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Abstract: In orbital and ground-based experiments, it has been demonstrated that ionizing radiation
(IR) can stimulate the locomotor and exploratory activity of rodents, but the underlying mechanism
of this phenomenon remains undisclosed. Here, we studied the effect of combined IR (0.4 Gy γ-rays
and 0.14 Gy carbon-12 nuclei) on the locomotor and exploratory activity of rats, and assessed the
sensorimotor cortex volume by magnetic resonance imaging-based morphometry at 1 week and
7 months post-irradiation. The sensorimotor cortex tissues were processed to determine whether
the behavioral and morphologic effects were associated with changes in neurotrophin content. The
irradiated rats were characterized by increased locomotor and exploratory activity, as well as novelty-
seeking behavior, at 3 days post-irradiation. At the same time, only unirradiated rats experienced a
significant decrease in the sensorimotor cortex volume at 7 months. While there were no significant
differences at 1 week, at 7 months, the irradiated rats were characterized by higher neurotrophin-3
and neurotrophin-4 content in the sensorimotor cortex. Thus, IR prevents the age-associated decrease
in the sensorimotor cortex volume, which is associated with neurotrophic and neurogenic changes.
Meanwhile, IR-induced increases in locomotor activity may be the cause of the observed changes.

Keywords: galactic cosmic rays; carbon-12 nuclei; hyperlocomotion; exploratory activity; somatosen-
sory cortex; neurotrophins; NT-3; NT-4

1. Introduction

The advent of the era of crewed deep-space (interplanetary) missions has significantly
intensified the study of medical and biological effects of ionizing radiation (IR), whose
significance increases notably when a spacecraft travels beyond the Earth’s magnetic field.
Studies have shown that the effect of IR, including the most dangerous component—high-
energy heavy charged particles (HZE)—is ambiguous: both negative and positive effects
on central nervous system (CNS) functions have been found [1].

We have previously demonstrated that combined IR (0.4 Gy γ-rays and 0.14 Gy 12C,
10.4 keV/µm) results in an increase in the total distance traveled by rats in the open
field test [2]. Numerous pieces of literature support IR-induced hyperlocomotion. Thus,
irradiation by 1 Gy 12C (10.6 keV/µm) increased the locomotor activity of rats at 30,
but not 60 days post-irradiation [3]. Using a more flight-relevant model of combined
irradiation (H+, 16O and 28Si), an increase in locomotor activity was also detected at an
absorbed dose of 0.5, but not 0.25 or 2 Gy [4]. Interestingly, combined IR (3 Gy γ-rays and
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1.5 Gy H+ 0.4 keV/µm) reverses the suppression of locomotor activity induced by 30 days
of antiorthostatic suspension (ground-based microgravity model) in rats [5]. Moreover,
irradiation by 56Fe (0.5 Gy, 151.4 keV/µm) increased the locomotor activity of APP/PS1
(transgenic model of Alzheimer’s disease) female mice, as well as exploratory activity
(rearing) of C57BL/6J mice in the open field test, and improved the motor coordination
of APP/PS1 male mice in the rotarod test [6]. The stimulatory effect of 56Fe irradiation
was also verified in an independent study: increased exploratory activity against novel
objects placed in the open field was found in rats immediately after irradiation by 56Fe
(1.5 Gy, 148 keV/µm) [7]. However, no change in the exploratory activity of mice was
found at 2 weeks post-irradiation (0.1, 0.5, or 2 Gy) [8]. Moderate doses of H+ irradiation
also stimulate exploratory activity of rats in different scenarios, i.e., 1 Gy H+ 0.4 keV/µm
or 1.5 Gy H+ (spread-out Bragg peak) [9,10], and this effect lasts for up to 90 days post-
irradiation [9]. It is noteworthy that low-dose γ-rays irradiation (63 mGy, 60Co) stimulates
exploratory activity at 18 months post-irradiation [11]. The mechanisms responsible for the
stimulatory effects of IR on locomotor and exploratory activity remain undiscovered, but
there is speculation that this is part of a neuroadaptive response [1].

