–28]. These properties are especially crucial
in scaffolds used for skin, dental, and bone tissue engineering, where the risk of infection
is significant.

2.1. Polymers

Scaffold biomaterials are the basic components of scaffolds that closely mimic the
natural bone ECM and can be naturally derived or synthetic polymers. Polymers are
long-chain organic materials joined together by covalent bonds. The most commonly used
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natural polymers for BTE include collagen, chitosan (CS), alginate, and silk; synthetic
polymers include PCL, polylactide (PLA), poly(L-lactic acid) (PLLA), and poly(lactic-co-
glycolic acid) PLGA [29–36]. For instance, collagen, the most abundant protein in bone,
provides natural scaffolding properties that facilitate cell adhesion and migration, essential
for tissue regeneration [37]. CS is recognized for its biocompatibility and antimicrobial
properties, while fibrin, an integral component of the blood clotting cascade, serves as
a natural scaffold, promoting cellular interactions and tissue development. Polymer-
based scaffolds are highly porous, which enhances vascularization but reduces mechanical
properties compared to bone [38,39].

Compared to natural polymers, synthetic polymers are more tunable in terms of
modulus, strength, and biodegradation rate, and can be manipulated chemically to adapt
the materials’ properties (such as degradation and structure) to the specific application
requirements. PLA and PGA are favored for their mechanical robustness and moldability,
which allow for the creation of scaffolds with precise architectures tailored to specific
anatomical needs. These polymers are particularly advantageous in applications requiring
gradual degradation and replacement by natural bone tissue. PLA provides a slower
degradation rate, suitable for long-term support, whereas PGA offers a faster resorption rate,
useful in scenarios where quicker scaffold replacement by natural tissue is desired [40,41].
However, the downside of synthetic polymers is that the degradation by-products can
sometimes be toxic.

Natural or synthetic polymers are required to crosslink to ensure mechanical stability
under physiological conditions. The degree of crosslinking determines the mechanical
strength and degradation rate of the polymer; the polymer initiator or the crosslinking
agent added to crosslink the polymeric materials should not cause cytotoxicity to the living
cells. Growth factor molecules and cells can also be loaded into the polymer for immediate
commencement of bone healing [42,43].

2.2. Ceramics

Ceramics are inorganic materials used as bone tissue scaffolds. Earlier bioinert ceramic
materials, such as alumina and zirconia, are used as implants [44,45]. However, these have
been almost totally replaced by bioactive ceramics, such as HAp, calcium sulfate, tricalcium
phosphate, and bioactive glasses. Calcium phosphate-based HAp is the main component
of bone, and biomaterials based on this composition are the most common type of bioactive
ceramics [46]. These materials exhibit high biocompatibility, promoting both osteoconduc-
tion and osteoinduction. Moreover, they possess suitable mechanical properties and can
release calcium and phosphorous to support new tissue growth, although their degradation
rates are not as controllable. However, a significant drawback of ceramic materials remains
their brittleness.

2.3. Metals

Titanium and magnesium and their alloys are most commonly used in BTE, mainly
for their high mechanical performance and durability. However, they are not bioactive
materials and do not actively participate in bone healing. They also risk corrosion and
fatigue over time. Titanium is valued for its exceptional strength, biocompatibility, and
resistance to corrosion. It does not interact significantly with the biological environment,
which minimizes the risk of rejection and allergic reactions. Titanium and its alloys, such
as Ti-6Al-4V, are often used for permanent implants in load-bearing areas due to their
high fatigue strength and excellent mechanical properties [47]. However, their inert nature
means they do not degrade within the body, requiring surgical removal if not intended as a
permanent solution. Advanced surface engineering techniques, such as the application of
bioactive coatings and surface texturing, are being explored to enhance the osseointegration
of titanium implants [47].

In contrast, magnesium is biodegradable and has mechanical properties closer to those
of natural bone, which reduces the risk of stress shielding—a condition where implants can
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bear too much load, inhibiting natural bone growth [48]. Magnesium alloys are promising
for temporary implants as they naturally degrade in the body’s environment. This degrada-
tion can stimulate new bone growth by releasing beneficial ions, such as magnesium, which
may enhance bone formation. However, controlling the rate of degradation is critical to
prevent rapid disintegration and loss of mechanical integrity before adequate bone healing.
Current research focuses on alloying magnesium with elements like calcium or using coat-
ing technologies to control its corrosion rate, tailoring its properties for specific biomedical
applications [48]. Particularly, the development of magnesium scaffolds through surface
modification techniques, such as sol–gel and plasma spraying, has shown promising results
in enhancing bioactivity and mechanical properties, critical for load-bearing applications.
These scaffolds are designed to degrade at a controlled rate, matching the new tissue
formation, thus eliminating the need for scaffold removal surgeries [49–51].

2.4. Composites and Hybrid Materials

The key points to consider while designing an ideal bone tissue-engineered scaffold
are that the biomaterial chosen should be biocompatible and mimic the natural bone
extracellular matrix. The material should be osteoinductive and recruit osteogenic cells
that can differentiate into phenotypically desirable type cells based on the morphogenic
signals. The scaffold should be sufficiently capable of vascularization to meet the growing
need for nutrient supply as the bone cells develop. There is no such thing as a universally
biocompatible material; the support material must be chemically designed to maximize
its biocompatibility.

One of several methods used to improve biocompatibility is to combine or blend
different materials to form a composite material. The idea behind such composites is that
by combining two or more constituents with different physical or chemical properties, the
processability, mechanical properties, bioactivity, etc., of the final product will be enhanced
compared to their individual constituents. A common type of composite used in BTE
is the polymer matrix composite, which is a combination of biodegradable polymer and
bioceramics particles. The bioceramic particles, usually in the form of nanoparticles, are
dispersed into the polymer phase. Polymers have low mechanical properties compared
to ceramics; but by adding ceramic particles into the polymer matrix, the synthesized
material can have better mechanical and biological properties than if used individually.
For example, Pádua et al. [52] synthesized a composite scaffold by combining CS polymer,
mesoporous HAp, and bioactive glass ceramics. They compared the bioactivity and me-
chanical properties of the polymer, polymer–HAp composite, polymer–bioglass composite,
and polymer/HAp/bioglass composite. Overall the composite CS/(75%) bioglass and
CS/(50%) ceramics performed better than other combinations. Table 1 summarizes studies
that use a combination of the CS polymer with other materials such as HAp, bioglass, and
other additives to improve the mechanical properties and bioactivity of scaffolds.

Another article by Khan et al. [53] developed a bone tissue scaffold using a combination
of arabinoxylan, B-glucan, nano-HAp, graphene oxide, and acrylic acid by free-radical
polymerization, and the porous scaffold was then coated with CS to improve the biological
activities. The addition of nano-HAp and graphene oxide improved the mechanical and
biological properties of the composite. Polymers such as PLA are excellent biomaterials
for BTE, but low osteoconductivity and acidic degradation limit its usage. The limiting
factor of polymers has been shown to be improved by the addition of osteoconductive
calcium carbonate and β-tricalcium phosphate [54]. The acidic degradation products
were counteracted by the presence of calcium carbonate and maintained a neutral pH.
The polymer–ceramic composite has a synergistic effect, low flexibility and plasticity
for ceramics, and for polymers, it has low osteoconductivity and mineralization; when
combined, these limits are reduced. Wu et al. fabricated composite scaffolds by reusing
natural resources [55]. The composite was synthesized with HAp extracted from fish teeth,
gelatin from fish scales, magnesium oxide, and polybutylene succinate. Magnesium oxide
particles were encapsulated within gelatin in order to have a slow release of Mg2+ ions, and
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these ions improved the osteoblast cells’ proliferation. The composite also showed to have
better tensile strength and anti-bacterial properties.

