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Abstract: Primary sclerosing cholangitis (PSC) is a rare, progressive disease, characterized by in-

flammation and fibrosis of the bile ducts, lacking reliable prognostic biomarkers for disease activity. 

Machine learning applied to broad proteomic profiling of sera allowed for the discovery of markers 

of disease presence, severity, and cirrhosis and the exploration of the involvement of CCL24, a chem-

okine with fibro-inflammatory activity. Sera from 30 healthy controls and 45 PSC patients were pro-

filed with proximity extension assay, quantifying the expression of 2870 proteins, and used to train 

an elastic net model. Proteins that contributed most to the model were tested for correlation to en-

hanced liver fibrosis (ELF) score and used to perform pathway analysis. Statistical modeling for the 

presence of cirrhosis was performed with principal component analysis (PCA), and receiver operat-

ing characteristics (ROC) curves were used to assess the useability of potential biomarkers. The 

model successfully predicted the presence of PSC, where the top-ranked proteins were associated 

with cell adhesion, immune response, and inflammation, and each had an area under receiver op-

erator characteristic (AUROC) curve greater than 0.9 for disease presence and greater than 0.8 for 

ELF score. Pathway analysis showed enrichment for functions associated with PSC, overlapping 

with pathways enriched in patients with high levels of CCL24. Patients with cirrhosis showed 

higher levels of CCL24. This data-driven approach to characterize PSC and its severity highlights 

potential serum protein biomarkers and the importance of CCL24 in the disease, implying its ther-

apeutic potential in PSC. 
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1. Introduction 

Primary Sclerosing Cholangitis (PSC) is a chronic, idiopathic liver disorder charac-

terized by progressive fibrosis leading to cirrhosis, with more severe cases ending in 

hepatobiliary malignancies and liver failure requiring liver transplantation [1]. The pa-

thology of PSC involves a ductular reaction and peribiliary inflammation with significant 

immune cell engagement, advancing to fibrosis, and in some cases, cirrhosis, significantly 

impairing liver function and increasing the risk of hepatobiliary cancers. Disease progres-

sion exacerbates patient morbidity and mortality, and despite the severe clinical outcomes 

associated with PSC, there are no approved drugs [2]. 

PSC can be challenging to assess, as the disease is heterogeneous and presents with 

variable progression, as is evident by the abundance of metrics and tests used by physi-

cians to characterize the disease and monitor for disease progression, such as enhanced 
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liver fibrosis (ELF) score, transient elastography (Fibroscan®), and magnetic resonance 

cholangiopancreatography (MRCP) [3]. More complex models also exist, aiming to com-

bine several measurements into a single score, to predict outcomes. These include 

PRESTO, Mayo clinic PSC model, and the UK-PSC risk score. Novel biomarkers would 

potentially augment such models by incorporating relevant information and could im-

prove their prognostic value. While invasive testing, such as liver biopsies, could offer 

valuable information, it is not a routine clinical practice given the patchy nature of PSC, 

limited value for disease staging, and the risk of damaging healthy tissue during the bi-

opsy [4]. In contrast, serum-based biomarkers offer a safer and potentially more sensitive 

and specific alternative [5,6]. 

The data analyzed here were generated using a novel proximity extension assay 

(PEA) technology that allows for the quantification of multiple serum proteins with high 

sensitivity [7]. This is necessary for the discovery of potential biomarkers. 

To analyze the proteomic data while accounting for its inherent complexities, such 

as high dimensionality and co-linearity of proteins, a suitable model is needed. In this 

work, we demonstrate the use of an elastic net regression model (ENRM), which can help 

prevent overfi�ing while maintaining model interpretability and has been used previ-

ously for similar tasks [8–10]. This model handles multicollinearity among predictors by 

combining the strengths of both ridge and Lasso (Least Absolute Shrinkage and Selection 

Operator) regression, applying a penalty to the model coefficients that balances the inclu-

sion of significant variables and the exclusion of irrelevant ones. This approach facilitates 

the identification of a more precise set of proteins implicated in PSC pathogenesis and 

offers an understanding of disease mechanisms and potential therapeutic targets. 

