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Abstract: Melanoma is the fifth most common cancer in the United States. Conventional drug
discovery methods are inherently time-consuming and costly, which imposes significant limitations.
However, the advent of Artificial Intelligence (AI) has opened up new possibilities for simulating
and evaluating numerous drug candidates, thereby mitigating the requisite time and resources. In
this context, normalizing flow models by employing machine learning techniques to create new
molecular structures holds promise for accelerating the discovery of effective anticancer therapies.
This manuscript introduces TumFlow, a novel AI model designed to generate new molecular entities
with potential therapeutic value in cancer treatment. It has been trained on the NCI-60 dataset,
encompassing thousands of molecules tested across 60 tumour cell lines, with an emphasis on the
melanoma SK-MEL-28 cell line. The model successfully generated new molecules with predicted
improved efficacy in inhibiting tumour growth while being synthetically feasible. This represents
a significant advancement over conventional generative models, which often produce molecules
that are challenging or impossible to synthesize. Furthermore, TumFlow has also been utilized to
optimize molecules known for their efficacy in clinical melanoma treatments. This led to the creation
of novel molecules with a predicted enhanced likelihood of effectiveness against melanoma, currently
undocumented on PubChem.

Keywords: generative model; anticancer molecules; melanoma; SK-MEL-28

1. Introduction

Melanoma, a serious form of skin cancer, originates from melanocytes. Melanocytes
are cells responsible for producing melanin that colours the skin. It stands as the most
severe type of skin cancer due to its potential to metastasize to other body parts if not
detected and treated promptly. Individuals with fair skin, blue eyes, and light-coloured hair
are predominantly at higher risk, largely due to their lower levels of melanin, making their
skin more susceptible to harmful ultraviolet (UV) radiation from the sun [1–5]. Moreover,
melanoma poses an increased threat due to its resistance to conventional chemotherapy [6].
Current treatment strategies for melanoma include surgical excision, targeted therapy, and
immunotherapy. Targeted therapies are employed for melanomas with specific genetic
mutations, such as the BRAF V600E mutation, using inhibitors like vemurafenib and
dabrafenib [7]. Immunotherapy, leveraging agents such as anti-PD-1 antibodies (nivolumab
and pembrolizumab) and anti-CTLA-4 antibodies (ipilimumab), has shown efficacy in
enhancing the immune response against melanoma cancer cells [8–10]. The drug discovery
and design processes are complex and resource-intensive, often extending over 10–20 years
with costs exceeding USD 2 billion [11,12]. Figure S1 presents the number of FDA-approved
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drugs per year [13], highlighting the small increase in approvals despite investments in
research and development increasing each year [14], as can be seen in Figure S2.

In this context, Artificial Intelligence (AI) provides a promising avenue for revolution-
izing the field, potentially reducing costs and increasing efficiency. It has become a pivotal
tool in various aspects of cancer management, encompassing early detection, precision
medicine, imaging, and drug repurposing [15]. Despite these advancements, the complete
potential of AI in synthesizing novel anticancer molecules is yet to be fully harnessed and
explored [16]. Within AI, machine learning and deep learning are key subfields, including
techniques like supervised and unsupervised learning. Supervised learning is utilized for
tasks like disease detection and drug efficiency estimation, while unsupervised learning
aids in patient stratification and disease recognition [17]. Deep learning, particularly effec-
tive in processing large datasets such as those related to the use of images, has contributed
notably to melanoma cancer diagnostics among other areas [18–20].

Among the unsupervised models, there is a family of approaches that fall under the
name of generative models, which are a class of algorithms designed to learn and generate
new data that are similar to those within a given training dataset. These models aim to cap-
ture the underlying patterns and structures in the training data, enabling them to generate
novel samples that share characteristics with the original data. In the field of new drug
generation, various approaches based on Variational Autoencoders (VAEs) [21–31], Genera-
tive Adversarial Networks (GANs) [32–34], Normalizing Flows [11,35–39], and Diffusion
Models [40–50] have been explored. Moreover, the advent of large language models (LLMs)
using transformer architectures [51] has further expanded this field. Transformer-based
models, originally developed for natural language processing tasks, have been successful
in capturing complex patterns in data and have been applied in drug generation [52–55].
Generative models can also include a predictive model to predict the antitumoral activity
of generated molecules, enabling the identification of the most promising candidates.

