
Citation: Yu, S.Y.; Kim, S.H.; Choo,

J.H.; Jang, S.; Kim, J.; Ahn, K.; Hwang,

S.Y. Potential Effects of Low-Level

Toluene Exposure on the Nervous

System of Mothers and Infants. Int. J.

Mol. Sci. 2024, 25, 6215. https://

doi.org/10.3390/ijms25116215

Academic Editor: Margarita

Neganova

Received: 26 April 2024

Revised: 29 May 2024

Accepted: 2 June 2024

Published: 5 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Potential Effects of Low-Level Toluene Exposure on the Nervous
System of Mothers and Infants
So Yeon Yu 1,† , Seung Hwan Kim 2,† , Jeong Hyeop Choo 3, Sehun Jang 4 , Jihyun Kim 4,5, Kangmo Ahn 4,5

and Seung Yong Hwang 6,7,*

1 Institute of Natural Science & Technology, Hanyang University ERICA, 55 Hanyangdaehak-ro,
Sangnok-gu, Ansan 15588, Republic of Korea; yusso3027@naver.com

2 Department of Bio-Nanotechnology, Hanyang University, 55 Hanyangdaehak-ro,
Sangnok-gu, Ansan 15588, Republic of Korea; kandoli1@daum.net

3 Department of Molecular & Life Science, Hanyang University, 55 Hanyangdaehak-ro,
Sangnok-gu, Ansan 15588, Republic of Korea; cnwjdguq@naver.com

4 Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine,
Seoul 06351, Republic of Korea; unitysky1@gmail.com (S.J.); jihyun77.kim@samsung.com (J.K.);
kmaped@skku.edu (K.A.)

5 Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences &
Technology, Seoul 06355, Republic of Korea

6 Department of Medicinal and Life Sciences, Hanyang University ERICA, 55 Hanyangdaehak-ro, Sangnok-gu,
Ansan 15588, Republic of Korea

7 Department of Applied Artificial Intelligence, Hanyang University ERICA, 55 Hanyangdaehak-ro,
Sangnok-gu, Ansan 15588, Republic of Korea

* Correspondence: syhwang@hanyang.ac.kr; Tel.: +82-10-5475-5516
† These authors contributed equally to this work.

Abstract: In day-to-day living, individuals are exposed to various environmentally hazardous
substances that have been associated with diverse diseases. Exposure to air pollutants can occur
during breathing, posing a considerable risk to those with environmental health vulnerabilities.
Among vulnerable individuals, maternal exposure can negatively impact the mother and child in
utero. The developing fetus is particularly vulnerable to environmentally hazardous substances, with
potentially greater implications. Among air pollutants, toluene is neurotoxic, and its effects have been
widely explored. However, the impact of low-level toluene exposure in daily life remains unclear.
Herein, we evaluated 194 mothers and infants from the Growing children’s health and Evaluation
of Environment (GREEN) cohort to determine the possible effects of early-life toluene exposure
on the nervous system. Using Omics experiments, the effects of toluene were confirmed based on
epigenetic changes and altered mRNA expression. Various epigenetic changes were identified, with
upregulated expression potentially contributing to diseases such as glioblastoma and Alzheimer’s,
and downregulated expression being associated with structural neuronal abnormalities. These
findings were detected in both maternal and infant groups, suggesting that maternal exposure to
environmental hazardous substances can negatively impact the fetus. Our findings will facilitate
the establishment of environmental health policies, including the management of environmentally
hazardous substances for vulnerable groups.

Keywords: toluene; maternal exposure; nervous system; GREEN cohort; epigenetics; mRNA
expression

1. Introduction

The severity of environmental changes and pollution is a growing challenge, owing to
changes in lifestyle and technological development [1]. Despite ongoing efforts to manage
and improve environmental changes at the national level, exposure to environmentally
hazardous substances can easily occur through breathing. Furthermore, environmentally
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hazardous substances have been identified in indoor spaces where individuals stay and
live for prolonged periods of time [2]. Among the various environmentally hazardous
substances, toluene is a volatile organic compound that easily volatilizes into the air and is
present in both indoor and outdoor spaces [3]. Toluene is naturally generated by the incom-
plete combustion of natural fuel sources, such as natural gas and petroleum or released
by industries including paint, lacquer, adhesive, ink, and wood [4,5]. Upon release into
the atmosphere, water bodies, and soil, toluene causes extensive environmental pollution
through atmospheric dispersion and infiltration into soil and groundwater [6]. It is typically
rapidly inhaled via respiration and slowly absorbed through skin and eye contact. Chronic
toluene exposure can exert negative effects on the nervous system, including memory loss,
difficulties in concentrating, and attention deficit [7]. Therefore, toluene is classified as a
neurotoxic substance. One study reported that babies born to women working with organic
solvents did not differ from those in the control group in terms of cognition, language, and
motor skills; however, children exposed to organic solvents at the fetal stage scored low
in the neurobehavioral sub-test. Accordingly, maternal exposure to hazardous substances
can affect the fetus and lead to a subtle deterioration of function [8]. Additionally, toluene
exposure during pregnancy can contribute to the development of hydranencephaly [9]. Ex-
posure to environmentally hazardous substances during pregnancy can negatively impact
both the mother and the fetus. Moreover, given that the fetus develops during pregnancy,
it is particularly vulnerable to environmental pollutants, with substantially greater implica-
tions, and these effects can be lifelong [10,11]. Therefore, it is important to comprehensively
clarify and confirm the possible effects of maternal exposure to hazardous substances.