CCL24 (Eotaxin-2) belongs to a subgroup of CC chemokines that play a role in the 

immunopathogenesis of PSC [11,12]. CCL24 exhibits a high affinity for the CCR3 receptor 

on immune cells and fibroblasts, mediating their recruitment to sites of inflammation and 

their activation within the biliary epithelium, which leads to bile duct damage and fibro-

sis. The expression of CCL24 is induced in response to inflammatory stimuli in various 

cell types, such as endothelial cells, epithelial cells, and fibroblasts [13]. Several works 

have presented CCL24 as important for the understanding of PSC’s pathophysiology and 

as a potential therapeutic target aimed at modulating fibrosis and inflammation to delay 

or halt the progression of the disease [11,12]. CM-101, a first-in-class humanized antibody 

targeting CCL24, demonstrated efficacy in influencing consequential biomarkers of liver 

fibrosis in multiple preclinical models of PSC. We previously analyzed the serum prote-

omics of PSC patients and healthy controls (HC), revealing that key disease-related mech-

anisms are associated with CCL24 serum levels [12]. Revealed pathways, upstream regu-

lators, and toxicity functions were elevated in PSC patients, particularly in patients with 

high CCL24 levels. 

In this work, we demonstrate the role of computational analysis in identifying pro-

teins of interest involved in PSC, offering a new perspective on proteins impacting PSC 

while emphasizing the need for novel biomarkers for PSC progression without invasive 

testing. The results presented here highlight specific proteins linked to PSC that could 

serve as biomarkers or potential therapeutic targets. Moreover, statistical modeling was 

employed to ascertain the presence of cirrhosis, utilizing proteins and pertinent clinical 

metrics. 

  



Int. J. Mol. Sci. 2024, 25, 6042 3 of 13 
 

 

2. Results 

2.1. Proteomic Characteristics of the Studied Population 

We compared the expression profile of serum proteins of two PSC cohorts with that 

of healthy controls (HC) (Figure 1A). Protein levels are expressed as normalized protein 

expression (NPX). When comparing serum levels of each protein, most proteins are over-

expressed in patients with PSC compared to healthy controls (Figure 1B). Adjusted for 

multiple testing, 1628 proteins show a significant difference between conditions, with 135 

proteins down-regulated and 1493 up-regulated in patients with PSC compared to HCs. 

When limiting the differentially expressed proteins to those with a fold change of 1.5 or 

more, three proteins are down-regulated and 72 proteins are up-regulated. The differen-

tial expression of all 2876 proteins can be found in Supplementary Table S1. 

On average, patients with PSC were older (Table 1) than healthy controls, which 

likely resulted in some differences in the proteomic profile of the study population. How-

ever, a similar analysis on an age-matched subset of the data showed that age did not 

significantly affect the comparison [12]. Similarly, modeling expression values while ad-

justing for age as a covariate did not show an effect on the differential expression of pro-

teins. 

Table 1. Demographic information per cohort. 

 Cohort   

Characteristic N HC, N = 30 1 PSC, Cohort 1, N = 30 1 PSC, Cohort 2, N = 15 1 

ELF_level 75    

HC  30 (100%) 0 (0%) 0 (0%) 

PSC, ELF < 9.8  0 (0%) 8 (27%) 8 (53%) 

PSC, ELF > 9.8  0 (0%) 12 (40%) 4 (27%) 

PSC, ELF NA  0 (0%) 10 (33%) 3 (20%) 

Age 75 24 (21, 28) 46 (32, 65) 37 (30, 53) 

Gender 75    

Female  0 (0%) 11 (37%) 8 (53%) 

Male  30 (100%) 19 (63%) 7 (47%) 

ELF 32 NA (NA, NA) 10.03 (9.30, 10.73) 9.41 (8.96, 10.09) 

Unknown  30 10 3 

ALP 75 74 (58, 87) 235 (150, 398) 282 (259, 460) 

AST 75 19 (18, 24) 48 (33, 75) 73 (39, 95) 

ALT 75 17 (13, 23) 64 (45, 153) 98 (42, 207) 

Fibroscan 43 NA (NA, NA) 10.20 (8.65, 11.60) 8.10 (6.80, 10.70) 

Unknown  30 0 2 
1 n (%); Median (IQR). 