Normalizing flow methods have been applied in various fields, including density
estimation [56] and data augmentation [57]. They have been used in tasks such as image
generation, speech synthesis, and molecular generation in chemistry. Specific architectures
like Real Non-Volume-Preserving (RealNVP) [58] and Glow [59] methods are examples of
these. The normalizing flow method represents an effective technique to learn the unknown
probability distribution that has generated the data in the training set, i.e., the chemical
structure of the molecules. It does this by employing a series of invertible transformations
to transmute a probability distribution over input data (i.e., molecule structures) into a
designated target probability distribution.

This research incorporates deep learning into drug discovery with TumFlow, a novel
approach for generating molecular graphs for cancer therapeutics. TumFlow, building on
the foundational work of MoFlow [11], a pioneering model in the field of models applied to
graph structures, adapts and enhances these capabilities specifically to address melanoma
treatment challenges. It leverages MoFlow efficient bond and atom generation to create
novel molecules aimed to be effective against melanoma cancer cells. When learning to
generate new antitumoral molecules, TumFlow is trying to solve a complex assignment
made of challenging subtasks. The successful generation of useful molecules requires an
implicit comprehension of their pharmacokinetics, the identification of single or multiple
targets, and the assurance that they bind with high affinity to these to inhibit tumour
progression. Each of these subtasks presents formidable difficulties independently, and the
fact that the neural network does not have this kind of information to learn from makes the
learning process even more challenging.

The integration of TumFlow into the drug discovery process reflects a broader trend in
AI increasing impact on healthcare and pharmaceutical research. By focusing specifically
on melanoma, TumFlow addresses a critical need in cancer treatment, offering the potential
to rapidly identify and develop new therapeutic molecules. For this reason, this work
represents a novel contribution to anticancer drug discovery.
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2. Results and Discussion

In the following, some novel molecules generated by TumFlow against the SK-MEL-
28 melanoma tumour are presented, while its limitations are discussed in Section S7 of
the Supplementary Material. Two processes were adopted for generating new molecules
with TumFlow that will be individually discussed in the following. Each molecule will be
introduced with its predicted GI50 score, the normalized SAS [60] value, and its similarity
measure in relation to the initial molecule. The similarity score allows evaluation of how
much the newly generated molecule and the starting molecule differ from each other. This
score is calculated using the Tanimoto similarity of the Morgan Fingerprint [61]. More
details about the generation process adopted by TumFlow and the metrics considered in
this work are reported in Section 3.

2.1. Generation Starting from the NCI-60 Dataset

This section presents a chosen set of novel molecules generated by TumFlow consid-
ering molecules from the training set as starting points. Specifically, in this generation
procedure, the first 140 molecules with higher antitumoral efficacy appearing in the training
set, i.e., antitumoral molecules tested in vitro from the NCI-60 project [62], were used as a
starting point.

Figure 1 presents some molecules obtained from a provided starting molecule, while
the corresponding canonical SMILES [63–65] are reported in Table S2. Specifically, the figure
presents a grid where the first column on the left depicts the starting molecule structures,
while the other columns report the new molecules obtained from them. By inspecting
the molecular structures and the corresponding predicted GI50 scores, it can be seen that
TumFlow attempts to enhance the structure of the provided starting molecule to improve
its efficacy against melanoma tumours. Nevertheless, in the process, the model tends
to generate increasingly complex molecules, introducing synthesis issues, and molecular
structures dissimilar from the starting one.