Neuroplasticity, as is well known, refers to the brain and neurons’ ability to adapt to
new stimuli or environmental conditions. During spaceflight, neuroplasticity underlies a
number of changes in the central nervous system [12,13] and can be considered as synaptic
plasticity at the cellular level and changes in neuronal networks at the system level [14]. IR
can cause both adaptive [11] and maladaptive [15] neuroplasticity changes, depending on
dose, composition, and a number of other factors. To some extent, the possible effects of
space radiation on structural changes in the brain are supported by data from astronauts:
in a magnetic resonance imaging (MRI) study, the comparison of pre- and post-flight MRI
scans of 27 astronauts revealed a decrease in brain gray matter volume with the exception
of the somatosensory and motor cortex and, probably, the paracentral gyrus, which, in
contrast, showed an increase in volume [16]. It is important to note that, during orbital
flight, it is impossible to isolate the effect of IR against the background of the influence of
other spaceflight factors, primarily microgravity [17,18].

A number of studies have shown that acute HZE irradiation inhibits neurogenesis at
certain doses and compositions, but this blockage is transient [19,20]. At the same time,
no neurogenesis inhibition was revealed after irradiation by 0.2 Gy 28Si (67 keV/µm) in
female mice or 0.5 Gy 56Fe (175 keV/µm) in male mice [21–23]. Moreover, mice exposed to
H+ (1 and 2 Gy, 0.24 keV/µm) are characterized by an increasing cell proliferation in the
subgranular zone at 1 and 3 month post-irradiation, whereas mice exposed to 12C (1 Gy,
8 keV/µm) are characterized by restoration of the indices of proliferation and immature
neurons in the dentate gyrus of the hippocampus at 3 months post-irradiation [19,20]. In
cell-based studies, it was shown that IR (γ-rays, 661.7 keV, 4–8 Gy) increased physiological
(normal) neurite growth in a dose-dependent manner [24], probably through an effect on
neurotrophin expression [25].

Neurotrophins, a family of proteins that induce the survival, development, and func-
tion of neurons, are known to play a significant role in both the protection and recovery
of function following CNS damage such as stroke and traumatic brain injury [26]. The
expression of neurotrophins and their receptors has been shown to be extremely sensitive to
X-ray irradiation. In utero X-ray irradiation (~260 keV) leads to an increase in nerve growth
factor (NGF) content (1 and 2 Gy) at Postnatal Day (PND) 1, but a decrease (0.02–2 Gy)
at PND21 in brain tissues. In contrast, the content of brain-derived neurotrophic factor
(BDNF) was found to be increased (0.02–1 Gy) in the dentate gyrus of murine brain at
PND21 [27]. Irradiation by high-dose γ-rays (10 Gy, 60Co) of mice results in an immediate
increase in the number of neurotrophins (BDNF, neurotrophin-3 (NT-3), NGF, and GDNF)
and their receptors (TrkA, TrkB, TrkC, GFRa-1, and p75NTR) in the hippocampus that
persists up to 7 days after irradiation [28]. A decrease in the brain content of BDNF was
found after the sequential irradiation by three nuclei (H+, 16O, and 28Si) at a total absorbed
dose of 2 Gy (male mice only), but not the spaceflight-related 0.25 or 0.5 Gy [4]. On the



Int. J. Mol. Sci. 2024, 25, 6725 3 of 13

contrary, the sequential irradiation by six nuclei (H+, 4He, 16O, 28Si, 48Ti, and 56Fe) at a total
absorbed dose of 0.5 Gy (but not 0.25 or 2 Gy) leads to an increase in BDNF content in the
neocortex [29]. A significant positive correlation between BDNF and a marker of microglial
activation CD68 content was observed in both studies [4,29]. In the orbital experiment,
no effect of spaceflight factors on BDNF and TrkB expression in the murine brain was
detected [30].

The aim of this study was to investigate the effect of combined IR at a spaceflight-
relevant dose on measures of locomotor activity, exploratory behavior, and novelty-seeking
behavior, and to test the hypothesis that this effect may be associated with neuroplasticity
changes in the primary motor and somatosensory cortex (sensorimotor cortex, hereinafter)
of Wistar rats.