While fabricating the polymer–ceramic composite, the ceramic particles should be well
dispersed throughout the polymer but, often, the ceramic particles tend to migrate within
the structure and form agglomerates. This can adversely affect the structural stability and
biological properties of the composite material. Binding the bioactive ceramic particles
to the polymers inhibits their movement. Łańcucka et al. modified the surface of silica
particles with amino acids and covalently attached them to the collagen/CS/hyaluronic
acid polymer phase via a genipin crosslinker, offering a homogeneous distribution of silica
particles and avoiding phase separation [56].

Table 1. Summary of studies that combine CS with other additives to improve the mechanical
properties and bioactivity of scaffolds.

Study Ref. Material Composition Method Used Key Findings Compressive
Strength Bioactivity

[57]
CS/nano-HAp

composites (30/70 weight
ratio)

Co-precipitation

High biodegradability and
bioactivity; best ratio for
mechanical strength and

bioactivity

120 MPa
High in simulated
body fluid (SBF)

solution

[58] CS hydrogel/HAp Wet chemical
synthesis

Enhanced biocompatibility with
MG-63 osteosarcoma cells - -

[59] CS/silica/HAp/Ca-GP Sol–gel
High cell proliferation and

growth; promising composite
for filling small bone defects

0.3 to 10 MPa -

[60] CS/nano-HAp In situ combination

Improved bioactivity with
pre-osteoblasts; nano-HA
content positively affects

bioactivity

- Enhanced
mineralization

[61] CS/nano-HAp In situ hybridization

Enhanced mechanical
properties; suitable for scaffold
applications with homogenous

nanoparticle distribution

Acceptable for
tissue

substitution

Homogeneous
integration

[23] CS/HAp/magnetite
nanocomposites Mixed composites Superior mechanical properties

due to magnetite addition - In vitro
biocompatibility

[62] Hydroxypropyl chitosan
(HPCS)/nano-HAp Genipin crosslinking

Improved mechanical
properties and cell

mineralization; effective for
osteogenic potential and

scaffold stability

-
Enhanced alkaline
phosphatase (ALP)

activity

[63] CS–HAp/PMMA
Freeze drying and

radical
polymerization

Stable thermal properties;
favorable outcomes for cell
population and spreading

in vitro; addition of PMMA
significantly improved

mechanical strength

- Non-toxic to cells

[64] CS/HAp/β-TCP
composites

Crosslinking with
TPP

Improved mechanical
properties and lower

biodegradation; ideal for
high-load-bearing bone

applications

4 kPa to 17 kPa

2% lower
biodegradation with
a higher HAp/β-TCP

ratio

3. Scaffold Fabrication Techniques

Tissue-engineered synthetic bone substitutes were developed to overcome the limi-
tations of autografts and allografts. The bone substitute, usually in the form of scaffolds
produced in a lab, can be introduced to the bone defect site, which aids in bone remodeling.
These artificial scaffolds act as a three-dimensional (3D) bone ECM and support the attach-
ment of cells, promote the deposition of minerals, and provide mechanical support. An
ideal scaffold should be biocompatible and biodegradable and should support vascular-
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ization. The three main elements of BTE are appropriate scaffold biomaterials, stem and
precursor cells, and growth factors. BTE most often incorporates porous 3D scaffolds along
with cells and bioactive growth factors, providing structural support for cells to spread,
migrate, and differentiate—requirements to promote new tissue formation.

Stem cells, such as MSCs, induced pluripotent stem cells (iSPCs), and embryonic stem
cells (ESCs), are foundational to BTE due to their self-renewal capabilities and potential
to differentiate into various tissue types. MSCs are multipotent stromal cells that can
differentiate into osteoblasts, chondrocytes (cartilage cells), and adipocytes (fat cells). They
are commonly harvested from bone marrow, adipose tissue, or umbilical cord blood. MSCs
are favored for their osteogenic potential for bone formation. They are often seeded
onto bone scaffolds where they can differentiate into bone cells and aid in the deposition
of new bone tissue. Additionally, MSCs have immunomodulatory properties that are
beneficial for reducing inflammation at the site of implantation [65]. iSPCs are derived
by reprogramming somatic cells to an embryonic-like pluripotent state, allowing them
to differentiate into almost any cell type. In BTE, iPSCs are particularly valuable because
they can be sourced from the patient, reducing the risk of immune rejection [66]. They
can differentiate into osteoblasts, chondrocytes, or even endothelial cells, depending on
the scaffold’s requirements. When incorporated into scaffolds, iPSCs can contribute to the
formation of a new bone matrix, vascular structures within the scaffold, or both. Thus,
iPSCs are considered a powerful tool for creating complex, multi-tissue constructs that
mimic the natural bone environment. ESCs are derived from early-stage embryos and
are pluripotent in nature, allowing them to differentiate into all three germ layers and
offering great potential for generating any cell type required for tissue generation [67].
When embedded within scaffolds, ESCs can be directed to form not only bone but also
supportive vascular and connective tissues in the development of complex, integrated
tissue structures. Their pluripotency, combined with their high proliferative ability, makes
ESCs a powerful but ethically sensitive option in scaffold fabrication due to their acquisition
from embryos [68].

Growth factors include VEGF, bone morphogenetic proteins (BMPs), insulin-like
growth factors (IGFs), transforming growth factor-beta (TGF-β), and fibroblast growth fac-
tors (FGFs). These aid in directing cells to their phenotypically desirable type and enhancing
their growth. BMPs are a group of growth factors also known as cytokines and are a part of
the TGF-β superfamily. They are particularly significant in BTE because they have been
shown to induce the formation of bone and cartilage. VEGF is paramount for angiogenesis.
In scaffold fabrication, promoting angiogenesis is crucial for the survival of newly formed
tissues, particularly in avascular regions, such as certain bone segments. BMPs are often in-
corporated for their role as signaling molecules to enhance osteoinductivity—encouraging
MSCs to differentiate into osteoblasts [69]. IGFs, mainly IGF-1 and IGF-2, are involved in
anabolic processes and are crucial for bone growth and development. IGFs can promote
the proliferation and differentiation of osteoblasts and are also important for angiogenesis,
which is critical for scaffold integration and survival in vivo [70,71]. TGF-β is involved in
cell growth, differentiation, and healing. TGF-β can help modulate the immune response
to scaffolds and is also involved in the chemotaxis and differentiation of cells necessary for
tissue regeneration [71]. It plays a role in both the formation of new bone and the repair of
damaged bone tissue. FGFs are involved in angiogenesis, wound healing, and embryonic
development [72]. FGFs can stimulate the proliferation of endothelial cells and fibroblasts,
which are essential for creating a supportive matrix in BTE. In scaffolds, FGFs can be used
to stimulate vascularization, ensuring that engineered tissues receive sufficient nutrients
and oxygen.