The proteomic profile can distinguish between the HCs and PSC patients, as seen in 

a PCA representation of the data (Figure 1C). As expected, due to the large number of 

proteins represented, some overlaps exist between the two groups. Taken together, this 

shows that protein levels in the serum of patients with PSC are associated with the disease. 
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Figure 1. Proteomic profiling demonstrates unique protein expression in PSC patients. (A) In the 

data acquisition process, serum was taken from three cohorts of individuals, quantified by the real-

time PCR-based proximity extension assay (PEA) and used to model disease presence. (B) Volcano 

plot showing the fold change (red points represent FC>1.5, blue points represent FC < 1.5) and 

−Log10 of the p-value from a Welch two-sample t-test between HC and PSC patients. (C) Principal 

component analysis showing the separation of HC and PSC patients. 

2.2. Elastic Net Modeling 

To uncover which proteins are most likely associated with the presence of PSC, an 

elastic net model was trained. This model was chosen based on its ability to account for 

the high dimensionality of our data and prevent overfi�ing. The trained model success-

fully predicted the disease state, with an accuracy of 0.98 (CI 0.96–1) and an AUC of 0.99 

(CI 0.98–1). Top contributing proteins (Figure 2A) were estimated by repeating the mod-

eling step 500 times and averaging the importance score, and proteins with an average 

importance of 1 or greater (n = 118) were considered relevant. A PCA plot (Figure 2B) was 

generated using this subset of the data and shows a strong separation of the population 

for disease presence. 

The top proteins (Figure 2C) are all associated with cell adhesion, immune response, 

and inflammation, as can be expected. ROC curves were plo�ed for all proteins, with the 

top ones all having an area under the receiver operator characteristics (AUROC) curve of 

over 0.95 (Figure 2D), showing that these proteins are strong predictors of disease pres-

ence. The complete list of proteins that contributed to the model and their respective im-

portance scores can be found in Supplementary Table S2. 
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Figure 2. Elastic net logistic regression identifies disease biomarkers with high predictive values. 

(A) Heatmap based on 118 proteins contributing to disease presence prediction. (B) PCA using the 

same 118 proteins. (C) Protein importance for the top 15 proteins, averaged across 500 runs. (D) 

ROC curves and area under the curve for the top five proteins predicting disease state. 

2.3. Model Association with ELF Score 

To focus the list of proteins on disease severity and increase the signature’s relevance 

to PSC, proteins were tested for their association with the ELF score, an indicator for fi-

brosis severity and predictor of PSC-related complications [14,15]. This score consists of a 

combination of three ECM-related markers: tissue inhibitor of metalloproteinases 1 

(TIMP-1), amino-terminal propeptide of type III procollagen (PIIINP), and hyaluronic acid 

(HA). Out of all the proteins with considerable contribution (importance > 1) to the pre-

diction, 16 also showed a strong (p-value < 0.05) correlation to the ELF score. 

Using a heatmap (Figure 3A), strong clustering is seen for HC, PSC patients with low 

(<9.8) ELF scores, and PSC patients with high (>9.8) ELF scores. The same is seen for a 

principal component analysis (PCA, Figure 3B) showing how these three populations can 

be distinguished based on these proteins alone. 

The proteins consisting of this signature belong to several categories, such as proteins 

that are bound to ECM components (ITGA5, ITGBL1, VWF, BCAM, and PKD1), cellular 

receptors (ADGRE2, ADGRE5, MSR1, DCBLD2, NOTCH3, HAVCR1, BCAM, and SRPX), 

and ECM structural components (LTPB2 and MFAP4). These functions are all relevant to 

PSC and its underlying mechanisms. 

Using a threshold of 9.8 to stratify ELF score values (Table 2), ROC curves were gen-

erated for these proteins, with the top five all having an area under the ROC curve (AU-

ROC) of over 0.8. This translates to the potential of these proteins to serve as biomarkers 

for both disease presence and severity, represented by the stratified ELF score. 
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Table 2. Demographic information per ELF score category. 