2. Results
2.1. Irradiation Increases Locomotor Activity, Anxiety, and Exploratory Behavior

The effects of irradiation (F1,12 = 6.5, p = 0.025), time (F1,12 = 9.5, p = 0.0095), and
the interaction of these factors (F1,12 = 7.7, p = 0.02) reached statistical significance when
the total distance traveled was analyzed. The latency time to enter the arena center was
significantly influenced by irradiation (F1,12 = 5.2, p = 0.04), time (F1,12 = 5.2, p = 0.04),
and the interaction of these factors was found (F1,12 = 5.6, p = 0.035). A notable effect
of irradiation (F1,12 = 4.8, p = 0.048) and time (F1,12 = 13, p = 0.004) was observed when
analyzing the number of rearing. At Time Point 1, irradiated R-1 rats were characterized
by the higher distance traveled by 56% (p = 0.001), the latency time by 73% (p = 0.007),
and the number of rearing by 65% (p = 0.01) compared to intact C-1 rats. At Time Point
2, the difference between groups was leveled off: the distance traveled was reduced by
45% (p = 0.002), the latency time by 35% (p = 0.007), and the number of rearing by 48%
(p = 0.004) in R-2 rats compared to R-1 rats (Figure 1A).
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Figure 1. Open field test. (A) open field test activity for 5 min; D: distance traveled, m; LT: time of
first entry to the arena center (latency time), s; E: center arena entries; TC: time spent at arena center,
s; N: number of hole-poking; R: number of rearing. (B) object exploration for 3 min: Frequency:
number of approaches (paw and/or muzzle touches; 3 cm zone around the object—the hysteresis
zone) of the rat to the placed object; duration: time of contact (paw and/or muzzle touches) of the rat
with the placed object, s. Bar charts show mean + SD. R: irradiated rats, n = 7; C: control intact rats,
n = 7; numeric indices indicate the time points of the analysis: 1 or 2. Asterisk indicates statistically
significant differences between the groups within one time point of analysis (*: p < 0.05, **: p < 0.01;
post hoc Duncan’s test). Hash indicates intragroup statistically significant differences between the 1st
and 2nd time point of analysis (#: p < 0.05, ##: p < 0.01; post hoc Duncan’s test).
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A significant effect of irradiation was found when the frequency (F1,12 = 4.8, p = 0.049)
and duration (F1,12 = 5.3, p = 0.04) of the exploration of an object placed in an open field was
analyzed. At Time Point 1, irradiated R-1 rats showed a higher frequency and duration of
object exploration, respectively, by 95% (p = 0.047) and 117% (p = 0.01) compared to intact
C-1 rats. At the same time, the duration of object exploration by R-2 rats was reduced by
47% (p = 0.03) compared to that of R-1 rats (Figure 1B).

2.2. Sensorimotor Cortex Volume Is Reduced in the Intact, but Not in the Irradiated Rats
through Aging

Data analysis of MRI volumetry showed a significant effect of time (F1,12 = 16.9,
p = 0.0014) and interaction time × irradiation (F1,12 = 9.01, p = 0.011). We observed a 3.74%
(p = 0.0005) decrease in sensorimotor cortex volume in intact C rats between Time Points 1
and 2 (Figure 2).
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Figure 2. Magnetic resonance imaging volumetry of the sensorimotor cortex. Individual cortical
volume data are presented as circles for Time Point 1 and triangles for Time Point 2; n = 7 for C (intact)
and R (irradiated) groups of rats. Asterisk indicates intragroup statistically significant differences
between Time Points 1 and 2 (***: p < 0.001; post hoc Duncan’s test).

2.3. The Content of NT-3 and NT-4 in the Sensorimotor Cortex Increased 7 Months after the
Irradiation of Rats

Statistically significant effects of irradiation (F1,12 = 6.7, p = 0.02), time (F1,12 = 16,
p = 0.002), and the interaction of these factors (F1,12 = 27, p = 0.0002) were found when NT-3
content was analyzed. The statistically significant effects of irradiation (F1,12 = 5, p = 0.04)
and the interaction irradiation × time factors (F1,12 = 5.2, p = 0.04) were found when NT-3
content was analyzed.