The impact of exposure to environmental pollutants in early life on neurodevelopment
and the nervous system is an area of growing interest [12]. Therefore, the effects of
environmentally hazardous substances on the human body are being explored using
various methods [13–15]. However, elucidating the relationship between environmental
exposure and human health can be challenging. Therefore, it is crucial to uncover and verify
biological responses and impact, along with biomonitoring of environmental exposures,
using various omics technologies [16,17]. Omics technology can help understand the
underlying cause and progression of a disease [18]. In particular, a close relationship
exists between environmentally hazardous substances and epigenetic changes. Harmful
environmental factors function as external factors capable of inducing epigenetic changes
and regulating gene expression, resulting in disease onset or affecting disease prognosis [19].
Among these epigenetic changes, DNA methylation has been shown to impact various
biological processes and is involved in disease development [20,21].

Accordingly, in the current study, we aimed to determine the effect of the level of
toluene exposed during daily life on the nervous system of the mother and fetus using
various omics technologies. Herein, we employed the small GREEN cohort recruited to
study environmental diseases caused by environmentally hazardous substances. First, the
level of toluene exposure in real life was determined, and potential effects of epigenetic
changes and altered mRNA expression that may occur due to exposure were confirmed.

2. Results
2.1. Characteristics of Human Participants

Participant information and the results of the metabolic product analysis are shown in
Table 1. Participants mostly lived in metropolitan areas, including 21 residents of Gyeonggi-
do, 56 of Seoul, 1 of Incheon, 1 of Chungcheong-do, and 18 of missing value. The average
age of the mothers was 37.1 years, and the infants were newborns. The majority of mothers
had one to two childbirth experiences, and only a small number of participants had given
birth to three or more children. Most mothers were non-smokers, with three smokers
(4.2%) in the low-exposure group and one in the high-exposure group (4.0%). At birth, the
height and weight of both the low- and high-exposure groups were found to be normal.
Additionally, the head circumference of the high-exposure group was within the normal
range, with a mean of 34.2 cm, showing no significant difference when compared to the
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low-exposure group [22]. Although the developmental test was not performed in all infants,
when conducted at 6 and 12 months, it revealed that all assessed infants were normal.

Table 1. Information of study participants.

Personal Characteristics Low Exposure High Exposure p

Maternal group n = 72 n = 25
BMA (µg/g creatinine) 2.9 ± 1.3 30.5 ± 96.0 0.163
Age 37.5 ± 3.0 36.8 ± 3.6 0.425
Smoking 0.368
No 58 (80.6%) 17 (68.0%)
Yes 3 (4.2%) 1 (4.0%)
Missing data 11 (15.3%) 7 (28.0%)

Childbirth 0.724
1 32 (52.5%) 10 (55.6%)
2 21 (34.4%) 7 (38.9%)
3 5 (8.2%) 0 (0.0%)
4 2 (3.3%) 1 (5.6%)
5 1 (1.6%) 0 (0.0%)

Infant group n = 72 n = 25
Sex 0.213

Male 43 (59.7%) 10 (40.0%)
Female 21 (29.2%) 10 (40.0%)
Missing data 8 (11.1%) 5 (20.0%)

Height 50.0 ± 1.9 49.3 ± 2.0 0.232
Weight 3.3 ± 0.4 3.2 ± 0.4 0.871
Head circumference 34.5 ± 1.3 34.2 ± 1.3 0.460
Denver test (6 M) 0.076

Normal 62 (86.1%) 17 (68.0%)
Untested 10 (13.9%) 8 (32.0%)

Denver test (12 M) 0.035
Normal 62 (86.1%) 16 (64.0%)
Untested 10 (13.9%) 9 (36.0%)

Data are shown as mean ± standard deviation (SD). BMA, N-acetyl-S-(benzyl)-L-cysteine; 6 M, 6 months; 12 M,
12 months.