Disease and ELF State      

Characteristic N Overall, N = 75 1 HC, N = 30 1 
PSC, ELF < 9.8,  

N = 16 1 

PSC, ELF > 9.8,  

N = 16 1 

PSC, ELF NA,  

N = 13 1 

Age 75 31 (25, 51) 24 (21, 28) 31 (25, 35) 54 (47, 64) 49 (35, 68) 

Gender 75      

Female  19 (25%) 0 (0%) 7 (44%) 11 (69%) 1 (7.7%) 

Male  56 (75%) 30 (100%) 9 (56%) 5 (31%) 12 (92%) 

ELF 32 9.88 (9.02, 10.39) NA (NA, NA) 9.01 (8.79, 9.37) 10.49 (10.10, 11.08) NA (NA, NA) 

Unknown  43 30 0 0 13 

ALP 75 150 (76, 287) 74 (58, 87) 287 (251, 361) 296 (196, 584) 203 (76, 282) 

AST 75 33 (20, 67) 19 (18, 24) 67 (36, 88) 52 (42, 79) 42 (31, 72) 

ALT 75 38 (19, 96) 17 (13, 23) 105 (57, 188) 64 (50, 160) 46 (33, 154) 

Fibroscan 43 10.10 (7.95, 11.60) NA (NA, NA) 8.45 (7.33, 11.60) 10.30 (9.00, 12.20) 9.85 (8.48, 10.40) 

Unknown  32 30 0 1 1 
1 Median (IQR); n (%). 

For example, the protein with the highest importance that also had a strong correla-

tion (0.82, Pearson, Figure 3D) with the ELF score, LTBP2, is overexpressed in the fibrotic 

livers of PSC patients [16] and was reported as a prognostic biomarker for liver cancer 

[17]. LTBP2 serves as a structural component of microfibrils without latent-TGF beta ac-

tivity [18]. Interestingly, we previously demonstrated the therapeutic potential of block-

ing CCL24 in an Mdr2-knockout mouse PSC model [11] that was accompanied by reduced 

Ltbp2 expression within the biliary area following anti-CCL24 treatment (Supplementary 

Figure S1). 

 

Figure 3. Association of model to disease severity. (A) Heatmap of protein signature for PSC and 

ELF score, showing hierarchical clustering of HC and patients with PSC with low (<9.8) and high 

(>9.8) ELF scores. (B) PCA using only the proteins used for the heatmap. (C) ROC curves and area 
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under the curve for the top five proteins predicting both disease and ELF score. (D) Correlation and 

t-test of LTBP2 and ELF, both as a continuous variable and stratified by 9.8 threshold. 

2.4. Pathway Analysis 

To translate the proteins driving the model into pathways, over-representation anal-

ysis (ORA) was performed. All proteins that contributed to the model in a meaningful way 

(importance over 1, n = 118) were used, resulting in 13 enriched pathways (Figure 4A). 

These pathways include those directly related to PSC and fibrosis, such as Elastic fiber 

formation (HSA-1566948), Integrin cell surface interactions (HSA-216083), and Extracellu-

lar matrix organization (HSA-1474244), as well as more general pathways for immune re-

sponse and inflammation. We compared these pathways to those enriched in individuals 

stratified by CCL24 levels (n = 126, Figure 4B) and saw noticeable overlap between the two 

groups. (Figure 4C). The complete lists of proteins used for the over-representation anal-

ysis can be found in Supplementary Table S2 for model contribution and in Supplemen-

tary Table S3 for CCL24 stratification. The lists of enriched pathways can be found in Sup-

plementary Table S4. 

 

Figure 4. CCL24 is associated with disease-related biological pathways. (A) Reactome pathways en-

riched for PSC/HC. (B) Reactome pathways enriched for CCL24 high/low (C) Venn diagram of the 

overlap between pathways enriched for proteins that contributed to the PSC/HC model and proteins 

that were differentially expressed in PSC patients with high/low levels (by median NPX value) of 

CCL24. 

2.5. Statistical Modeling for the Presence of Cirrhosis 

Next, we looked at the presence of cirrhosis as an indicator of progression to severe 

PSC (Table 3). Logistic regression adjusted for age showed several proteins and other clin-

ical markers associated with the presence of cirrhosis. Patients with cirrhosis (n = 18) had 

lower levels of AST/ALT ratios and platelets (Figure 5A) and higher levels of CCL24, while 

other eotaxins (CCL11 and CCL26) did not show this pa�ern (Figure 5B). ROC curves 

show that these metrics and CCL24 are associated with the presence of cirrhosis (Figure 

5C). The above-mentioned proteins that previously predicted disease state and showed a 

strong association with ELF, such as LTBP2, were not associated with the prediction of 

cirrhosis (Supplementary Table S5). Furthermore, when comparing patients who did not 
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develop cirrhosis to those who were already cirrhotic at the time serum was taken and to 

patients who developed cirrhosis after sampling (Figure 5D), significant differences are 

shown for platelets (PLT) and CCL24. Finally, patients exhibiting elevated CCL24 levels 

were observed to have an increased probability of developing cirrhosis, as demonstrated 

by the Kaplan–Meier curve analysis (Figure 5D). 