At Time Point 2, irradiated R-2 rats were characterized by higher NT-3 and NT-4
content by 40% (p = 0.0001) and 63% (p = 0.008), respectively, compared to intact C-2 rats.
At the same time point, the NT-3 and NT-4 content in the R-2 rat group was greater by 43%
(p = 0.0001) and 17% (p = 0.048), respectively, compared to the R-1 rat group (Figure 3).
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Figure 3. Content of neurotrophins (BDNF, NGF, NT-3, and NT-4) in the rats’ sensorimotor cortex. Bar
charts show mean + SD. R: irradiated rats, n = 7; C: control intact rats, n = 7; numeric indices indicate
the time points of the analysis: 1 or 2. Asterisk indicates statistically significant differences between
the groups within a single time point of analysis (**: p < 0.01, ***: p < 0.001; post hoc Duncan’s test).
Hash indicates intragroup statistically significant differences between Time Points 1 and 2 (#: p < 0.05,
###: p < 0.001; post hoc Duncan’s test).

3. Discussion

Combined IR exposure increases locomotor and exploratory activity, and induces
novelty-seeking and anxious behavior at 3 days post-irradiation. However, this radiation-
induced phenotype is transient—at 7 months post-irradiation, no differences were found
between the groups of rats in the ethological analysis. It should be noted that studies involv-
ing both rodents and humans have shown a positive correlation between novelty-seeking
behavior, locomotor activity, and exploratory activity [31,32]. Thus, radiation-induced
changes in locomotor activity and the emotional status of rats may be mutually determined.
Indeed, the radiation-induced behavioral phenotype characterized by high locomotor and
exploratory activity, as well as enhanced novelty-seeking and anxiety-like behavior, is not
unique and is well described in the literature [33]. A number of studies have revealed that
this phenotype is associated with activation of the hypothalamic-pituitary-adrenocortical
(HPA) axis [31,33]; phenotypic traits are probably controlled by the activity of catecholamin-
ergic neural networks [32], in particular, in the locus coeruleus (LC), whose activation
boosted the noradrenaline release from LC terminals [34]. These neurochemical data are
fully consistent with the neurochemical profile of the brains of rats exposed to combined IR
described in the previous study [2]. At the same time, pharmacological modulation of HPA
axis activity provides a link between anxiety-like behavior and locomotor activity, but not
exploratory activity in rats, which was irradiated at the same dose and composition [35].
Thus, activation of the HPA axis may be only part of the mechanism responsible for the
radiation-induced ethological phenotype of rats.

MRI volumetry revealed a reduced volume in the sensorimotor cortex in intact rats
but not in those that were irradiated. Relying on evidence that the sensorimotor cortex
area undergoes thinning in naïve Wistar rats between PND80 and PND220 under standard
vivarium conditions [36], we can conclude that irradiation prevents the physiologic age-
associated (during the maturation period from young adult to adult in rats) thinning of
this cortex region. This finding is in good agreement with data from astronauts (orbital
flight), which also indicate an increase in sensorimotor cortex volume [16] and in motor
cortex-cerebellar functional connectivity [37]. These findings are also supported by the data
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of radiation-induced disinhibition of the cortical neural network shown previously [38]. It
is known that physical training and, in general, increased motor activity leads to structural
changes in the brain, including the sensorimotor cortex region [39–42]. Relying on this, we
hypothesized that the radiation-induced increase in locomotor activity may be responsible
for the sensorimotor cortex volume increase, which counteracts its age-related thinning.

An important issue is to uncover the cellular and molecular mechanisms responsible
for the preservation of sensorimotor cortex volume in irradiated rats. In line with existing
literature data [1], the damage properties of IR and, in particular, HZE are undeniable. At
the same time, a lesion in the neocortex induces a transient increase in the proliferation as
well as neurogenesis in the subventricular zone. New neural progenitors migrate ectopi-
cally to the injured area with the assistance of blood vessels and reactive astrocytes [43,44].
Along with that, the cortical neural stem and progenitor cells, which are self-renewing and
can generate neurons, astrocytes, and oligodendrocytes, may be responsible for local neu-
roreparation [45]. Moreover, neural stem cells are relatively radioresistant, and they can be
recruited by IR-induced apoptosis [46,47]. Thus, endogenous neurogenesis and gliogenesis
may be integral components of an intrinsic self-repair process under radiation-induced
injury. It is important to note that the successfully synaptic integration of newborn neurons
into the neocortex is necessary for the recovery process [48]. Inter alia, neurotrophins may
play a significant role in facilitating this process [49–51].