2.2. Toluene Exposure

The urinary level of N-acetyl-S-(benzyl)-L-cysteine (BMA), a toluene metabolite, was
measured to confirm toluene exposure levels among study participants (Table 2). Toluene
exposure level was detected in all samples, with no missing values. However, the level of
exposure was not high because exposure was measured during day-to-day living and in
pregnant women, who are more cautious than general adults.

Table 2. Toluene metabolite (BMA) evaluation results in maternal group.

BMA (µg/g Creatinine)
Maternal Group

Low-Exposure High-Exposure

Limit of Detection (LOD) 0.03 (µg/L)

Minimum 0.33 5.99

Maximum 5.74 489.83

Geometric mean 2.52 11.47

Arithmetic mean 2.86 30.46

Standard Deviation (SD) 1.26 95.97

The maternal toluene exposure level (geometric mean) was 3.73 µg/g creatinine, which
was lower than the geometric average toluene exposure level of Korean adults in 2020
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(5.02 µg/g creatinine) [23]. Although we assessed various factors that could affect toluene
exposure, none showed statistical significance (p ≥ 0.05). Accordingly, we confirmed that
residence, age, smoking, and number of births were not associated with toluene exposure
(Table 3).

Table 3. Effects of various factors on toluene exposure.

Independent Variable B SE Wald p OR
95% CI

LLCI ULCI

Sample collection area Areas other than Seoul 0.97 0.60 2.65 0.10 2.64 0.82 8.51

Age range 20–30 s 0.54 0.71 0.58 0.45 1.71 0.430 6.84

Smoking yes −0.08 1.24 0.004 0.95 0.93 0.08 10.45

Childbirth
2 times 0.78 1.16 0.45 0.50 2.18 0.22 21.28

3 or more times 0.79 1.17 046 0.50 2.21 0.22 22.06

Reference group (category): Sample collection area; Seoul, Age range; 40 s, Smoking; no, Childbirth; 1 time. B,
estimates; CI, confidence interval; LLCI: lower level of the 95% confidence interval; OR, odds ratio; SE, standard
error; ULCI: upper level of the 95% confidence interval; Areas other than Seoul: Gyeonggi-do, Incheon, and
Chungcheong-do.

2.3. Toluene Exposure Can Negatively Affect the Nervous System by Inducing Epigenetic Changes

Toluene exposure induced changes in the differentially methylated region (DMR).
Herein, we found that 102,195 (57,136 hyper-regulated and 45,059 hypo-regulated) regions
in the maternal group and 659,770 (647,931 hyper-regulated and 11,839 hypo-regulated)
regions in the infant group were significantly altered. Accordingly, methylation-regulated
genes were identified. In the maternal group, 30 mRNAs were hyper-methylated and
downregulated, and 39 mRNAs were hypo-methylated and upregulated. In the infant
group, four mRNAs were hyper-methylated and downregulated, and eighteen mRNAs
were hypo-methylated and upregulated. We confirmed that several of these play a role in
nervous system-related functions or nervous system-related diseases (Tables 4 and 5).

Table 4. List of hyper-methylated and downregulated mRNAs involved in the nervous system and
related diseases.

Group Genes
Hyper-

Methylated
(LogFC/p)

Downregulated
(LogFC/FDR) Functional Characteristics Reference

Maternal
group

MAGI2 1.49/0.02 −1.69/2.02 × 10−5 Underdevelopment of nerve dendrites and loss
of synapses in nerve cells. [24]

ST18 1.45/0.01 −1.60/1.55 × 10−4 Knockout reduces axonal outgrowth, synaptic
density, and punctate size. [25]

SLIT3 1.87/5.78 × 10−4 −1.55/2.63 × 10−3
Participate in lipopolysaccharide-induced

inflammatory response, which may contribute
to the pathogenesis of Parkinson’s disease.

[26]

PTPRD 1.14/0.02 −1.41/0.02 Dendrite branching, length and thickness
are reduced. [27]

WNK2 1.96/1.00 × 10−3 −1.35/1.50 × 10−3 Significant reduction in gliomas and
meningiomas due to hyper-methylation. [28]

ALDH1A2 1.03/0.02 −1.30/8.91 × 10−4 Knockdown causes neurite degeneration in
motor neurons. [29]

COL15A1 1.45/0.03 −1.28/5.35 × 10−3 Deficient mice suffer from motor impairment. [30]
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Table 4. Cont.

Group Genes
Hyper-

Methylated
(LogFC/p)

Downregulated
(LogFC/FDR) Functional Characteristics Reference

FERMT2 1.00/0.04 −1.10/0.02 Downregulated expression reduces
synaptic connectivity. [31]

DSCAML1 1.51/0.01 −1.10/0.02 Interferes with axonal growth in
cultured neurons. [32]

Infant
group RYR2 1.40/0.01 −1.21/0.04 Loss of RyR2 impairs neuronal

activity-dependent remodeling of dendrites. [33]

Table 5. List of hypo-methylated and upregulated mRNAs involved in the nervous system and
related diseases.