The design and development of scaffolds aim to replicate the complex architecture
and multifunctional nature of the bone ECM. This involves supporting mechanical loads as
well as facilitating cellular activities essential for tissue regeneration and integration. The
sophistication of scaffold design has significantly progressed with the advent of advanced
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fabrication techniques that allow for precise control over scaffold properties at the micro-
and nanoscales.

3.1. Additive Manufacturing (3D Printing)

The preparation of the scaffold requires precise control of the scaffold material. Its
structure should be porous, with interconnected pores, and its size should be appropriate
for efficient mass transport. The fabricated structure should fit perfectly, completely match-
ing the anatomical structure of the bone defect, and should also mimic the mechanical
and biological properties of native bone. Traditional methods such as solution casting,
electrospinning, and lyophilization are not able to precisely control the fabrication process
and are unable to completely achieve the aforementioned criteria of bone scaffolds. To
overcome these drawbacks, 3D printing methods were developed for BTE, shown par-
ticularly effective in the treatment of complex bone defects seen in craniomaxillofacial
operations and other specialized bone defects [3]. Three-dimensional printing, or additive
manufacturing, is a rapid prototyping technology capable of customizing and fabricating
scaffold components by depositing the materials layer by layer (LbL) using computer-aided
design (CAD) and computer-aided manufacturing (CAM) systems. For instance, recent
developments in 3D bioprinting have utilized various biomaterials to create scaffolds that
support vascularization and robust cell growth [73–75]. The incorporation of bioactive
ceramics and advanced bioprinting technologies, such as core/shell bioprinting, has led to
the fabrication of hybrid scaffolds that offer enhanced mechanical properties and biological
functionality [76]. Table 2 summarizes recent studies that demonstrate the capabilities and
advancements of 3D printing techniques in scaffold fabrication.

Table 2. Summary of recent studies on 3D printing techniques in scaffold fabrication.

Study Ref. Biomaterials Used Printing Techniques Key Findings

[77] PLA/β-TCP/CS with amoxicillin Bioprinting

LbL rectangular scaffold; mechanical strength:
1.24 ± 0.53 MPa; strong antimicrobial properties, good

cell viability, robust mechanical strength, and
appropriate porosity were achieved

[78] Mg–CLS/CS-coated Ti–6Al–4V Selective laser melting

Scaffold height and diameter: 10 mm; mechanical
strength: 50.3 ± 1.6 MPa; femoral bone defects in adult
rabbits; surface-modified scaffold exhibited improved

mechanical strength and enhanced cell adhesion,
proliferation, differentiation, and the formation of new

bone in a live defect model

[79] PHBV/CaSH/CS Fused deposition modeling

Scaffold height and diameter: 10 mm; mechanical
strength: 16.6 MPa; adult male rats; increased rBMSC

osteogenesis by upregulating the expression of
osteogenic genes: RUNX2, COL1, OCN, OPN,

and BMP2

[80] PLGA/nHAp/CS with rhBMP2 Low-temperature deposition
manufacturing

Scaffold dimension: 13 × 6 × 4 mm pore size:
431.31 ± 18.40 µm; mandibular bone defect in

13-week-old rabbits; sustained release of rhBMP2,
biocompatibility in vitro, and 45.5% new bone

formation were observed in vivo

[81] GelMA scaffolds, adipose-derived
stem cells Extrusion bioprinting

Comparable cell viability of printed (79%) and
non-printed (80%) scaffolds; co-cultured hydrogels

show increased osteogenic differentiation with
elevated levels of osteogenic markers; enhanced

hydrogel calcification in pre-differentiated hADSCs

[82] PCL, calcium magnesium
phosphate Bioprinting

Tested samples showed high biocompatibility, with
over 100% live cells observed on day 3; composite

scaffolds improved cell attachment and proliferation,
as indicated by LDH release assays; custom-made 3D
scaffolds replicated natural bone characteristics and

enhanced biomineralization
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Incorporating electrospinning, molecular self-assembly, and phase separation into
additive manufacturing is one other technique that has demonstrated success in achieving
highly porous structures with interconnected pores for efficient mass transport and cell
proliferation [3]. This method has been shown to enable the production of scaffolds with
drastically enhanced surface area, surface roughness, and surface-area-to-volume ratios
by shrinking the material size to the nanoscale. These modifications result in superior
physicochemical characteristics that significantly influence the scaffold’s osteoinductivity
and osteointegration through enhanced nanotopography.

For example, combining 3D printing with electrospinning has enabled the creation
of composite scaffolds that not only meet the mechanical and structural requirements of
the native bone but also support enhanced vascularization, essential for the healing of
complex bone defects [76]. Electrospinning has also been utilized in conjunction with 3D
printing to produce fibrous scaffolds, such as those made from silica, using materials such
as tetraethyl orthosilicate (TEOS) and polyvinyl alcohol (PVA). These scaffolds exhibit
superior physicochemical characteristics, promoting bioactivity and osteointegration [83].
The fibrous structure mimics the ECM’s fibrous component, providing an ideal environment
for cell attachment and differentiation.

The LbL technique, a form of molecular self-assembly, has been leveraged to create
nanolayer films that provide controlled bioactivity and mechanical stability, tailored for
osseous defect therapies [84]. This method allows for precise surface and bulk modifi-
cations of scaffolds, enhancing their integration with native bone tissue. Furthermore,
nano-featured scaffolds, which act as temporary and synthetic ECM replicas, support cell
attachment and guide three-dimensional bone tissue formations [3,85]. The main con-
stituents of bone ECM are in the nanoparticle range, and it has been well-established that
native bone cells interact well with nano-sized proteins and minerals.

Phase separation, particularly thermally induced phase separation (TIPS), has emerged
as a sophisticated method for creating 3D-printed scaffolds with precise control over poros-
ity and microarchitecture. This technique enables the fabrication of scaffolds with highly
interconnected porous networks, ideal for promoting efficient mass transport, nutrient
diffusion, and enhanced cellular infiltration. A study by Sultan et al. demonstrated that
using TIPS to incorporate bioactive glass particles into polylactic acid (PLA) matrices sig-
nificantly enhances the mechanical properties of the scaffolds while maintaining excellent
biocompatibility and promoting osteointegration [86].

The adaptability of the nonsolvent-induced phase separation (NIPS) process to incor-
porate various biomaterials has been showcased in another study by Aydin et al., where a
composite of PCL and nano-HAp was developed [87]. The study reported that scaffolds
fabricated via NIPS exhibited superior pore interconnectivity and uniformity, which are
critical for facilitating cell growth and the formation of new bone tissue. These scaffolds
showed enhanced mechanical strength and bioactivity, leading to improved osteogenic
differentiation and mineral deposition. Notably, by combining phase separation with
other nanostructuring techniques, scaffolds can be tailored to exhibit dynamic responses to
physiological stimuli, enhancing their functionality in regenerative medicine applications.