 

Figure 5. Changes in CCL24 expression reflect cirrhosis presence. (A) Wilcoxon test comparing the 

mean values of platelets and AST/ALT ratio between PSC patients with and without cirrhosis. (B) 

Wilcoxon test comparing the mean values of CCL11, CCL24, and CCL26 between PSC patients with 

and without cirrhosis. (C) Wilcoxon test comparing the mean values of PLT, AST/ALT, and CCL24 

between PSC patients without cirrhosis, those who were cirrhotic when serum was taken, and those 

who developed cirrhosis after serum was taken. Red dot and line represent the mean value. (D) 

Kaplan–Meier plot stratified by median CCL24 levels showing probability of cirrhosis over time. 

Table 3. Demographic information of cohort 1 according to cirrhosis presence. 

 Cirrhosis   

Characteristic N Overall, N = 30 1 N, N = 12 1 Y, N = 18 1 p-Value 2 

Age 30 46 (32, 65) 32 (30, 50) 53 (37, 67) 0.072 

Gender 30    >0.9 

Female  11 (37%) 4 (33%) 7 (39%)  

Male  19 (63%) 8 (67%) 11 (61%)  

ELF 20 10.03 (9.30, 10.73) 9.01 (8.72, 10.74) 10.09 (9.91, 10.45) 0.2 

Unknown  10 4 6  

ALP 30 235 (150, 398) 244 (155, 330) 235 (150, 535) >0.9 

AST 30 48 (33, 75) 70 (34, 120) 47 (34, 56) 0.2 

ALT 30 64 (45, 153) 162 (76, 198) 56 (42, 69) 0.014 

Fibroscan 30 10.20 (8.65, 11.60) 10.10 (9.20, 11.68) 10.30 (8.65, 11.38) 0.9 

CCL11 30 1.17 (0.97, 1.48) 1.17 (0.90, 1.53) 1.16 (0.97, 1.44) >0.9 

CCL24 30 1.15 (0.60, 1.63) 0.56 (0.08, 1.27) 1.33 (0.81, 1.82) 0.028 



Int. J. Mol. Sci. 2024, 25, 6042 9 of 13 
 

 

 Cirrhosis   

Characteristic N Overall, N = 30 1 N, N = 12 1 Y, N = 18 1 p-Value 2 

CCL26 30 1.06 (0.53, 1.76) 1.18 (0.68, 1.81) 1.02 (0.52, 1.63) 0.7 
1 Median (IQR); n (%); 2 Wilcoxon rank sum test; Fisher's exact test; Wilcoxon rank sum exact test. 

3. Discussion 

This study shows the application of a machine learning approach integrated with 

proteomic data to highlight serum proteins associated with the presence and severity of 

PSC. We demonstrate that the circulating proteome differs among PSC patients, particu-

larly those with a more severe disease, as indicated by their ELF score (>9.8) or the pres-

ence of cirrhosis. This observation, coupled with computational methods, allowed us to 

single out proteins of interest associated with the disease. Our iterative approach progres-

sively refines the selection of a minimal protein signature for disease state, severity (using 

an ELF score threshold of 9.8), and cirrhosis. 

The data used for this work, multiplex protein data obtained from a novel proximity 

extension assay, proved to be valuable in discerning disease severity; the breadth of these 

data, quantifying thousands of proteins, resulted in an accurate model and a thorough 

analysis of potential biomarkers. The dimensionality of the data was a major factor in 

model selection, as a relatively small sample size and feature abundance could result in 

overfi�ed or biased models. While more complex models exist, the exploratory nature of 

this research necessitated an interpretable model. The choice of an elastic net regression 

model, a regularization method that combines the properties of both ridge and lasso re-

gression, resulted in a useful model that predicted disease presence while accounting for 

the large feature set, ensuring that the selected biomarkers are both statistically significant 

and clinically relevant. 