Group Genes Hypo-Methylated
(LogFC/p)

Upregulated
(LogFC/FDR) Functional Characteristics Reference

Maternal
group

KL −1.23/0.02 1.37/5.88 × 10−5 Decreases long-term potentiation at
CA1 synapses. [34]

SERPINI2 −1.08/0.04 1.41/7.15 × 10−5 Over-expressed in Alzheimer’s disease (AD). [35]

GINS1 −0.89/0.04 1.13/1.16 × 10−3 Over-expressed in glioblastoma
multiforme (GBM). [36]

SKA3 −0.66/0.05 1.13/2.09 × 10−3 Over-expressed in GBM. [37]

IQCK −1.11/0.01 1.07/4.24 × 10−3 Over-expressed in astrocytes, neurons, and
oligodendrocytes in AD brain. [38]

PLOD2 −1.07/0.04 1.02/8.86 × 10−3 Upregulated in glioma. [39]
PTPRG −1.10/0.01 1.01/8.16 × 10−3 Over-expressed in AD. [40]
VIPR2 −1.36/0.02 1.01/7.08 × 10−3 Hypo-methylated in GBM. [41]
TPRG1 −1.42/1.91 × 10−3 1.01/0.01 Over-expressed in AD (Women-specific). [42]

DLGAP5 −1.22/0.01 0.96/0.01 Over-expression in Gliomas. [43]
CYP4F3 −0.87/0.03 0.95/0.01 Over-expressed in AD. [44]

PLEKHA4 −1.12/0.04 0.91/0.02 Over-expressed in GBM. [45]
GGT5 −1.08/0.01 0.95/0.03 Over-expressed in GBM. [46]
CEP55 −0.74/0.03 0.87/0.05 Over-expressed promotes glioma cell invasion. [47]

Infant
group

COL5A3 −1.59/2.50 × 10−4 2.00/5.11 × 10−11 Upregulated in a mouse model of
neuropathic pain. [48]

NUDT6 −0.95/0.01 1.59/1.11 × 10−5 Over-expression increases anxiety and
depression-like behavior in mice. [49]

ANGPTL4 −1.91/3.11 × 10−5 1.36/3.19 × 10−5 Over-expressed in GBM, usually associated
with poor prognosis. [50]

SPP1 −1.43/7.34 × 10−4 1.07/6.68 × 10−3 Upregulated in mild cognitive
impairment (MCI). [51]

SPOCK1 −1.69/4.08 × 10−5 1.05/0.03 Expression is significantly upregulated in
recurrent GBM. [52]

ADAMDEC1 −1.13/0.03 1.04/0.04
The higher the expression, the higher the

malignancy of glioma and the worse
the prognosis.

[53]

APOE −1.03/0.02 1.02/0.01 Over-expressed and contributes to the
pathogenesis of late-onset AD (LOAD). [54]

DAAM2 −1.48/1.07 × 10−3 0.99/0.03 Over-expression accelerates glioma tumor
development. [55]

FC, fold change; FDR, false discovery rate.

Using QIAGEN Ingenuity Pathway Analysis (IPA), we investigated the interaction
networks between mRNAs with methylation-induced significantly altered expression in
each group (Figure 1). In the maternal group, genes related to cancer (such as glioma and
neuroepithelial tumor) and organismal injury and abnormalities ranked high. Conversely,
in the infant group, genes associated with lipid metabolism and molecular transport were
prominently involved.
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Figure 1. Gene interaction network map of each group. (A) Maternal group and (B) infant group. This
network is composed of the top network, and was analyzed using the QIAGEN Ingenuity Pathway
Analysis program.

2.4. Toluene Exposure Leads to Hypermethylation-Induced ALDH1A2 Downregulation

Among mRNAs whose expression was regulated by methylation due to maternal
toluene exposure, we identified ALDH1A2, also called retinaldehyde dehydrogenases
2 (RALDH2), which plays a role in converting retinal to retinoic acid (RA) [56]. Hyper-
methylation downregulates ALDH1A2 mRNA expression, which disrupts RA synthesis.
This can ultimately reduce RA levels, which can negatively impact the nervous system
(Figure 2) [57,58]. Likewise, in the infant group, ALDH1A2 mRNA showed a tendency
toward downregulated expression (logFC −0.29, FDR 1), although was not statistically
significant, owing to hyper-methylation (logFC 1.00, p 0.04).