3.2. Functionalization of Scaffolds
3.2.1. Cell and Bioactive Molecule-Laden Scaffolds

Another strategy used to improve the design of the scaffold is to incorporate stem cells
into its structure. Different types of cells are involved in bone formation and remodeling
processes, such as osteocytes, osteoblasts, and osteoclasts. The most commonly used stem
cells are adult MSCs, iPSCs, and ESCs, all of which can differentiate into bone-forming
cells. Since cells are encapsulated, the scaffold fabrication must be performed carefully, and
a proper supply of nutrients for the cells is required. Typically, the inclusion of cells is often
facilitated by materials with high water content, such as hydrogels, which can envelop cells
and provide a suitable environment for cell viability and differentiation. The scaffold can
be seeded with coated cells a short time before the implantation, or the cells can be injected
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into the scaffold after the implantation. For example, an article by Heo et al. demonstrated
the effective encapsulation of MSCs and human umbilical vein endothelial cells (HUVECs)
in a collagen/fibrin hydrogel, leading to the differentiation of MSCs into osteogenic cells
and the formation of HUVECs into pre-vascular networks [88].

Apart from stem cells, biologically active molecules such as growth factors, pep-
tides, and pharmaceuticals can be entrapped or encapsulated into the scaffold materials
to improve bone regeneration [89]. For instance, the concept of scaffold-induced cell hom-
ing enhances the previous approach by incorporating chemokines and other bioactive
molecules that attract stem cells to the injury site. This process relies on biodegradable scaf-
folds strategically placed in the defect area to release these chemotactic agents, facilitating
the mobilization and homing of MSCs. Critical molecules in this process include various
mimetic peptide sequences like RGD (Arg-Gly-Asp), GFOGER (Gly-Phe-Hyp-Gly-Glu-Arg),
YIGSR (Tyr-Ile-Gly-Ser-Arg), IKVAV (Ile-Lys-Val-Ala-Val), and REDV (Arg-Glu-Asp-Val).
These peptides mimic natural ECM components, providing essential biochemical cues that
promote cell attachment as well as improve osteoblast functionality and overall osteointe-
gration within the host tissue [3]. Natural ECM proteins, such as collagens and fibronectin,
have also been proposed for integration within scaffolds [90]. However, only a few short
peptide sequences within these large macromolecules serve as integrin recognition and
binding sequences that trigger subsequent processes like cell adhesion, signaling, and
proliferation. The aforementioned oligopeptides are thus sufficient enough to convey
bioactivity to implant materials.

The RGD sequence promotes the attachment of various cell types by interacting with
specific receptors on the surface of integrin [91–95]. It is immobilized on the surface of the
scaffold to activate cell proliferation and regulate cell metabolism and ECM synthesis [96].
GFOGER, YIGSR, and IKVAV have been particularly identified from native bone ECM
components and were reported to bind specific receptors on the integrins and activate intra-
cellular signaling pathways [92,97–100]. GFOFER, a collagen derivative, has been utilized
in several studies as a cell adhesion peptide [101,102]. Notably, GFOFER has demonstrated
its capacity to support MSC differentiation into chondrogenic cells with increased expres-
sion and deposition of type II collagen and glycosaminoglycans, thereby displaying its
potential as a mimetic ligand for osteogenic differentiation. Lastly, REDV specifically targets
endothelial cells, enhancing their proliferation, and thus angiogenesis [37,103–107].

Moreover, growth factors are commonly incorporated into scaffolds to improve os-
teoinductive and osteoconductive properties. Research has shown that the incorporation
of BMP, TGF-β, VEGF, and FGF into scaffolds significantly enhances the osteogenic dif-
ferentiation of seeded cells and promotes the healing of bone defects [108–117]. These
growth factors are embedded within the scaffold matrix and are released in a controlled
manner, providing sustained stimulation to the surrounding cells. The controlled release
is particularly critical as it mimics the natural healing process where growth factors are
gradually made available at the site of injury or regeneration. In addition, VEGF has been
extensively studied for its role in promoting vascularization within scaffolds, which is
essential for supplying nutrients and removing wastes, thus supporting the survival and
proliferation of newly formed tissue. The integration of VEGF into scaffolds has been
shown to improve the formation of blood vessels, enhancing the overall regeneration of
bone tissue [66,118]. Particularly, BMP and VEGF have exhibited a regulatory coupling
effect between osteogenesis and angiogenesis in which the rapid early release of VEGF
and the sustained slow release of BMP-2 are identified as optimal [119–123]. The effective
incorporation and immobilization of BMP-2 and VEGF within multilayered polydopamine
(PDA) coatings was achieved in a study conducted by Godoy-Gallardo et al. [124]. Specifi-
cally, BMP-2 and VEGF were bound to the inner and outer PDA layers, respectively, which
resulted in their sequential adsorption as well as osteogenic and angiogenic synergy. Over-
all, advanced techniques, like LbL assembly, may be employed to allow for precise control
over the spatial distribution of the growth factors within the scaffold. This method involves
the sequential adsorption of polyelectrolytes and growth factors, forming multilayered
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coatings that can release bioactive molecules in a controlled manner. Figure 5 illustrates
the results from a study conducted by Geng et al., which shows how the synergy between
BMP-2 and VEGF can stimulate neobone formation [125]. It can be observed that the BMP-2
+ VEGF treatment group yields a higher density of osteocalcin (OCN)-positive cells and
blood vessels in the regenerating area—Figure 5j’,t’, respectively [125].
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Figure 5. Photomicrographs indicating that BMP-2 and VEGF incorporation within scaffolds stimu-
lates neobone formation for (a–j) OCN-stained bone tissue; (a–e) defect areas at 4 weeks and (f–j) at
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areas in images (a–t). Adapted from [125], with modifications.

Several other advanced embedding techniques have been developed. Among these,
encapsulation is one common technique, where growth factors are entrapped within
biodegradable microspheres or nanoparticles dispersed throughout the scaffold matrix, al-
lowing for a sustained release. Recent in vitro studies by Zhao et al. demonstrated that BMP-
2 encapsulated in PLGA microspheres when integrated into a 3D printed PLGA/CaSO4
scaffold, significantly promoted osteogenic differentiation over an extended period [126].

The microstructural characteristics of scaffolds, such as porosity, pore size, and inter-
connectivity, play important roles in the effective delivery of growth factors. On the one
hand, the macro-porous and micro-porous structures of natural bones support osteogenic
differentiation by aiding the spreading and elongation of stem cells [127–129]. Nano-porous
structures, however, provide a large surface area for the adsorption of proteins, including
growth factors [127,130–132]. These nanopores can also alter macrophage morphology by
creating different immune environments and can induce the recruitment and differentia-
tion of osteoblasts during the early stages of bone formation [127,133]. High porosity and
optimal pore size are vital for cell migration and vascularization, while interconnected
pores ensure the uniform distribution and gradual release of growth factors. Figure 6,
observed through scanning electron microscopy (SEM), shows that increasing the sintering
temperature affects the nanopore size in HAp scaffolds containing nanopores (SNPs) [127].
Kim et al. found that scaffolds sintered at the highest temperature of 500 ◦C, which pro-
duced the largest nanopores, significantly enhanced cell proliferation and differentiation
rates [127]. Additionally, these larger nanopores (SNP500) facilitated more rapid liquid
flow and greater protein adsorption. While the total surface area does indeed influence
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protein adsorption, pore size and liquid flow are the primary criteria for selecting porous
scaffold structures [127].
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3.2.2. Surface Modification

Surface modification techniques in the development of orthopedic scaffolds repre-
sent another advancement in improving the integration and functionality of implants
within diverse tissue environments. In the particular context of orthopedic tissue inter-
faces, tri-phasic layered scaffolds have been designed to address the diverse and complex
structure of hard tissue–soft tissue interfaces, such as those between bone, ligament, and
cartilage [3,134–137]. Surface modifications in these scaffolds are specifically engineered
to optimize cell adhesion and integration at each tissue interface, effectively supporting
the formation of integrated multi-tissue systems. This is achieved by adjusting the surface
properties, such as hydrophilicity, roughness, and functional group presentation, which are
crucial for enhancing cellular interactions and osteointegration.