The biomarkers identified through this study hold significant translational im-

portance, offering potential advancements in the monitoring of disease progression in 

clinical se�ings. The utilization of proteomic data derived from blood tests, a minimally 

invasive method, underscores the beneficial potential of this approach in a clinical context 

where blood is taken regularly [19]. Moreover, the identified serum biomarkers could en-

hance the precision of disease monitoring, potentially leading to earlier interventions, tai-

lored treatment plans, and improved patient outcomes. The integration of these bi-

omarkers into clinical studies could therefore benefit how diseases are tracked over time. 

A machine learning-based model identified a protein signature that can serve as bi-

omarkers of PSC and its progression, and statistical modeling identified biomarkers that 

are elevated in PSC-related cirrhosis. However, proteins that correlated with the develop-

ment of cirrhosis, such as CCL24, are not biomarkers per se, but their elevated levels indi-

cate a role in disease pathogenesis. This is consistent with a previous report of increased 

CCL24 levels in hepatitis B patients who developed cirrhosis [20]. 

Several studies have indicated the involvement of CCL24 in PSC [11,12]. CCL24 is 

up-regulated in PSC patients and could be involved in the recruitment of immune cells to 

the liver and bile ducts and activation of hepatic stellate cells and cholangiocytes, contrib-

uting to the inflammatory-fibrotic-cholestatic process characteristic of PSC. The pathway 

analysis described in this work underscores the intricate involvement of various biological 

pathways in PSC, ranging from fibrotic-related pathways to pathways associated with im-

mune response and inflammation. Notably, the comparison of enriched pathways be-

tween individuals stratified for CCL24 revealed a significant overlap, further strengthen-

ing the potential role of CCL24 in modulating the disease. 

This work summarizes our research on a population of patients with PSC compared 

to those without the disease. PSC is a rare disease which allowed only a limited patient 

population to be studied, and repeating this study would be necessary. This also comes 

into effect when modeling the data, as a small sample size could lead to overfi�ing. While 

our choice of algorithm considered the limitations of the data, more robust approaches 
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are constantly being developed [21,22] and could lead to strong results once employed. 

Finally, the exploratory nature of this work would benefit from validation in a clinical 

se�ing to observe how specific protein levels or clinical measurements change over time. 

4. Methods 

4.1. Study Population 

This study included three distinct groups: two patient cohorts diagnosed with PSC 

and a control group consisting of healthy individuals. The first PSC cohort comprised 30 

participants from whom serum samples were obtained at the UCL Institute for Liver and 

Digestive Health, Royal Free Hospital, London, UK. This cohort had Enhanced Liver Fi-

brosis (ELF)™ score for 20 out of 30 participants and records of whether a patient devel-

oped cirrhosis or not. The second PSC cohort consisted of 16 individuals providing base-

line serum samples, all of whom were participants in the SPRING phase 2a clinical trial 

(NCT04595825), exploring the safety and biological effects of CM-101 in PSC patients. Of 

these, 13 out of the 16 had ELF scores available. The control group involved 30 healthy 

participants, with serum samples collected pre-dose from a phase 1 clinical trial 

(NCT06025851), assessing the safety and tolerability of CM-101. No ELF scores were avail-

able for these healthy controls. 

The collection of samples was conducted in strict accordance with the ethical guide-

lines of the Declaration of Helsinki, and the requisite approvals were obtained from the 

ethics commi�ees of the involved institutions. Wri�en consent was secured from all sub-

jects before collecting the samples. Demographic and clinical characteristics, including 

age, gender, serum biochemistry, complete blood counts, and any indicators of cancer or 

symptoms related to the disease, were collected and recorded for analysis. The complete 

demographic and baseline characteristics by cohort is available in Table 1, and alternative 

stratification for ELF scores is available in Supplementary Table S2. For patients in cohort 

1, a demographic table stratified according to the presence of cirrhosis appears in Table 3. 

