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Abstract: Dilated cardiomyopathy (DCM) is characterized by reduced systolic function and cardiac
dilation. Cases without an identified secondary cause are classified as idiopathic dilated cardiomyopa-
thy (IDC). Over the last 35 years, many cases of IDC have increasingly been recognized to be genetic
in etiology with a core set of definitively causal genes in up to 40% of cases. While over 200 genes have
been associated with DCM, the evidence supporting pathogenicity for most remains limited. Further,
rapid advances in sequencing and bioinformatics have recently revealed a complex genetic spectrum
ranging from monogenic to polygenic in DCM. These advances have also led to the discovery of
causal and modifier genetic variants in secondary forms of DCM (e.g., alcohol-induced cardiomy-
opathy). Current guidelines recommend genetic counseling and screening, as well as endorsing
a handful of genotype-specific therapies (e.g., device placement in LMNA cardiomyopathy). The
future of genetics in DCM will likely involve polygenic risk scores, direct-to-consumer testing, and
pharmacogenetics, requiring providers to have a thorough understanding of this rapidly developing
field. Herein we outline three decades of genetics in DCM, summarize recent advances, and project
possible future avenues for the field.

Keywords: genetics; dilated cardiomyopathy; arrhythmogenic cardiomyopathy; left ventricular
non-compaction; heart failure; TTN; LMNA; polygenic risk score; peripartum cardiomyopathy;
alcohol-induced cardiomyopathy

1. Introduction

The cardiomyopathies are a set of diseases with primary abnormalities in cardiac
structure and function [1]. These disorders, which are typically grouped into morphologic
subtypes, were associated with apparent familial transmission in many cases. This led
to the hypothesis that the cardiomyopathies could have underlying genetic etiologies.
Investigations over the last 35 years have confirmed a monogenic basis for these disor-
ders. The first identified was hypertrophic cardiomyopathy (HCM), [2,3] which is now
known to be a disease of the sarcomere, with >1500 variants identified in eight definitive
sarcomere genes [4]. Similarly, causative variants for arrhythmogenic right ventricular
cardiomyopathy (ARVC) have established ARVC as a disease of the desmosome [4], while
channelopathies are predominantly caused by mutations in potassium and sodium channel
genes [5]. Recently, additional genes have been identified that may contribute to these
cardiomyopathies [6]. However, the evidence supporting their pathogenicity is less robust,
frequently leading to diagnostic uncertainty in clinical testing [7–9].

Unlike these other cardiomyopathies, dilated cardiomyopathy (DCM) is unique in
that it is genetically heterogeneous with a variety of culprit gene ontologies that lead
to the common phenotype of a dilated and hypocontractile ventricle [1]. Further, the
breathtaking pace of genetics discoveries, driven by disruptive technological advances
in DNA sequencing and computing power, has led to a near constant evolution in our
understanding and use of genetic information in patients with DCM. This review will
discuss both the evolving genetic basis of DCM over the last three decades and the current
and future impact of clinical genetic testing on the management of patients with DCM.
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2. Epidemiology

DCM is a broad term that reflects the dilation and decreased systolic function of either
or both ventricles [10]. Individuals with DCM typically develop heart failure (HF), and
DCM is the most frequent underlying reason for heart transplantation. DCM is categorized
into ischemic and non-ischemic etiologies, with nearly equal prevalence based on recent
clinical trials in patients with reduced systolic function [11,12]. Many secondary causes
of DCM exist including infections, drugs, toxins, nutrient deficiencies, and autoimmune
diseases [13,14]. Historically, when a secondary cause could not be identified, DCM was
classified as “idiopathic” (IDC). With progress in genetics, a substantial proportion of what
used to be labeled IDC can now be called genetic. For the purposes of this review, we will
focus on genetic causes of DCM.