4. Bio-Responsive Scaffolds
4.1. Physical Stimuli

Bio-responsive scaffolds are engineered to be sensitive to a spectrum of physical
stimuli such as magnetism, temperature, ultrasonic waves, and magnetic fields. This re-
sponsiveness is not merely passive but enables a reconfiguration of the scaffold’s structure
in situ, which is crucial for targeted therapeutic interventions. Particularly noteworthy
are temperature-responsive scaffolds, which maintain structural integrity and function-
ality under physiological conditions yet are designed to undergo selective degradation
when exposed to pathological environments typical of diseased tissues. Such capabilities
suggest the potential of physical-responsive scaffolds to improve drug delivery systems,
offering controlled release mechanisms that are finely attuned to the body’s varying bio-
physical cues.
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4.1.1. Temperature Response

Temperature-responsive scaffolds utilize materials, such as hydrogels and polymers,
which respond to local temperature changes, making them highly effective for site-specific
drug delivery and structural adaptation during the various stages of bone healing. Re-
search by Durairaj et al. has demonstrated that thermosensitive hydrogels, which exhibit
temperature-dependent gelation properties, transition from liquid to gel at body tempera-
tures, effectively conforming to bone defect sites before solidifying [138]. This ability offers
structural support and facilitates localized drug delivery. The study shows the potential of
one such hydrogel, a methylcellulose (MC)-based hydrogel known for its osteoinductive
properties, in delivering bioactive compounds, like veratric acid (VA), directly to inflamed
or healing bone tissues. ALP, an enzyme commonly used as a marker of osteogenic dif-
ferentiation, can indicate the maturation of cells into osteoblasts. The reported significant
increase in ALP activity and enhanced osteogenic differentiation were primarily attributed
to the thermal responsiveness of the hydrogel itself, as well as the presence of VA encap-
sulated within the CS/MC hydrogel matrix. While the improved cellular response was
not directly induced by thermal stimuli, it was indeed facilitated by the scaffold material’s
ability to function effectively at body temperature, ensuring that bioactive components, like
VA, were maintained in an active state conducive to interacting with the cellular compo-
nents. This interaction is critical for promoting osteogenic differentiation in MSCs, verified
by increased calcium phosphate deposition, evident from von Kossa staining [138].

Further developments have been made by Woodbury et al. through the fabrication
of scaffolds from materials like poly(ε-caprolactone-co-lactide) (PCL-PLLA) [110]. The
nanofibrous scaffold demonstrates a critical partial-melting temperature at 52 ◦C, allowing
for deformation at this elevated temperature and retention of structural properties upon
cooling to 37 ◦C [139]. To improve its utility in BTE, incorporating bioactive molecules,
such as BMPs, into the scaffold could support natural bone healing by releasing these
growth factors in response to temperature-induced phase changes. Additionally, research
into biocompatible phase change materials that operate at temperatures closer to body
temperature could reduce thermal stress on surrounding tissues, increasing the scaffold’s
safety and feasibility. Research by Vejjasilpa et al. explores a stimuli-responsive scaffold
fabricated through continuous digital light processing (cDLP), which employs a resin
formulation adjusting the phase transition temperature [140]. Notably, the scaffold’s phase
transition temperature is adjustable based on the resin composition, enabling thermally
induced mechano-stimulation of cells. This temperature is critical for applications requiring
temperature responsiveness directly at physiological conditions. Table 3 summarizes the
recent studies on temperature-responsive scaffolds.

Table 3. Summary of recent studies on temperature-responsive scaffolds.

Study Ref. Material Composition Method Used Key Findings

[138] CS, MC, VA
Sol–gel transition induced by

temperature at 37 ◦C;
magnetic stirring

VA enhances osteogenesis; ALP activity
significantly increased; hydrogels are

non-cytotoxic, stable, and functionally active at
37 ◦C; 79.65 ± 1.13% VA entrapment efficiency;
swelling stable after 1 h; 69% degradation rate
over 21 days; 72.5% VA released steadily over

25 days

[139] PCL-PLLA
TIPS of PLLA after in situ

polymerization of
PCL-diacrylate

Can undergo deformation at a partial-melting
temperature of 52 ◦C; retains its nanofibrous

structure upon cooling to 37 ◦C

[140] TMPTA, NiPAAm, AMO cDLP

The resin composition allows adjustment of the
phase transition temperature of the scaffold,

enabling thermally induced
mechano-stimulation of cells
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Despite these advancements, achieving precise thermal responsiveness in scaffolds
remains a considerable challenge due to the variability of pathological conditions within
living tissues. Current research is thus directed towards developing materials capable of
responding effectively at lower temperature thresholds to enhance their stability and safety
in normal tissues.

4.1.2. Mechanical and Ultrasound Response

Mechanical stimuli, such as pressure, stress, and strain, are ubiquitous in the physio-
logical environment of bone tissues, which are naturally subjected to various mechanical
loads. The use of piezoelectric materials in BTE has garnered interest due to their abil-
ity to convert mechanical stress into electrical signals, thereby promoting osteogenesis
through electrical stimulation of bone cells [141–144]. Piezoelectric materials, such as
polyvinylidene fluoride (PVDF) and its copolymers, when fabricated into fibrous scaffolds,
demonstrate significant piezoelectric properties [6,142]. Under mechanical stress, these
scaffolds generate electrical signals that mimic the natural bioelectrical signals in bone,
enhancing the migration and differentiation of osteoprogenitor cells. Zheng et al. report
the ability of piezoelectric materials to modulate cellular behavior by generating surface
charges in response to deformation, offering new avenues for biomechanical simulation,
bone regeneration, and bone defect repair [145]. The potential of such materials in BTE to
enhance osteogenic differentiation through mechanical–electrical transduction pathways
has also been highlighted [146].

A study by Miszuk et al. demonstrated that electrospun nanofibrous scaffolds made
from PCL-HAp can effectively mimic the bone ECM and improve the scaffold’s mechanical
strength, porosity, and elasticity, as well as maintain these properties after being evenly
coated with minerals and pressed into varying defect shapes [147]. Moreover, the study
explores the scaffold’s capability for localized, sustained drug release. They incorporated
phenamil, a BMP-2 signaling agonist, using a bio-mimetic mineral deposition technique
that allowed for the simultaneous encapsulation of various drugs under physiologically
mild conditions. Compared to traditional scaffolds with surface-adsorbed phenamil, these
composite scaffolds showed a reduced initial burst release and extended the duration of
sustained drug release, enhancing the osteogenic differentiation of cells in vitro.