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 7 of 15 
 

 

Figure 1. Gene interaction network map of each group. (A) Maternal group and (B) infant group. 
This network is composed of the top network, and was analyzed using the QIAGEN Ingenuity Path-
way Analysis program. 

2.4. Toluene Exposure Leads to Hypermethylation-Induced ALDH1A2 Downregulation  
Among mRNAs whose expression was regulated by methylation due to maternal 

toluene exposure, we identified ALDH1A2, also called retinaldehyde dehydrogenases 2 
(RALDH2), which plays a role in converting retinal to retinoic acid (RA) [56]. Hyper-meth-
ylation downregulates ALDH1A2 mRNA expression, which disrupts RA synthesis. This 
can ultimately reduce RA levels, which can negatively impact the nervous system (Figure 
2) [57,58]. Likewise, in the infant group, ALDH1A2 mRNA showed a tendency toward 
downregulated expression (logFC −0.29, FDR 1), although was not statistically significant, 
owing to hyper-methylation (logFC 1.00, p 0.04). 

 
Figure 2. (A) Summary of retinoic acid (RA) signaling pathway. (B) Summary of RA signaling path-
way following toluene exposure. In general, RA is metabolized by retinaldehyde dehydrogenase 2 
(RALDH2) and plays a role in neuronal differentiation, development, and plasticity. However, tol-
uene exposure downregulates RALDH2 (ALDH1A2) expression owing to methylation, which hin-
ders RA metabolism and activation; this, in turn, may negatively impact neuronal differentiation, 
development, and plasticity. Figure created using BioRender (https://biorender.com/, accessed on 3 
April 2024 ). 

2.5. Toluene Exposure Upregulates Genes Involved in Inflammatory Response  
The high-exposure group (top 25% and with higher exposure) exhibited significant 

changes in expression when compared with the low-exposure group; however, the differ-
ence in the expression between the two groups was non-significant. In the maternal group, 
330 mRNAs and non-coding RNAs (ncRNA) were significantly altered (220 upregulated 
and 110 downregulated). In the infant group, 89 mRNAs and ncRNAs were significantly 
altered (39 upregulated and 50 downregulated). Comparing the maternal and infant 
groups, the expression patterns of seven upregulated mRNAs and ncRNAs and eight 
downregulated mRNAs and ncRNAs were common between the two groups. Among 
mRNAs with the same expression pattern in the maternal and infant groups, CXCL10 was 
overexpressed, confirming the suppression of neurogenesis or involvement in various 
neurodegenerative diseases [59]. In addition, upregulated mRNAs in each group were 
involved in inflammatory response at a high rate. Accordingly, a substantial number of 
genes were upregulated in neurodegenerative diseases and various neurological diseases 
(Table 6). 

  

Figure 2. (A) Summary of retinoic acid (RA) signaling pathway. (B) Summary of RA signaling
pathway following toluene exposure. In general, RA is metabolized by retinaldehyde dehydrogenase



Int. J. Mol. Sci. 2024, 25, 6215 7 of 14

2 (RALDH2) and plays a role in neuronal differentiation, development, and plasticity. However,
toluene exposure downregulates RALDH2 (ALDH1A2) expression owing to methylation, which
hinders RA metabolism and activation; this, in turn, may negatively impact neuronal differentiation,
development, and plasticity. Figure created using BioRender (https://biorender.com/, accessed on 3
April 2024).

2.5. Toluene Exposure Upregulates Genes Involved in Inflammatory Response

The high-exposure group (top 25% and with higher exposure) exhibited significant
changes in expression when compared with the low-exposure group; however, the dif-
ference in the expression between the two groups was non-significant. In the maternal
group, 330 mRNAs and non-coding RNAs (ncRNA) were significantly altered (220 up-
regulated and 110 downregulated). In the infant group, 89 mRNAs and ncRNAs were
significantly altered (39 upregulated and 50 downregulated). Comparing the maternal
and infant groups, the expression patterns of seven upregulated mRNAs and ncRNAs and
eight downregulated mRNAs and ncRNAs were common between the two groups. Among
mRNAs with the same expression pattern in the maternal and infant groups, CXCL10
was overexpressed, confirming the suppression of neurogenesis or involvement in various
neurodegenerative diseases [59]. In addition, upregulated mRNAs in each group were
involved in inflammatory response at a high rate. Accordingly, a substantial number of
genes were upregulated in neurodegenerative diseases and various neurological diseases
(Table 6).

Table 6. Significantly upregulated mRNAs involved in the inflammatory response in the high-
exposure group.