Figure 1. This grid presents the novel molecules that TumFlow generated starting from those in the
dataset. The first column on the left reports the starting molecule structures, while the other columns
report the new molecules. The score reported under each generated molecule represents the TumFlow
predicted GI50 score, while the colour conveys the similarity score of the newly generated structure
in relation to the starting molecule structure. The number to the top right of each molecule is the
normalized SAS score.

Contrary to Figure 1, Figure 2 presents a few molecules obtained by the whole gen-
eration process, i.e., considering many starting structures. The corresponding canonical
SMILES, including those of the provided starting molecules, are reported in Table S3. All
of these molecules are chemically noteworthy and interesting, particularly due to their
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absence in the dataset. It is important to note that the generation process sometimes results
in uncommon molecules that encounter challenges in synthesis and/or contain rare sub-
structures. Nevertheless, thanks to the SAS score, it becomes possible to identify molecules
that are challenging to synthesize and, consequently, filter them as necessary.

Figure 2. This grid presents the novel molecules that TumFlow generated starting from those in the
dataset. The score reported under each generated molecule represents the TumFlow predicted GI50
score, while the colour conveys the similarity score of the newly generated structure in relation to
the starting molecule structure. The number to the top right of each molecule is the normalized
SAS score.

None of the novel molecules, except the first compound (CID = 121297650) generated
by the first molecule reported in Figure 1, are available in PubChem [66]. This absence of
novel molecules in PubChem highlights the pioneering nature of TumFlow in exploring un-
known chemical spaces, while the presence of the already-existing molecule demonstrates
the ability of the model to generate meaningful structures.

2.2. Generation Starting from Clinically Adopted Anti-Melanoma Molecules

Herein, a selected set of novel molecules generated by TumFlow considering clinical
molecules as starting points are presented. Specifically, some of the molecules reported in
Table S1, known for their efficacy in clinical treatments for melanoma, were used as starting
points.

Figure 3 presents some novel molecules, while the corresponding canonical SMILES
are reported in Table S4. Regarding the molecules generated from clinical drugs, a pattern
akin to those originating from in vitro molecules is discernible. In this scenario as well,
TumFlow demonstrates the capacity to generate novel molecular structures, albeit occasion-
ally encountering challenges in synthesis. Notably, with the exception of just one molecule,
all the newly generated structures are absent from PubChem. In fact, the initial molecule
derived from the first clinical drug, specifically the second structure in the first row of the
image, has been identified as a previously studied compound against cancer, bearing the
corresponding NSC = 133726 and CID = 421441. More precisely, this compound has already
been subjected to several in vivo testing on mice, demonstrating its activity against the
leukemia cell line L1210 (e.g., PubChem AID = 248).

The identification of a novel molecule, previously studied for its anticancer properties
and not present in the training set, underscores TumFlow’s potential ability to explore
the chemical space beyond the confines of existing datasets. This capability suggests that
TumFlow has the capacity to propose compounds with therapeutic relevance that might
not have been part of the original training data, stressing its potential to contribute to the
discovery of compounds with valuable properties.
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Figure 3. This grid presents the novel molecules that TumFlow generated starting from two clinical
molecules. The first column reports the starting molecule structures, while the other columns report
the new molecules. The score reported under each generated molecule represents the TumFlow
predicted GI50 score, while the colour conveys the similarity score of the newly generated structure
in relation to the starting molecule structure. The number to the top right of each molecule is the
normalized SAS score.

2.3. Benchmarking

During the development and evaluation of TumFlow, we encountered significant
challenges: the absence of a benchmarking dataset suitable for model validation and the
intrinsic problem of synthesizing new molecules. Benchmark datasets play a crucial role in
the field of machine learning, providing a base against which newly developed models can
be tested and compared. These datasets enable researchers to assess the accuracy, efficiency,
and overall performance of their models in a standardized context. Unfortunately, in the
context of generating novel molecular entities for treating the SK-MEL-28 tumour, such a
benchmarking dataset does not exist.