In addition to mechanical stimuli, ultrasound waves, particularly low-intensity pulsed
ultrasound (LIPUS), can induce micro-vibrations within scaffold materials, which, in turn,
promote essential cellular activities for bone healing. Research has shown that LIPUS can
increase the callus’ mechanical strength, reduce time to bone union, promote osteocalcin
mRNA expression in human osteoblasts, induce osteoblasts to release cytokines, regulate
TGF-β, and influence all major cell types involved in bone healing [148–151]. He et al. have
shown that sinusoidal continuous wave ultrasound can cause the responsive scaffold to
resonate and produce centripetal acoustic radiation force, which can promote the adhesion
and growth of bone marrow stem cells (BMSCs) on the surface of the scaffold and osteogenic
differentiation [152]. The ultrasound treatment group exhibited better bone defect repair
effects. Furthermore, Ambattu et al. experimentally demonstrated that short-duration,
high-frequency acoustic vibration can induce the directional differentiation of BMSCs
into osteoblasts [153]. These studies highlight the potential of using various forms of
ultrasound to enhance the physical properties of scaffolds, i.e., mechanical strength and
permeability for enhanced drug delivery of nutrients and therapeutic agents, and to directly
stimulate cellular activities and differentiation [154]. Table 4 summarizes the recent studies
on mechanical- and ultrasound-responsive scaffolds.
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Table 4. Summary of recent studies on mechanical- and ultrasound-responsive scaffolds.

Study Ref. Material Composition Method Used Key Findings

[147] Bi-phasic PCL/HAp Electrospun-based thermally
induced self-agglomeration

High elasticity and porosity; incorporated
phenamil composite scaffolds showed less
burst release and longer lasting sustained

release and enhanced osteogenic
differentiation of cells in vitro compared to

physically surface-adsorbed phenamil

[152]
PLA embedded in

SDF-1/BMP-2-loaded alginate
hydrogels

3D printing and ionic
crosslinking of calcium with

guluronic acid chains

Pulsed ultrasound and sinusoidal continuous
wave ultrasound promote the recruitment and
adhesion of endogenous BMSCs to the scaffold

[153] - -

Significant upregulation in early osteogenic
markers (RUNX2, COL1A1) and sustained

increase in late markers (osteocalcin,
osteopontin); mechanistic pathways involved
piezo channel activation and Rho-associated

protein kinase signaling

[155] MgHAp/collagen hybrid
composite -

LIPUS stimulation 20 min/day enhanced cell
viability and promoted osteogenic

differentiation; improved colonization of the
scaffold by human MSCs; activation of the
MAPK/ERK pathway and upregulation of

osteogenic and angiogenetic genes were
observed—enhancing gene expression and

protein release due to LIPUS stimuli

4.1.3. Electrical Response

Electroactive materials, such as conductive polymers and piezoelectric components,
are increasingly integrated into scaffolds to exploit their electrical properties for stimulating
bone growth. Capacitive biomaterials capable of storing electrical charge on their surfaces,
as well as conductive polymers like polypyrrole, polyaniline, and polythiophene, have
shown promising results. Electrical stimuli also prompt the migration, proliferation, and
differentiation of bone cells at specific sites in vitro, as well as boost healing via the inter-
actions between bioelectrics and charged biomolecules [156–161]. Piezoelectric ceramics,
such as barium titanate, BaTiO3 (BT), have exhibited high mechanical performance and
modulus of elasticity close to that of native bone tissue [162,163]. However, their high
brittleness and low damage tolerance restrict their processing flexibility and application in
BTE to a certain degree [163]. A study by Jiao et al. shows that the integration of BT/HAp
composite scaffolds provides an active response to mechanical deformation by generating
electrical charges. The piezoelectric coefficient (d33 value) of the bulk ceramic composites
and dry bone were measured at 0.61 pC/N and 0.7 pC/N, respectively [164]. This property
is critical as it suggests that the material can effectively mimic the natural electrical behavior
and piezoelectric response of bone. This modality of treatment is being further integrated
with electric-responsive stents and is considered a compelling approach in clinical practice
to expedite the bone healing process [6,165,166].

The development of electroactive scaffolds also involves innovative engineering ap-
proaches, such as the use of microfabrication techniques, to create patterns and structures
that optimize the electrical properties of the scaffold. These techniques allow for precise
control over the scaffold’s architecture, ensuring that the electrical signals are delivered
in a manner that closely replicates the natural bioelectrical environment of bone tissues.
This level of control is important for achieving targeted stimulation and enhancing the effi-
cacy of the scaffold in supporting bone regeneration. Electrical stimulation is particularly
effective in treating non-healing bone defects or where biological cues alone are insufficient
to induce adequate healing. By applying controlled electrical signals, these scaffolds can
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activate various biological pathways that are vital for bone growth and repair. The ability
to modulate these signals based on the changing requirements of the healing bone further
highlights the adaptability and potential of electrically responsive scaffolds in clinical
settings. Table 5 presents a summary of recent studies on electrical-responsive scaffolds.

Table 5. Summary of recent studies on electrical-responsive scaffolds.

Study Ref. Material Composition Method Used Key Findings

[162]

BT nanoparticles coated with
polydopamine in
polyvinylidene

fluoridetrifluoroethylene
(PVDF-TrFE) matrix

Surface coating; corona poling
treatment

Surface potential can be adjusted up to
−76.8 mV, closely aligning with the level of

endogenous biopotential observed in natural
bone, and it retained more than half of its

original value even after 12 weeks under bone
defect conditions. In vivo, it sustained the

electric microenvironment, facilitating rapid
bone regeneration and the formation of mature

bone structures in vivo

[164] BT/HAp composites Hydrothermal process

d33 value: 0.61 pC/N and 0.7 pC/N for bulk
ceramic composites and dry bone, respectively.
Higher BT content increased the piezoelectric
coefficient and dielectric constant; improved

response to electrical stimuli

4.1.4. Magnetic Response

The development of magnetic biomimetic scaffolds involves integrating magnetic
nanoparticles or coatings into scaffold materials, which can be manipulated externally by
magnetic fields, including alternating magnetic fields (AMFs), which periodically change
direction, as well as constant magnetic fields, which remain in one direction (CMFs) [6,167].
Fernandes et al. explored the integration of CoFe2O4 (CFO) magnetostrictive particles into
a PVDF matrix, which mainly crystallizes in the electroactive β-phase of PVDF under the
influence of magnetic stimuli, promoting the proliferation of pre-osteoblasts [168]. This
transformation can be linked to the induction of electro-transduction processes through
magnetoelectric responses of the scaffolds. The findings revealed that the application
of a controlled magnetic field induced a significant transformation in the scaffold’s mi-
crostructure and led to an enhanced β-phase crystallization of PVDF [168]. This phase is
known for its superior piezoelectric properties, which are crucial for stimulating osteogenic
cell types. The study further demonstrated a marked increase in the proliferation and
maturation of osteoprogenitor cells, indicating the scaffold’s potential to support rapid
bone regeneration [168].

Paltanea et al. report on the use of biodegradable magnetic scaffolds composed of
CS and PCL infused with magnetic nanoparticles (MNPs) (typically Fe3O4) [17]. One
such study by Zhang et al. developed 3D-printed magnetic mesoporous bioactive glass
(MBG)/PCL/Fe3O4 composite scaffolds that exhibit improved proliferation, alkaline phos-
phatase (ALP) activity, and upregulation of osteogenesis-related gene expressions (RUNX2,
OCN, BSP, BMP-2, and Col-1) in human BMSCs [169]. Additionally, the scaffolds facilitated
a sustained release of the anticancer drug doxorubicin (DOX), showcasing their potential
for localized drug delivery even in oncological applications [169].