We found that combined IR led to an increase in the content of NT-3 and NT-4 in
the sensorimotor cortex. It is known that NT-3 enhances neuronal differentiation [52] and
induces the development of ectopic dendrite growth [53]. Under the neocortex injuries
of different genesis, NT-3 was shown to play a significant role in the regeneration of the
pyramidal tract by induction of sprouting [54,55]. At the same time, studies on cell cultures
of rat developing cortical neurons showed that NT-3 administration rapidly increased the
frequency of spontaneous action potentials, and it synchronized excitatory synaptic activi-
ties by its reduction of inhibitory synaptic transmission mediated by GABAA receptor [56].
These data are in perfect agreement with the phenomenon of CNS disinhibition after ex-
posure to combined IR, the mechanism of which includes the suppression of GABA-ergic
inhibitory action within the neocortex [38]. Although NT-4, like BDNF, acts via the TrkB
receptor, their functions differ due to differential activation of the TrkB receptor and its
downstream signals [57,58]. NT-4 promotes survival as well as neurite extension and den-
dritic arborization in a similar manner to BDNF, via the TrkB-dependent pathway [59,60].
Interestingly, unlike BDNF, which can both decrease and increase neurotransmitter release,
only the latter property has been shown for NT-4 [61]. NT-4 is also able to reduce the
expression levels of pro-inflammatory cytokines, improve neurological function, and atten-
uate neuroinflammation [62]. At the same time, anti-inflammatory therapy can prevent the
age-related loss of brain tissue volume [63]. It is important to note that all neurotrophins
are involved in “rewiring” the neocortex connectome [53,64]. Finally, the observed increase
in neurotrophin content aligns well with studies on the effects of IR on the neurogenic
microenvironment. Indeed, using cell transplantation technology, it has been shown that
IR does not reduce the potential for further neurogenesis but, on the contrary, significantly
enhances the engraftment potential of transplanted neural and multipotent astrocytic stem
cells, which indicates the relative intactness of the microenvironment [65,66].

Our study has some limitations. Despite the use of a spaceflight-relevant total equiva-
lent dose, the absence of moderate- and high-LET heavy nuclei makes this model imperfect.
The results obtained need to be validated using better models that assume multicomponent
low-dose chronic or fractionated exposures that reproduce the natural radiation environ-
ment in outer space. In the test of exploratory activity assessment, the object’s appeal to the
rat is crucial. We used netsuke, which showed high attractiveness to rats in our previous
studies. However, using different objects may significantly affect the results.
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4. Materials and Methods
4.1. Animals

Twenty-eight male 3-month-old Wistar rats weighing 270–290 g were used. Animals were
maintained in groups of three or four per cage (50 × 36 × 20 cm; length × width × height) in
a standard environment (12-h light/dark cycle, 19–22 ◦C and 50–60% relative humidity)
with food and water ad libitum.

4.2. Study Timeline

The timeline of the study is shown in Figure 4. Five days before the experiment, all
rats were weighed and distributed into four groups (n = 7 for all groups) so that animals
with the same weight were in different groups according to the minimization approach in
randomization [67]. At 99 days of age, 2 groups of rats were irradiated (R rats), and the
other 2 groups remained intact and served as controls (C rats). One group of C rats and 1
group of R rats were subjected to ethological and MRI analysis twice: within 1 week (C-1
and R-1 data; Time Point 1) and 7 months (C-2 and R-2 data; Time Point 2) post-irradiation;
at 322 days of age, rats from these groups were euthanized for biochemical analysis (data
for Time Point 2). The remaining groups of rats (C and R) were euthanized at Day 7
post-irradiation for biochemical analysis (data for Time Point 1).
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and, 24 h later, 0.14 Gy 12C nuclei, 450 MeV/u; OF: open field test; MRI: magnetic resonance imaging-
based brain morphometry; EA: euthanasia. The ages of the rats are shown in days. Two time points
in the analysis were used to assess the dynamics of changes: 1: within one week post-irradiation;
2: seven months post-irradiation.