The lack of a benchmark could be compensated by experimental validation. Yet,
experimentally validating the molecules produced by TumFlow also presents its challenges.
As TumFlow designs new molecular structures with potential anticancer properties, most
of the candidate molecules lack prior synthesis or testing documentation. Consequently,
before any biological efficacy testing can start (e.g., assays on melanoma cell lines), these
molecules must first be synthesized. Synthesizing new molecules is not only a complex
process that demands specialized expertise but also involves substantial time investment
and significant financial costs.

These challenges present a substantial hurdle for validating the effectiveness of gener-
ative approaches in generating therapeutically valuable molecules.

2.4. Code Implementation

The implementation of the TumFlow model, along with the code utilized for training
and generating novel molecules and a comprehensive user configuration guide, are openly
available at https://github.com/drigoni/TumFlow (accessed on 6 February 2024). Within
the repository, there are all the necessary scripts for result reproducibility, enabling robust
verification of findings. Furthermore, the repository hosts the trained weights of the
TumFlow model as well as the dataset, including all GI50, IC50, LC50 and TGI scores used
in this work. Additionally, a Docker [67] container is provided to streamline usage across
various computing environments, ensuring accessibility and ease of deployment.

3. Materials and Methods

TumFlow is based on MoFlow, a normalizing flow model originally developed for the
generation of graph structures without any focus on anticancer molecules. On the other

https://github.com/drigoni/TumFlow
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hand, TumFlow aims to learn the unknown probability distribution that has generated
the chemical structures of the molecules in the dataset, with the purpose of using the
learned distribution to generate new novel chemical structures that should convey similar
substructures and similar anticancer activities. Therefore, TumFlow is developed to predict
new antitumour molecules against the SK-MEL-28 melanoma, addressing all the unique
challenges and requirements of melanoma treatment. It is trained on the comprehensive
NCI-60 dataset, made public by the National Cancer Institute [68], which encompasses
thousands of molecules tested across a broad spectrum of tumour cell lines.

The following sections will present in more detail the data preprocessing method
applied to the NCI-60 dataset, as well as the TumFlow model. Additional details about
normalizing flows are reported in Section S3 of the Supplementary Material, while more
details on the TumFlow model are reported in Section S4.

The following mathematical notations are adopted:

(i) Lower-case symbols for scalars, indexes, and assignment to random variables, e.g., n
and x;

(ii) Italic upper-case symbols for sets and single random variables, e.g., A and X;
(iii) Bold lower-case symbols for vectors and assignments to vectors of random variables,

e.g., a and x;
(iv) Bold upper-case symbols for matrices, tensors, and vectors of random variables, e.g.,

A and Z;
(v) The position within a tensor or vector is denoted by numeric subscripts in square

brackets, for example, A[i,a:b,:], where i, a, b ∈ N+, and “:” indicates the positions from
a to b. The solitary use of the colon symbol “:” represents all positions;

(vi) Calligraphic symbols for domains, e.g., Q;
(vii) When it is clear from the context, the probability random variables are omitted, as

P(x) instead of P(X = x).

3.1. Data Sources and Data Preprocessing

The NCI-60 project [62], launched in 1990, employs 60 human tumour cell lines
representing diverse cancers to evaluate up to 7000 small molecules annually for anti-
cancer properties. It provides four files with the results of their experiments: “GI50.csv”,
“LC50.csv”, “IC50.csv”, and “TGI.csv”. In this work, only the “GI50.csv” file was used.
It contains data on the GI50 (Growth Inhibition of 50%) values, which are derived from
laboratory assays that measured the concentration of a chemical compound required to
inhibit the growth of a specific tumour cell line by 50%. Specifically, the GI50 values are
obtained by interpolating the GIPRCNT scores, which are the percentage of treated cell
growth as a fraction of control cell growth, corrected for the count of cells at the time of drug
addition in the assay. A score of 100 is control growth, 0 is complete inhibition of growth
(cytostasis), and −100 is complete cell kill. Thus, these values serve as a direct indicator
of the compound’s potential antitumoral efficacy as a lower GI50 value indicates a higher
efficacy of the molecule in inhibiting tumour growth in the tested cells. More information
is reported in the NCI-60 project website. In addition, the dataset includes the National
Service Center (NSC) code, a unique numeric identifier assigned to substances tested and
evaluated by the National Cancer Institute, and information on the tested cell line.