In a separate study, Lanier et al. developed a unique magnetic-responsive scaffold
comprising PCL microparticles that encapsulate MNPs and placental proteins. The design
leverages the magnetocaloric effect of the MNPs to induce localized heating. When ex-
posed to an alternating magnetic field (AMF) ranging in strength from -1 to 1 Tesla, the
induced heating causes the PCL to melt, facilitating the controlled release of embedded
proteins [6,170]. This process not only supports bone formation but also allows for the
scaffold to solidify again once the magnetic field is deactivated. Such a feature provides the
intriguing potential for the cyclic, repeated administration of therapeutic agents, offering a
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sophisticated approach to localized, controlled drug delivery. This capability to precisely
control the release profile enhances the scaffold’s application in promoting bone regen-
eration, illustrating the synergistic potential of combining magnetic functionalities with
biodegradable polymers for advanced therapeutic strategies in bone healing and tissue
engineering [170].

Despite these advancements, challenges persist in the practical application of magnetic
scaffolds in clinical settings. The primary concern is based on the long-term biocompat-
ibility and safety of MNPs, especially given their potential to diffuse from the scaffold
and impact surrounding tissues. Some studies have indicated potential oxidative stress
and inflammatory responses triggered by iron oxide nanoparticles, necessitating rigorous
in vivo evaluations to establish safe usage parameters [171–174]. Table 6 summarizes recent
studies on magnetic-responsive scaffolds.

Table 6. Summary of recent studies on magnetic-responsive scaffolds.

Study Ref. Material Composition Method Used Key Findings

[168] CFO in PVDF matrix
Solvent casting, template

structuring, magnetic
stimulation

A 3D porous structure resembling trabecular
bone, with pore sizes ranging from 5 µm to
20 µm; enhanced β-phase crystallization in

PVDF, significant osteoprogenitor cell
proliferation; induction of proper cellular

electro-transduction processes through
magnetoelectric responses of the scaffold

[169] MBG/PCL/Fe3O4 3D printing

Magnetic heating ability was improved by the
addition of Fe3O4 and did not affect the apatite
mineralization ability of the scaffolds; greater

expression of osteogenesis-related genes
(RUNX2, OCN, BSP, BMP-2, and Col-1); ECM

mineralization in human BMSCs

[170] PCL/MNPs/placental
proteins Magnetic stimulation Promoted osteogenic differentiation of

umbilical cord MSCs

4.2. Chemical Stimuli

The goal of chemical stimuli-responsive scaffolds in BTE is based on their ability to
adapt their behavior in response to specific chemical signals. For instance, pH-responsive
scaffolds are engineered to change their physical properties or release therapeutic agents
when exposed to the acidic environments typically found in inflamed tissues. This ability
allows for a more controlled and localized treatment approach, aligning the scaffold’s
function with the physiological needs of the tissue. Similarly, scaffolds responsive to
oxidative stress markers, like ROS, are designed to respond to the elevated ROS levels
that are indicative of oxidative cellular environments in damaged bone tissues. These
scaffolds can either release growth factors or degrade in a controlled manner, thus aiding
the regeneration process by matching the release of therapeutic agents with the intensity of
oxidative stress.

4.2.1. pH Response

The design of pH-responsive scaffolds targets the natural variability in pH levels
found in pathological states, particularly in areas with inflammation where pH can notably
decrease. These scaffolds are engineered to respond to such changes, enhancing drug
delivery and tissue regeneration by adapting to the biochemical shifts within the injury site.

Recent studies have explored various materials capable of responding to pH shifts, fa-
cilitating targeted therapeutic interventions. For instance, Zeolitic imidazolate framework-8
(ZIF-8), a class of metal–organic frameworks (MOFs), has been highlighted for its pH-
sensitive properties, which make it an excellent candidate for bone substitution and as a
drug delivery carrier [175–177]. ZIF-8 can effectively release Zn2+ ions in acidic environ-
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ments, which are beneficial for bone regeneration due to their osteogenic impact [178]. This
capability was demonstrated in a study where electrospun PCL/collagen membranes mod-
ified with ZIF-8 released a significant amount of Zn2+ ions under acidic conditions (pH 5.5),
enhancing vascularized bone regeneration in a rat model with calvarial defects [179]. Com-
paring the use of ZIF-8 in different scaffold matrices provides insight into how scaffold
composition can influence drug release kinetics and biological outcomes. For example,
ZIF-8 nanocrystals have also been used as carriers for vancomycin (Van), demonstrating
a controlled release of CS fiber scaffolds that not only delivered the antibiotic effectively
but also promoted osteoblast differentiation by maintaining an acidic pH conducive to
bone healing [6,180,181]. This illustrates the dual function of pH-responsive scaffolds
in providing both antimicrobial protection and supporting bone regeneration. Table 7
summarizes recent studies on pH-responsive scaffolds.

Table 7. Summary of recent studies on pH-responsive scaffolds.

Study Ref. Material Composition Method Used Key Findings

[179] ZIF-8 in PCL/Col membranes Electrospinning
Responsive to acidic environments; released Zn2+

concentrations increased significantly under acidic
conditions (pH 5.5)

[181] CS/ZIF-8/Van Wetspinning

70% of vancomycin released at pH 5.4 over 8 h
compared to 55% at pH 7.4; increased VAN release

under acidic conditions (pH 5.4) due to higher
dissolution of ZIF8

[182] PVA/ZIF-8/Van Electrospinning Enhanced drug release under weak acidic conditions
(pH 6.5) typical of infected tissue environments

4.2.2. Redox Response and Reactive Oxygen Species (ROS)

Redox-responsive materials are specifically engineered to respond to the reactive oxy-
gen species (ROS) prevalent in inflammatory and regenerative environments. These ROS
include the superoxide anion (O2

−), hydroxyl radicals (·OH), hypochlorite ion (ClO−), and
hydrogen peroxide (H2O2), which play pivotal roles as signaling molecules in the progression
of inflammatory disorders and are critically involved in bone growth and remodeling [183].
Redox-responsive scaffolds rely on the dynamic redox environment of healing bone tissues,
where oxidative stress is naturally elevated, to modulate scaffold behavior.

In inflamed tissues, ROS levels can be significantly higher—up to 100 times—than in
healthy tissues [184]. This marked increase makes ROS ideal targets for responsive scaffold
systems designed to enhance bone healing processes. A notable study by Martin et al.
explored the use of thioketal-based polymers within scaffolds that degrade upon encoun-
tering elevated ROS levels, thereby facilitating the localized release of bone morphogenetic
protein-2 (BMP-2) [185]. This responsive degradation ensures that therapeutic agents are
released in a controlled manner precisely where needed, significantly promoting bone
regeneration in areas with critical-sized bone defects.