4.2. Serum Proteomics Assay 

Using the Olink® Explore 3072 platform, we assessed serum levels of 2926 individual 

proteins through the proximity extension immunoassay (PEA; Olink® Proteomics, Upp-

sala, Sweden). This method employs a pair of antibodies tagged with complementary 

DNA to detect proteins in serum. The reaction was amplified and quantified using PCR, 

producing normalized protein expression values (NPX) on a log-2 scale that allowed for 

relative quantification across samples. Following internal quality control from Olink, 2876 

proteins were used in the downstream analysis. Serum levels of CCL24 were found to be 

strongly correlated with its NPX values. (Supplementary Figure S2).  

The analysis was conducted using the R statistical software (version 4.3.0; R Core 

Team 2023 [23]), during which data underwent preprocessing, including the recoding of 

identifiers. An outlier, identified due to abnormally high protein levels possibly from tech-

nical artifacts, was removed from further analysis. This decision was supported by prin-

cipal component analysis (PCA) and QC plots generated with the Olink® Analysis package 

in R (version 3.4.1) and the functions “olink_pca_plot” and “‘olink_qc_plot”, respectively. 

Other than this exclusion, all data were retained, including NPX values beneath the de-

tection threshold and those flagged by QC alerts. 

The study population was stratified into patients with PSC and HC. Further, patients 

were subgouped by fibrosis severity, diagnosed by ≥9.8 (high fibrosis) or ELF score <9.8 

(Low fibrosis) [24]. Differential expression between each group was calculated using a 

Welch 2-sample t-test, corrected for multiple testing using the Benjamini–Hochberg (BH) 

method, with a p-value of 0.05 or lower considered statistically significant. Data were pro-

cessed using the tidyverse (version 2.0.0, [25]) package suite. An annotated volcano plot 

of the 30 most differentially expressed proteins between PSC and HC can be found in 

supplementary Figure S3. 
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4.3. Elastic Net Modeling 

All 2870 proteins were used as features, with the binary class of PSC or HC used for 

the prediction. Modeling was implemented in R using the glmnet R package (version 4.1–

7, [26]) via the caret (6.0–94, [27]) package. To minimize overfi�ing, repeated 5-fold cross 

validation was performed 10 times using an 80/20 split for training and testing. The model 

was tuned for alpha and lambda ranging from 0.1 to 0.9 in 0.1 increments, and 0 to 1 in 

0.01 increments, respectively. To evaluate the diagnostic performance, receiver operating 

characteristic (ROC) curves were constructed, and areas under ROC curve (AUC) were 

calculated using the R package pROC (1.18.5, [28]). 

4.4. Pathway Analysis 

Pathway analysis and over-representation analysis were performed using the Search 

Tool for Retrieval of Interacting Genes/proteins (STRING, [29]) database, with default set-

tings. The proteins used for enrichment in PSC patients were those that contributed to the 

prediction, with an importance of 1 or greater (n = 118). For CCL24, patients were stratified 

by the median value of CCL24, and a t-test was performed, with proteins with a p-value 

of 0.05 or lower included in the over-representation analysis (n = 126). Pathways were 

considered significantly enriched with a false discovery rate (FDR) of 0.05 or lower, cor-

rected for multiple testing using the BH method. Strength is the log10 (observed/ex-

pected). The complete result of the STRING query can be found in Supplementary Table 

S4. 

4.5. Statistical Modeling 

To assess the presence of cirrhosis in patients, a logistic regression was fi�ed using 

the following equation: 

log �
�

1 − �
� = β� + β��� + β��� + ⋯+ β��� + βageAge 

where p is the probability of cirrhosis, β� is the intercept, β�, β�,…,β� are the protein 

levels and numeric clinical metrics, and β��� is the coefficient for the age variable. The 

model was adjusted due to the difference in age between groups (Table 3) 

4.6. Animals 

Treatment of Mdr2-knockout mice with CM-101 and transcriptomic analysis of the 

biliary area was described previously [11]. Briefly, 6-week-old mice were subcutaneously 

treated with 10 mg/kg CM-101 for 6 weeks. Paraffin-embedded sections were analyzed 

using the whole mouse transcriptome atlas (NanoString, Sea�le, WA, USA). 

5. Conclusions 

This research employed an iterative approach to identify circulating biomarkers for 

PSC and assess their correlation with disease severity, yielding a minimal protein signa-

ture with diagnostic utility for PSC, fibrosis progression, and identification of cirrhosis. 

Notably, CCL24 displayed elevated expression in cirrhotic patients, strengthening its in-

volvement in PSC progression. 
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