The choice of this file was based on its relevance in identifying compounds with
potential antitumoral efficacy, particularly in the context of SK-MEL-28 melanoma cells. In
fact, a preliminary data analysis visible in Figure S3 revealed that molecules used clinically
show better representation in the GI50 dataset. Indeed, the GI50 scores offer a more accurate
representation of clinical drugs since they exhibit a more evenly distributed pattern and
better distinguish the effects of various drugs. Additionally, the violin plot illustrating the
mass of GI50 scores demonstrates greater variability than that of the IC50 scores, which,
conversely, appear more condensed. However, even though the presented work focuses on
the GI50 score, other indicators like the IC50 can also be utilized seamlessly. This correlation
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reinforces the validity of the approach presented in this work and highlights the importance
of integrating real and clinically relevant data into the modelling process.

The training of the TumFlow model was performed on this data, focusing only on
molecules tested on SK-MEL-28 melanoma cell lines made by chemical elements commonly
found in organic compounds (only molecules composed by hydrogen (H), carbon (C),
nitrogen (N), oxygen (O), fluorine (F), phosphorus (P), sulphur (S), chlorine (Cl), selenium
(Se), bromine (Br), and iodine (I)). During the data preprocessing phase, all molecules
with a positively charged oxygen (O+) were removed, and all “ion pair” compounds were
sanitized, selecting only the largest connected component as the main molecule structure
while discarding the remaining smaller component(s). If the sanitization resulted in a
structure already existing in the dataset, only the experiment with the highest efficacy score
was retained. For molecules with multiple in vitro experiments, the corresponding GI50
values were averaged. Following the data preprocessing phase, the dataset consists of
46,766 unique molecules, each paired with its corresponding GI50 efficacy value.

3.2. TumFlow

TumFlow aims to predict new anticancer molecules by exploiting the graph representa-
tion of the molecule structure, differently from other works adopting the SMILES sequential
representation of the molecule, such as [22,23].

Mathematically, let D be the dataset, Tr be the training set of molecules, Θn and Θe be,
respectively, the set of atom types and the set of edge types extracted from dataset D. Let
dv =| Θn | be the number of atom types, de =| Θe | be the number of edge types, and dn
the maximum number of atoms, hydrogens excluded, forming the molecules in dataset D.
Then, a molecule is represented as a graph G ∈ G:

G= (V, E),

where V ∈ {0, 1}dn×dv is a node-type matrix and E ∈ {0, 1}dn×dn×de is an edge-type tensor,
such that Vi,v = 1 only if the molecule node i is of type v and such that Ei,j,e = 1 only if
the molecule nodes i and j are connected through a bond of type e. The set of all possible
graphs is defined as follows:

G= V × E = {0, 1}dn×dv × {0, 1}dn×dn×de .

TumFlow aims to learn the complex probability distribution PG , from which the
molecules in the dataset are generated, in order to sample from it new useful molecule
graphs G ∼ PG

(
G̃
)

. G̃ denotes the random variable over graph structures with support in
G. TumFlow factorizes the probability distribution as follows:

PG
(

G̃
)
= PG

((
Ṽ, Ẽ

))
= PV

(
Ṽ | Ẽ

)
·PE
(

Ẽ
)