A study by Lee et al. utilized PLGA-based nanoparticles, demonstrating their potential
in managing ischemia/reperfusion (I/R) injury, known for inducing ROS, like H2O2, which
contributes to vascular thrombosis and tissue damage [186]. Heparin and glutathione were
both encapsulated for their anticoagulant and antioxidant properties. This design facilitated
controlled drug release, with a notably low percentage of heparin (10.3%) released over
an extended period of 96 h, which is crucial for sustained therapeutic effects in vascular
therapy. Furthermore, an H2O2-responsive platform was introduced by combining silk
fibroin with horse peroxidase, enabling the detection of H2O2 and thus tailoring the therapy
to oxidative stress levels observed in I/R injuries [186]. The nanoparticles were surface
modified with hyaluronic acid to specifically target human BMSCs. The targeted delivery
to hBMSCs enables these cells to uptake the therapeutic nanoparticles efficiently, within
2 h, with exocytosis observed 6 h post-uptake. This precision in delivery is particularly
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advantageous in BTE, where the modulation of ROS levels can significantly influence
bone healing processes. The scaffolds’ ability to respond dynamically to the oxidative
environment can both mitigate inflammation and improve the osteogenic capacity of
the scaffold by supporting the survival and proliferation of bone-forming cells under
stress conditions. The study thus presents a significant advancement in the development
of ROS/redox-responsive scaffolds, offering a multifunctional platform that could be
effectively utilized to treat vascular and bone-related diseases through controlled delivery
and smart response mechanisms.

The broader implications of ROS-responsive scaffolds in effectively managing drug
release across various pathological tissues are profound. Variations in ROS levels across
different conditions and individual patients present a significant challenge for achieving
precise therapeutic outcomes. The specificity of the response to ROS is critical, as it dictates
the scaffold’s ability to adapt to fluctuating biochemical signals within the injury site.
One concern is the fine tuning of the scaffold material’s response to ROS levels without
triggering premature or excessive responses that might lead to scaffold degradation or cyto-
toxicity. Additionally, the long-term stability and biocompatibility of redox-active materials,
especially those involving metallic nanoparticles, remain areas requiring more extensive in-
vestigation to fully understand their interactions within the biological environment. Table 8
presents a summary of recent studies on redox and ROS-responsive scaffolds.

Table 8. Summary of recent studies on redox and ROS-responsive scaffolds.

Study Ref. Material Composition Method Used Key Findings

[185] PEM coatings/thioketal-based
polymers, BMP-2 LbL

Thioketal-based polymers specifically cleaved by
physiologic doses of ROS, unlike typical non-specific
hydrolysis; enhanced ROS-mediated protein delivery
in vitro. A 50% increase in bone regeneration over less
sensitive formulations; nearly a threefold extension in

BMP-2 delivery half-life compared to conventional
hydrolytically sensitive coatings

[186] PGLA/nano-HAp LbL, surface coating

A responsive H2O2 detection system via the addition
of silk fibroin/horse peroxidase; targeted human

BMSCs with uptake within 2 h; exocytosis occurring
6 h after cellular uptake; can deliver antioxidants

directly to sites of I/R injury and enhance the survival
and functionality of hBMSCs in

oxidative environments

[187] MBG/Co2+ -

Co2+ acts as a chemical inducer of HIF-1α, simulating
a hypoxic environment that enhances angiogenic and

osteogenic responses; enhanced VEGF protein
secretion, indicating improved angiogenesis;

supported the attachment and proliferation of BMSCs

4.2.3. Enzyme Response

The use of enzyme-responsive materials to harness the unique catalytic and targeting
capabilities of enzymes, particularly in the context of lesion tissues where enzyme levels
fluctuate due to injury and inflammation, allows for the precise modulation of scaffold
properties and drug release in response to specific biochemical signals within the bone
defect area. The particular role of MMP-1 in degrading extracellular matrix proteins
has been reported to aid in the migration of vascular endothelial cells crucial for bone
healing [188]. Schoonraad et al. explored the development of a novel scaffold that enhances
osteogenesis through the modification of BMP-2 with a thiol group [189]. This allowed the
tethering of BMP-2 into a poly(ethylene glycol) (PEG) hydrogel, which was crosslinked
with matrix metalloproteinase (MMP)-cleavable peptides [189]. These peptides respond to
MMPs, enzymes that are upregulated in the bone healing process (particularly during the
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neovascularization phase following injury) by releasing BMP-2 precisely where it is most
needed. The scaffold’s effectiveness was demonstrated through its ability to significantly
elevate osteogenic markers in pre-osteoblasts, facilitated by the BMP-2 release in response
to MMP activity.

Another study by Yang et al. introduced injectable hydrogel microspheres, which are
also sensitive to MMP-1 [190]. These microspheres were engineered using a microfluidic
chip to encapsulate BMSC-derived exosomes (BMSC-Exos) within a matrix composed of a
self-assembling peptide (KLDL-MMP1) and GelMA [6,190]. The resultant microspheres,
with a uniform diameter suitable for minimally invasive injection, effectively released
exosomes in response to MMP1 activity, promoting the migration and osteodifferentiation
of BMSCs. In vivo tests demonstrated that these microspheres significantly aided bone
repair by recruiting CD90+ stem cells through neovessels, highlighting a novel, enzyme-
responsive delivery system that strategically releases therapeutic agents during critical
phases of angiogenesis [190].

Further extending the scope of enzyme-responsive scaffolds, Jia et al. introduced a
glucose oxidase (GOD)-responsive scaffold for diabetic patients, who often experience hin-
dered osteogenesis due to elevated glucose levels [191]. The scaffold expands in response to
increased glucose concentrations, triggering the controlled release of dexamethasone (DEX).
This release mechanism simultaneously combats inflammation, promotes bone formation,
and addresses the specific metabolic conditions of diabetic patients. Table 9 presents a
summary of recent studies on enzyme-responsive scaffolds.

Table 9. Summary of recent studies on enzyme-responsive scaffolds.

Study Ref. Material Composition Method Used Key Findings

[189] PEG/MMP-cleavable
peptide/BMP-2

Crosslinking, thiolation of
BMP-2, thiol-norbornene

click chemistry

Significant increase in expression levels of
osteogenic markers Bglap and Ibsp in the

presence of tethered BMP-2 and enhanced cell
differentiation; confirmed the activation of the
BMP canonical signaling pathway (via SMAD
1/5/8 route), which is critical for osteogenesis

[190] GelMA/MMP-1/KLDL-
MMP1/BMSC-Exos Microfluidic chip

Responsive to MMP1 and enabling targeted and
controlled release of exosomes; enhanced bone

repair in vivo by recruitment of CD90+ stem
cells through neovessels

[191] PCL/CS/DEX/GOD Electrospinning, genipin
Scaffolds effectively promoted osteogenic

differentiation of MC3T3-E1 cells in
high-glucose conditions

5. Future Perspectives and Conclusions

In this review, the potential of BTE as a viable alternative to traditional methods,
such as autografts and allografts, was explored, focusing on recent advancements in
biomaterials and scaffold fabrication techniques. These technologies enable scaffolds to
mimic the natural bone microenvironment, enhancing osteogenesis and tissue formation.
The development of smart scaffolds and bio-responsive systems capable of adapting to
physical and chemical stimuli can optimize healing processes by responding dynamically
to the physiological environment. Looking forward, the integration of smart nanosensors
and shape memory alloys holds promise for revolutionizing BTE, offering precise control
over scaffold interactions and the ability to adjust dynamically to changes within the
body. We underscore the necessity for continued research into multi-responsive systems
to meet the intricate demands of bone healing, emphasizing that the fusion of advanced
materials and innovative fabrication techniques is crucial for advancing the efficacy of
treatments in regenerative medicine and orthopedics. This ongoing integration is essential
for transcending current limitations and significantly enhancing clinical outcomes in BTE.
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