Group Genes LogFC FDR Functional Characteristics Reference

Maternal
group

IL6 2.64 7.37 × 10−24 Neuroinflammation and neuron degeneration. [60]

CXCL10 1.95 2.36 × 10−12 Upregulated in various
neurodegenerative diseases. [59]

TNFAIP6 1.89 1.18 × 10−11 Upregulation is associated with poor prognosis
in patients with glioblastoma multiforme. [61]

IDO1 1.83 2.38 × 10−10 Over-expressed in Alzheimer’s disease (AD). [62]
FFAR3 1.19 5.06 × 10−4 Upregulated in early stages of AD pathology. [63]
TNIP3 1.14 9.51 × 10−4 Over-expressed in Parkinson’s disease. [64]

CHI3L1 1.09 1.84 × 10−3 Expressed during nerve degeneration. [65]

ORM1 1.09 1.92 × 10−3 Upregulated in patients with sporadic
amyotrophic lateral sclerosis (sALS). [66]

PLA2G2D 1.17 4.50 × 10−3 Over-expressed in Down’s syndrome (DS). [67]
IL1RN 0.96 8.69 × 10−3 Upregulated in patients with sALS. [66]

ADORA2A 0.91 0.02 Upregulated when synapses in neurons
are damaged. [68]

Infant
group

CXCL10 1.13 0.04 Upregulated in various
neurodegenerative diseases. [59]

C3AR1 0.91 0.04 Confirmed that over-expression correlates with
cognitive decline in patients with AD. [69]

FC, fold change; FDR, false discovery rate.

3. Discussion

During day-to-day living, humans are exposed to numerous environmentally haz-
ardous substances that impact the human body. However, immediate and evident health
effects upon exposure are extremely rare. Nevertheless, exposure to these substances exerts
a distinctly negative impact on health [70]. Moreover, in the case of pregnant women,
exposure can negatively impact both the mother and the fetus [10]. Therefore, in the current
study, we focus on the effects of toluene levels commonly encountered in daily life on the

https://biorender.com/
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nervous system. Simultaneously, we evaluated pregnant women to determine the possible
effects on the mother and infants (fetus).

To assess the extent of toluene exposure in daily life, we evaluated urinary BMA levels.
Urinary BMA is a valid indicator for toluene exposure assessment in National Biomonitor-
ing Programs in various countries, including the Republic of Korea, the United States, and
Canada [71–74]. The results of the urinary BMA measurements indicate that toluene (i.e.,
the toluene metabolite BMA) could be detected in trace amounts in all participants, with no
missing data. The average toluene exposure level (geometric mean) was 3.73 µg/g creati-
nine for the maternal group; this value was lower than the average toluene levels reported
for adults (5.02 µg/g creatinine) in the 2020 Republic of Korea National Environmental
Health Basic Survey [23]. The toluene exposure level-related differences could be attributed
to several factors. First, the National Environmental Health Survey includes adults aged at
least 19 years, encompassing both males and females, potentially representing a wide range
of living environments and occupational exposure levels. In contrast, the participants in
this study included pregnant women, who might generally tend to be minimally exposed
to toluene. Second, the National Environmental Health Survey contains data from various
regions nationwide; however, this study was limited to a specific region (the metropolitan
area), potentially leading to regional differences. Despite these factors contributing to the
observed differences, it is evident that all participants in this study were exposed to either
general or low toluene levels. These findings are also evident from the participants’ basic
health information. They were able to give birth without any significant concerns during
pregnancy, and the height, weight, and head circumference of their children were found to
be normal (2017 average for newborns in Republic of Korea). Additionally, developmental
assessments (Denver Development Screening Test II) at 6 and 12 months confirmed that
their growth and development were progressing normally. Additionally, binomial logistic
regression analysis was performed to determine whether the mother’s residence, age,
smoking status, and number of births affected toluene exposure. Herein, we confirmed that
the examined factors did not impact toluene exposure (with p ≥ 0.05).

After determining the maternal level of toluene exposure, the participants were di-
vided into low- and high-exposure groups based on the top 25% of the group. For the infant
group, the maternal group was applied with no changes, and omics data analysis was
performed. Exposure levels of toluene encountered in daily life induced epigenetic changes
and altered mRNA expression, resulting in the upregulation of 39 and 18 mRNAs via hypo-
methylation, and the downregulation of 30 and 4 mRNAs owing to hyper-methylation
in the mother and infant groups, respectively. Most upregulated mRNAs were identified
in glioblastoma or Alzheimer’s disease [24,25,27,31–33], whereas downregulated mRNAs
were found to reduce the size and density of axons, dendrites, and synapses or reduce
synaptic connectivity [35,36,40,46,50,51]. Additionally, using QIAGEN IPA (v17.6) analysis,
we analyzed interactions between mRNAs for each group, identifying the highest network
(Figure 2).