,

where PE
(

Ẽ
)

is the probability distribution over molecule bounds, PV
(

Ṽ | Ẽ
)

is the con-

ditioned probability distribution over atoms given molecule bounds, and both Ẽ and Ṽ
are vectors of random variables. In simpler terms, TumFlow first predicts the set of bonds
forming the structure of the molecule and then conditions the generation of the molecule
atoms by the predicted bonds. It uses two jointly trained normalizing flow models. The first
is used to predict the molecule bonds and the second is used to predict the molecule atoms.
The decision to factorize the full probability distribution as predicting the bonds forming
the molecule’s structure before predicting the atoms is purposeful. This factorization en-
ables the effective utilization of graph neural networks (more on this in the subsequent
paragraphs). In graph neural networks, nodes update their states based on information
propagated through the edges. Thus, by first predicting the bonds (edges), a foundation is
established upon which the subsequent prediction of atoms (nodes) can be informed and
influenced. This approach aligns well with the nature of molecular structures, where the
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connectivity between atoms greatly influences their properties and behaviours. Figure 4
reports the overall model architecture, summarizing the main steps.

Figure 4. Overview of the TumFlow model. From the molecule in input (on the left) the graph
G = (V, E) is constructed, and both the latent representations H = f−1

E (E) and Z = f−1
V|E (V; E) are

obtained. From the latent representations, the graph G and then the molecule in output (on the right)
are reconstructed through the functions fE and fV|E . The module NNGI50 predicts the GI50 score and
can optimize the molecule structure, employing the gradient descent approach.

TumFlow is trained to optimize the negative log-likelihood loss:

LG(D)= − 1
| D | ∑

G∈D
logPG(G);

= − 1
| D | ∑

(V,E)∈D
logPV (V | E) + logPE (E);

with

logPE (E)= logPH(H)− log
∣∣∣∣det

(
∂ fE (H)

∂H

)∣∣∣∣;
logPV (V | E)= logPZ(Z | E)− log

∣∣∣∣∣det

(
∂ fV|E (Z; E)

∂Z

)∣∣∣∣∣;
where fE and fV|E are two invertible and differentiable functions to learn, H and Z are,
respectively, two latent representations for atom and adjacency tensors, and PH and PZ are
the two simple target distributions, i.e., two standard normal distributions N (0, I), with
zero mean and identity matrix as covariance matrix.

Affine coupling layers are used in the implementation of both fV|E = ΦlV|E ◦ . . . ◦ Φ1

and fE = ΨlE ◦ . . . ◦ Ψ1, where lV|E and lE represent the number of coupling layers
composing fV|E and fE , respectively. For the sake of clarity, the explicit dependency
on E in the notation of Φi is omitted. In the implementation of the coupling layers,
the sigmoid function replaces the exponential function, as it provides better numer-
ical stability when stacking multiple coupling layers. Mathematically, each function
Φ−1

i : Rdn×dv → Rdn×dv∀i ∈
{

1, . . . , lV|E
}

splits the input into two parts according to the

node types dimension dv. Given Zi−1 = Φ−1
i

(
Zi
)

and a selected dimension d̃v:

Zi−1 =


Zi−1
[:,1:d̃v ]

= Zi
[:,1:d̃v ]

;

Zi−1
[:,d̃v+1:dn ]

= Zi
[:,d̃v+1:dn ]

⊙ sig
(

si
V|E

(
Zi
[:,1:d̃v ]

))
+ ti

V|E

(
Zi
[:,1:d̃v ]

)
;
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where Z = Z0 and V = ZlV|E . Functions si
V|E and ti

V|E are multi-layer perceptions (MLPs)
based on the output of a graph neural network [69], which aims to learn the representation
of the graph underlying the molecular structure.

Similarly, each function Ψ−1
i : Rdn×dn×de → Rdn×dn×de∀i ∈ {1, . . . , lE} splits the input

into two parts according to the bond types dimension de. Given Hi−1 = Ψ−1
i

(
Hi
)

and a

selected dimension d̃e,

Hi−1 =


Hi−1
[:,:,1:d̃e ]

= Hi
[:,:,1:d̃e ]

;

Hi−1
[:,:,d̃e+1:de ]

= Hi
[:,:,d̃e+1:de ]

⊙ sig
(

si
E

(
Hi
[:,:,1:d̃e ]

))
+ ti

E

(
Hi
[:,:,1:d̃e ]

)
,

where H = H0 and E = HlE . Functions si
E and ti

E are implemented with a sequence of 2D
convolutional neural networks.