4.3. Irradiation Procedures and Dosimetry

Irradiation by 661.7 keV γ-rays was performed with a GOBO-60 containing a 137Cs
source with certified activity of a 72 g equivalent of 226Ra. Mice were whole-body irradiated
daily (~16.7 mGy/h) at a total absorbed dose of 400 ± 30 mGy. The absorbed dose was
measured with thermoluminescent monocrystalline DTG-4 (LiF-Mg, Ti) detectors (A.P.
Vinogradov Institute of Geochemistry SB RAS, Russia). Detector annealing and dose
calculation were carried out on the Harshaw TLD Model 3500 manual readers (Thermo
Fisher Scientific, Waltham, MA, USA).

Twenty-four hours after γ-rays irradiation, the head of the experimental animals was
irradiated by 12C nuclei (450 MeV/u; linear energy transfer (LET): 10.4 keV/µm) at a total
absorbed dose of 140 ± 10 mGy in the U-70 accelerator (NRC “Kurchatov Institute”—IHEP,
Protvino, Russia): A rat was placed in a special poly(methyl methacrylate) case that
restricted movement and was positioned so that only the head and a small area of the neck
fell into the 12C6+ ion beam, which was formed by a carbon collimator (density: 1.8 g/cm3;
thickness: 50 cm; diameter of beam: 65 mm). Dosimetric monitoring of ion irradiation was
performed using a dosimeter DKS-AT5350/1 (Atomtex, Minsk, Belarus) with a TM30010-1
ionization chamber (PTW, Freiburg, Germany).
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The control group was housed in the same room as the irradiated rats, but behind the
GOBO-60 source, thus not exposed to the γ-rays flux. After that, the control group of rats
was transported together with irradiated animals and placed in the cases, but was kept
separately in another laboratory room and thus not exposed to a 12C6+ ion beam.

We used the combined irradiation model relying on the following arguments. Despite
the small fraction of γ-quanta in galactic cosmic rays (GCR), they represent a signifi-
cant fraction of secondary radiation. However, the main purpose of using γ-rays pre-
irradiation with a relative low dose rate was to provide tissue sensitization. Indeed, during
space flight, before living tissue is hit by HZE, it will experience multiple penetrations
by bremsstrahlung X-rays, δ-rays, and protons. Studies have shown that such low-dose
low-LET pre-irradiation significantly modulates the organism’s response to irradiation
by HZE [68]. When choosing the HZE component, we relied on the fact that 12C6+ is
the most common nucleus after H+ and 4He2+ in the composition of GCR [69], while the
LET value was near the median value on the GCR LET spectrum measured on the Mars
surface and during the Earth–Mars cruise [1]. Based on the dosimetric study, low-LET
exposure will be predominant during spaceflight [70]. Moreover, during the realization of
crewed deep-space missions, more advanced shielding will be used, which will also shift
the particle spectrum towards the low-LET component and may reduce the equivalent dose
by up to 30% [71,72]. The total equivalent dose in the used irradiation model (~0.8 Sv, for
brain tissue, based on [73]) is relevant to that of a hypothetical 860-day Martian mission [70].
It should be noted that the used model of combined irradiation will allow us to make a
correct comparison of the obtained results with our previous studies [2,35,38].

4.4. Open Field Test with Object Exploration

The test was performed according to the method described by Pecaut et al. [8] with
some modifications. A cylindrical box (d = 100 cm and the wall h = 50 cm) for the open
field test was used. The floor (arena) of the box was with holes (d = 2 cm), which imitate
minks. The arena was evenly illuminated (60 lx). The rats were placed in the arena close
to a wall, and the rates of horizontal and vertical activity were registered for 5 min by
RealTimer v.1.30 software (OpenScience, Moscow, Russia). After 5 min, the response to
novelty was evaluated in the same arena by placing an object (by hand, using laboratory
gloves to minimize identifying odors) near the wall on the opposite side from the rat. The
frequency of approaches (paw and/or muzzle touches; 3 cm zone around the object—the
hysteresis zone) and the duration of contact (paw and/or muzzle touches) with the object
were recorded for 3 min. After each animal testing, the object and the arena were wiped
with 70% ethanol and dried with a hair dryer. Two netsuke that are very different in shape
but not in size—God Hotei and God Ganesha—were used as objects, respectively, at Time
Points 1 and 2.