In the maternal group, genes related to cancer (such as glioma and neuroepithelial
tumor) and organismal injury and abnormalities ranked high. As observed in Tables 4
and 5, upregulated mRNAs, including SKA3, PLOD2, VIPR2, and GGT5, are implicated
in neuroblastoma. Conversely, downregulated mRNAs, such as MAGI2, ST18, ALDH1A2,
FERMT2, and DSCAML1, appear to negatively impact neurites, axons, and synapses. In
the infant group, the marked involvement of genes associated with lipid metabolism and
molecular transport was identified, particularly their upregulated expression. For example,
APOE and SPP1 mRNA participate in lipid metabolism and are related to Alzheimer’s
disease [75]. APOE reportedly plays an important role in maintaining brain lipid home-
ostasis and regulating microglial responses and related lipid metabolism during nerve
injury, which may contribute to the development of neurodegenerative diseases [76,77]. In
addition, SPP1, a disease-associated microglia gene, was confirmed to be upregulated in
AD [78].
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In particular, hypo-methylation downregulated ALDH1A2 mRNA expression in the
maternal group. ALDH1A2 (also called retinaldehyde dehydrogenases 2, RALDH2) ir-
reversibly metabolizes RA [56]. In general, RA is a vitamin A metabolite that plays an
important role in various areas such as vision, immune function, and reproduction. RA is in-
volved in adult neurogenesis in the hippocampus, including neural plasticity, learning, and
memory, and regenerative motor neuron axon growth. Furthermore, it contributes to the
development of various systems and tissues during embryogenesis [56,57]. However, the
downregulated ALDH1A2 (RALDH2) expression hinders RA metabolism; consequently,
RA fails to function accurately if the signal is not activated. In adults, disrupted or reduced
RA signaling may result in motor neuron degeneration and degenerative neurological
diseases such as Alzheimer’s disease. Additionally, a decrease in RA during develop-
ment can cause developmental abnormalities and neurobehavioral abnormalities in the
fetus [57,58]. In the infant group, ALDH1A2 mRNA showed a tendency to be under-
regulated (logFC −0.29, FDR 1), although this effect was not statistically significant owing
to hyper-methylation (logFC 1.00, p 0.04). Moreover, one study confirmed that Raldh2
overexpression could improve ethanol-induced developmental defects [79]. Consistently,
children exposed to organic solvents during the prenatal period failed to obtain good
results in neurobehavioral subtests, and these results can be viewed as supporting evidence
for our findings [8]. Therefore, ALDH1A2 may be a biomarker for nervous system-related
diseases due to toluene exposure.

Although expression was not regulated by methylation, it was confirmed that many
of the significantly over-expressed mRNAs were involved in the inflammatory response
(GO:0006954). These mRNAs are typically involved in protecting the brain from inflamma-
tory reactions in the cranial nerves caused by harmful substances or infections. However,
chronic inflammatory responses activate glial cells and promote cytokine secretion, result-
ing in nerve damage [80], neurodegeneration caused by this chronic neuroinflammatory
response is typically observed in various neurodegenerative diseases. IL6 (logFC 2.64,
FDR 7.37 × 10−24) mRNA has the highest expression among genes involved in various
inflammatory responses. Interleukin (IL)-6 is a pro-inflammatory cytokine with various
actions, and plays a role in maintaining homeostasis in the nervous system. However,
excessive production or elevated levels of IL-6 can lead to neuroinflammatory reactions
and neurodegeneration (which are known to be related to cognitive impairment) [60,81].
The levels of tumor necrosis factor-α and IL-β (including IL6) are significantly increased in
Parkinson’s disease, a neurodegenerative disease [82]. In addition, CXCL10 mRNA, which
was upregulated in both maternal and infant groups, is known to be highly upregulated in
the central nervous system when a neuroinflammatory response occurs [83]. In particular,
one study reported that the secretion of pro-inflammatory cytokines increases with increas-
ing exposure to benzene, toluene, ethylbenzene, and xylene (BTEX) compounds, which can
affect inflammation [84]. These results indicate that the level of toluene exposure in daily
life can contribute to neuroinflammatory responses.