It is essential to consider that the normalizing flow framework is designed for continu-
ous space values, and, as such, it cannot be directly applied to discrete structures like node
and adjacency tensors. To address this limitation, a pre-processing step is implemented
before the utilization of coupling layers. Specifically, a random uniform noise drawn from
a carefully selected interval of values is added to each entry of the tensors. This introduc-
tion of noise serves the purpose of incorporating a continuous element into the discrete
structures, aligning them with the framework requirements and enabling the subsequent
application of coupling layers. The carefully selected noise distribution enables the accurate
selection of corresponding atoms and bonds through the argmax function when utilizing
fV|E and fE to reconstruct G.

3.2.1. Prediction of the GI50 Scores

TumFlow includes a nonlinear neural network NNGI50 designed to predict the anti-
tumour activity of individual molecules. This neural network is learned once the main
normalizing flow networks have been learned. More precisely, the neural network is
trained to predict the GI50 score associated with the molecule’s latent representation.
Mathematically, NNGI50 represents the following function:

NNGI50 : G → R.

This function is trained with the mean squared error (squared L2 norm) loss computed
among predicted values and values measured in vitro. In more detail, given a molecule
graph G, its predicted antitumour activity p is estimated as follows:

p= NNGI50( fvc(H, Z));

H= f−1
E (E);

Z= f−1
V|E (V; E);

where fvc is a function that linearizes both the tensors H and Z, and then concatenates
them together.

3.2.2. New Molecule Generation

After the learning phase, TumFlow can generate novel chemical structures conveying
similar antitumoral activities to those in the training set and, using NNGI50, it can also
predict the antitumoral activity for each molecule. While this approach used alone proves
highly valuable in other research domains, such as computer vision, where realistic face
images need to be generated [70], it shows limitations when creating new antitumoral
molecules. In fact, unlike scenarios where realistic faces are generated from datasets com-
prised of numerous real-world face images, the NCI-60 dataset includes many molecules
with suboptimal antitumour efficacy. Consequently, employing this simplistic method to
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develop new molecules may yield structures with limited antitumour activities. TumFlow
generates new molecules adopting a different approach that closely resembles structure
optimization. Starting from a molecule with high antitumoral efficacy, through the use of
the NNGI50 neural network, it modifies its structure to exhibit better antitumoral effects.
Given a molecule in input, the optimization takes place many times, and for each of them
TumFlow predicts the new molecule structure with associated predicted GI50 scores.

The optimization, which can also be seen in Figures 5 and S4, is performed using the
gradient descent method, which is a pervasive optimization algorithm in machine learning
employed to reduce the value of an objective function. Its primary objective is to iteratively
approach the minimum of a function by moving in the direction of the most significant
decrease in that function. In other words, TumFlow applies the gradient descent technique
to the function NNGI50, aiming to minimize the GI50 score. The optimization starts from a
given molecule, i.e., the black ball in the top part of the image. Then, NNGI50 predicts the
GI50 score associated with the starting molecules, as well as the direction to follow in the
latent space to minimize the score. In other words, the direction to follow is the negative
of the gradient returned by the NNGI50 component, as the lower the value is, the better
the antitumoral properties are. Consequently, a new point in the latent space is selected,
which can be decoded back to a molecule structure through fE and fV|E . This process is
repeated several times. TumFlow performs the optimization process outlined above for
each molecule, taking into account various gradient descent step values. In other words,
for each optimization process, the movement performed in latent space involves making
jumps of varying distance.