4.5. Magnetic Resonance Imaging-Based Morphometry

MRI studies were performed on a 7.05 T MR scanner Bruker BioSpec 70/30 USR
driven by ParaVision v.5.1 software (Bruker, Ettlingen, Germany). The animals were
anesthetized in a specialized plastic container with isoflurane at a concentration of 4.5% at
an oxygen flow of 1 L/min, and then adjusted to 1.5% during scanning. Gas anesthesia was
administered using an isoflurane vaporizer from Ugo Basile S.R.L. (Comerio, Italy) and the
oxygen concentrator JAY-10 (Longfian Sitech, Baoding, China). Special platinum sticks were
inserted into the ears for additional immobilization of the animal’s head. Axial, coronal, and
sagittal T2-weighted images were obtained using a spin-echo pulse sequence RARE (rapid
acquisition with relaxation enhancement) with the following scan parameters: repetition
time (TR): 5500 ms; effective echo time (TEeff): 47.5 ms; number of echoes collected during
each repetition (RARE-factor): 6; field of view: 3.12 × 2.34 cm2; matrix: 208 × 156; spatial
resolution: 0.15 × 0.15 mm2; slice thickness: 0.5 mm; no gaps; number of averages: 4;
number of slices: 30, 20, and 29, respectively, for the axial, coronal, and sagittal views.
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The processing of the MR images was carried out in a freely distributed program ImageJ
v.1.51j8 [74].

The cortical area whose volume was precisely estimated (Figure 5) included the
primary motor cortex (M1) and the primary somatosensory cortex (three zones: S1FL,
S1HL, and dysgranular S1DZ; the sensorimotor cortex). To identify the target area of the
neocortex, we employed data from both the in vivo rat atlas by Schwarz et al. [75] and the
rat brain atlas by Paxinos and Watson [76].
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4.6. Tissue Collection

Rats from the experimental and control groups were euthanized by decapitation. The
sensorimotor cortex was dissected in a non-precision manner on thermoelectric cooling
surface (+2 ◦C) and immediately frozen in liquid nitrogen until analyzed.

4.7. Multiplex Assay

Tissue samples were mechanically homogenized in polypropylene tubes on ice using a
polytetrafluoroethylene pestle (600 rpm, ~20 s) in a lysis buffer (+20 ◦C; 1:20 v/v) consisting
of the following components: 20 mmol/L Tris-HCl (pH 7.5), 150 mmol/L NaCl, 0.05%
v/v Tween-20, and 1% v/v protease inhibitor cocktail II (ab201116, Abcam, Cambridge,
UK). The obtained homogenates were centrifuged at 12,000× g for 15 min at 3 ◦C, and the
supernatant was taken for further analysis. Protein content in samples was determined by
the Bradford method using a Quick Start Bradford Protein Assay kit (Bio-Rad, Hercules, CA,
USA). For analysis, samples were diluted by a lysis buffer to a target protein concentration
in the range of 0.6–1 mg/mL, if necessary.

A multiplex assay was performed using the commercially available IS-135-Rat kit
(Cloud-Clone Corp., Wuhan, China) to determine NGF, BDNF, NT-3, and NT-4 concentra-
tion. Bead preparation, handling, and plate processing were conducted according to the
manufacturer’s protocol. Plates were washed using a Bio-Plex Pro Wash Station (Bio-Rad,
Hercules, CA, USA) and read using a Bio-Plex MAGPIX Multiplex Reader (Bio-Rad, Her-
cules, CA, USA). The concentration of neurotrophins in the tested samples was determined
automatically with standard calibration dilutions using Bio-Plex Manager Software v.6.1
(equipment management and initial data processing) and Bio-Plex Data Pro Software v.1.2
(Bio-Rad, Hercules, CA, USA) for final data processing. The content of target proteins was
normalized to total protein in the sample.

4.8. Data Processing

Data were presented as the mean ± standard deviation (SD). Data processing was
performed using Statistica 12 software (StatSoft Inc., Tulsa, OK, USA). The Shapiro–Wilk
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test was used to assess the normality of the data distribution; when p > 0.05, parametric
analysis methods were used. Thus, data were processed using repeated measures ANOVA.
Duncan’s post hoc test was conducted if necessary.
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