4. Materials and Methods
4.1. Human Participants and Ethical Approval

This study used the small (GREEN) cohort that recruited 151 mothers and infants
from 2017–2021 to study the environmental diseases caused by environmentally hazardous
substances. Whole blood and cord blood were obtained from 97 matched mother-infant
pairs, and peripheral blood mononuclear cells (PBMCs) were isolated. PBMCs were
obtained using density gradient centrifugation with 6% Hetastarch solution (STEMCELL
Technologies, Vancouver, BC, Canada) and Ficoll-Paque PLUS (GE Healthcare Life Sciences,
Marlborough, MA, USA). Maternal urine was also collected. gDNA and total RNA were
obtained from PBMCs using the Invitrogen PureLink Genomic DNA Mini Kit (Thermo
Fisher Scientific, Waltham, MA, USA) and RNAiso Plus reagent (Takara Bio, San Jose, CA,
USA) according to the manufacturer’s recommended method. In addition, the maternal
urinary BMA concentration was measured using liquid chromatography-mass spectrometry
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performed by Smartive Co., Ltd (Hanam, Republic of Korea). The Korean version of the
Denver Development Screening Test II was administered to confirm developmental delays
when the infant was 6 and 12 months old. In total, four items (personal-social development,
fine motor and adaptive development, language development, and motor development)
were evaluated by experts using the test tools. This study was approved by the Institutional
Review Board (IRB #2016-12-111) of Samsung Medical Center, and written informed consent
was obtained from the parents participating in this study.

4.2. Selection of Toluene-Exposed Groups

The maternal participants in the top 25% and with higher exposure (5.99 µg/g creati-
nine) were assigned to the high-exposure group, whereas those in the bottom 75% exposure
were assigned to the low-exposure group. Considering the infant group, the infants of
mothers assigned to the high-exposure group were set as the high-exposure group.

4.3. Methylated DNA Immunoprecipitation Sequencing (MeDIP) Sequencing and DMR Analysis

In brief, 500 ng of gDNA obtained from PBMCs was fragmented to an appropriate size
(100–200 bp) using a Bioruptor pico sonicator (Diagenode, Denville, NJ, USA). MeDIP DNA
was obtained via immunoprecipitation. Subsequently, the end-repairing and adenylated
3′ ends processes were performed using TruSeq ChIP Library Preparation Kit (Illumina,
San Diego, CA, USA) in accordance with the according to the manufacturer’s guidelines,
and DNA bound to the adapter index was amplified to create a library. The size of
the constructed library was confirmed, quantified using qPCR, and sequenced using the
Nextseq500 sequencing system (Illumina) with a read length of 2 × 75 bp. Preprocessing
was performed using Trimmomatic (v0.40), bowtie2 (v2.4.2), SAMtools (v1.11), and Picard
(v2.25.0) programs utilizing the FASTQ file obtained through sequencing. At this time, three
pairs were excluded from the subsequent analysis owing to quality issues. The MEDIPS
package in R (v4.2.1) was used for DMR analysis, and regions with a significant level (|fold
change (FC)| > 1.5 and p-value < 0.05) were selected.

4.4. mRNA Sequencing and Differentially Expressed Gene (DEG) Analysis

Ribosomal RNA was extracted from 100 ng of total RNA obtained from PBMCs
using the TruSeq Stranded Total RNA Sample Prep Kit with Ribo-zero Globin (Illumina)
according to the manufacturer’s guidelines. A cDNA library was created, and its size
was checked and quantified using quantitative polymerase chain reaction (qPCR). This
library was sequenced using a NovaSeq 6000 sequencing system (Illumina) at 2 × 100 bp
read length. Preprocessing was performed using Trimmatic (v0.40) and STAR (v2.7.8a)
programs using FASTQ files obtained through sequencing. Data were normalized using the
estimateCommonDisp method in the edgeR package of R (v4.2.1), and expression changes
at a significant level (|FC| > 1.5 and false discovery rate (FDR) < 0.05) were selected.
Additionally, DEG and DMR results were integrated and analyzed to identify genes whose
expression was altered due to epigenetic changes.

4.5. Statistical and Functional Analysis

To determine the statistically significant impact of toluene exposure on various factors,
we performed binomial logistic regression analysis using IBM SPSS Statistics (v25; IBM
Corp., Armonk, NY, USA). Additionally, the function and network analysis of selected
genes with significantly regulated expression were performed using QIAGEN Ingenuity®

Pathway Analysis (QIAGEN IPA, v17.6, Qiagen Germantown, MD, USA) and DAVID
Bioinformatics Resources 6.8.

5. Conclusions

This study investigates the potential effects of toluene exposure at levels commonly
encountered in everyday situations on the nervous system of pregnant mothers and infants
(fetus). Toluene exposure leads to DNA methylation, resulting in upregulated expres-
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sion of several mRNAs associated with gliomas and Alzheimer’s disease. Conversely,
downregulated mRNAs are linked to reductions in dendritic spine size, density, and
synaptic connectivity. Remarkably, similar results were observed in indirectly exposed
infants, mirroring those seen in directly exposed mothers. These findings highlight the
potential negative impact of environmental hazards, including toluene exposure, on both
maternal and fetal health. Consequently, this research provides a foundation for under-
standing and managing environmental risks faced by vulnerable populations, including
pregnant women.
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