Figure 5. Figure representing the main idea behind the TumFlow generation of novel molecules with
lower GI50 values, i.e., high antitumoral efficacy. Starting from an initial good molecule structure,
new molecules are sampled in compliance with the gradient descent approach.

The generation of new molecules is performed following two different approaches:

(i) In the first approach, the starting point consists of molecules with higher antitumoral
efficacy appearing in the training set, i.e., antitumoral molecules tested in vitro from
the NCI-60 project;

(ii) In the second approach, the starting point consists of nine molecules, reported in
Table S1, known for their efficacy in clinical treatments for melanoma.
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In the process of generating new molecules, TumFlow is equipped with the ability to
assess the Synthetic Accessibility Score (SAS) of drug-like molecules based on molecular
complexity and fragment contributions [60]. This incorporation is essential because, even
though TumFlow allows the generation of novel molecules, sometimes it produces ener-
getically unstable structures and complex molecules that are challenging to synthesize.
Further details are discussed in Section S7 of the Supplementary Material. In this work,
the reported SAS values are normalized to fall within the range of [0, 1], with lower values
indicating greater ease of molecule synthesis and higher values suggesting increased diffi-
culty in the synthesis process. The incorporation of this metric significantly enhanced the
quality of molecules generated by TumFlow, facilitating the identification of compounds
with potential antitumour effectiveness as well as a desired level of synthesis complexity.

4. Conclusions and Future Prospects

This investigation prominently showcases the generative capabilities and potential of
TumFlow in oncological drug development. Unlike conventional methodologies, the pre-
sented approach harnesses the distinctive strengths of normalizing flow algorithms, notably
their adeptness at modelling complex molecule distributions and generating accurate new
data samples. This marks a substantial leap beyond traditional AI techniques, delivering
unprecedented precision and efficiency in generating novel anticancer molecules.

In particular, this work demonstrates that TumFlow can identify crucial patterns and
correlations between molecular structures and their predicted effectiveness against tumours
like melanoma. It not only exhibits creativity in generating novel and promising molecules
that have not been seen before but also has the capability to generate molecules not included
in the training dataset, which already exist and have been subjected to in vivo experiments
for antitumoral assessment. Although this creativity is essential for generating new drugs,
there are some limitations that come with it, such as the feasibility of synthesis and the
chemical instability of some generated structures.

By redefining the boundaries of possibilities within normalizing flow algorithms, the
TumFlow model emerges not merely as a predictive instrument but as a designer, hopefully,
of future oncological therapies. This methodology promises to diminish the time and
financial constraints associated with drug discovery, steering researchers toward an era
where swift, targeted, and potent cancer therapies are not merely conceivable but attainable.
The TumFlow model, code, and documentation on GitHub [71] enhance reproducibility and
accessibility in molecular generation. With scripts, trained weights, datasets, and a Docker
container provided, it is a valuable resource for drug discovery research.

In summary, the application of the TumFlow model, as presented in this study, rep-
resents a significant advancement in the fight against cancer. This endeavour not only
exemplifies the model’s current achievements but also paves the way for a myriad of
advancements in anticancer treatments and patient care.

Future research should consider various strategies to advance and increase the efficacy
of the model presented in the context of oncological studies. One of these is the integration
of broader and more diverse datasets, encompassing a wide variety of cancer types and
molecules. Indeed, by exploiting drugs addressing different types of cancer, the model
could learn complementary information that could enhance the discovery of new and more
effective molecules. Moreover, given TumFlow’s tendency to generate energetically unstable
complex structures, future works will consider the inclusion of the SAS values during the
generation process and the inclusion of metrics to account for the energetic stability of the
molecule. Additionally, incorporating information on the inhibition, lethality, and toxicity
of antitumour molecules could provide an even more accurate algorithm for predicting new
anticancer drugs. Another critical aspect is the continual enhancement of the computational
and algorithmic capabilities of the model, to tackle challenges like interpreting molecular
mechanisms and predicting drug side effects and resistance with the purpose of optimizing
the molecules to yield better properties.
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