Early and still widely cited epidemiologic data on DCM reported an incidence of
~6–8 per 100,000 population year [15–17] and a prevalence of ~1:2500 [17]. However,
this is a substantial underestimate. When accounting for the prevalence of DCM among
clinical trials and population cohorts it has been estimated that the true prevalence of
DCM is closer to 1:250, or 0.4% [18]. This estimate has recently been confirmed using
>39,000 patients imaged with cardiac MRI (CMR) in the UK Biobank. In this cohort, the
population prevalence of DCM was found to be 1 in 220 (0.45%, 95% CI 0.39–0.53%), which
encompasses the 1:250 estimate [19].

DCM carries a poor prognosis. In long-term studies of contemporary patient pop-
ulations with non-ischemic DCM, roughly 50% experienced a composite of non-fatal
life-threatening arrhythmia, unplanned cardiovascular hospitalization, or cardiovascular
death over 12 years [20], and 17% experienced death, transplant, or ventricular assist device
(VAD) implant over 8 years [21]. Prognosis has been noted to be worse in patients with
pathogenic/likely pathogenic (P/LP) variants compared to those without an identified
genetic contribution [22–24]. Notably, prognosis has improved when comparing patients
diagnosed in the 1970s to those diagnosed in the 2010s [21], which may be in part attributed
to increased utilization in guideline-directed medical therapy (GDMT), device therapies
such as implantable cardioverter-defibrillators (ICD), and earlier patient identification [25].

3. Familial Clustering in Idiopathic DCM

Early studies suggested that 10–20% of patients with IDC have a family history [26].
However, a patient-reported family history is an insensitive marker for genetic disease.
Among 109 probands with IDC, a reported family history was present in only 11%, while
clinical screening with echocardiography identified DCM in the family members of 32%
of probands, a nearly 3-fold difference [27]. Further, 44% of probands were found to
have a disease-causing DCM variant, yet a family history was present in only 36% of
these individuals. In a separate cohort of genotype-positive patients with DCM who
were referred for VT ablation, a family history of DCM was present in only 27% and a
family history of sudden death in 35% [28]. Indeed, in most large genetic studies of IDC,
the prevalence of a reported family history is typically less than 50% even in those with
putatively causal DCM gene mutations (i.e., in those with a clear heritable cause).

There are many reasons that explain the limited identification of familial disease in
clinical practice (Table 1). An obvious reason is unrecognized disease in family members, a
major problem in DCM as unsuspected but affected family members sometimes present
with sudden death as the initial manifestation of disease [29,30]. This under-recognition of
family members is partly due to the fact that virtually all causal DCM genetic mutations
have (1) incomplete penetrance, meaning a percentage of individuals with a putatively
causal DCM variant will never develop the phenotype; and (2) variable expressivity,
meaning individuals with the same exact mutation will manifest different aspects of the
disease phenotype and can have a vastly different disease severity. Additionally, the
mutation could be a de novo variant in the proband, meaning there will be no history in
siblings or older generations. This is referred to as sporadic DCM, another form of genetic
DCM. Overall, while a family history increases the likelihood of finding a causal variant on
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genetic testing, the absence of a family history does not exclude the possibility of genetic
disease. Further, a family history can be present in the absence of a pathogenic mutation
because our understanding of DCM genetics remains incomplete.

Table 1. Challenges and solutions to identifying familial disease.

Challenge Solution

Inadequate family history

-Take at least a three-generation family history
(i.e., current, prior, and subsequent generations)
-Clarify potentially vague cardiovascular
events (e.g., heart attack)
-Obtain family medical records for review

Incomplete penetrance and
variable expressivity

-Evaluation by a cardiologist
-Genetic testing of P/LP genes
-Echocardiogram
-ECG

De novo variant -Cascade genetic testing in offspring
P/LP pathogenic/likely pathogenic, ECG electrocardiogram.

The majority of genetic DCM occurs in adults, with a very variable age of onset,
even within families. Consequently, the absence of the phenotype in a genotype-positive
individual does not absolve them of future risk and underscores the need for lifelong
screening as per guidelines [4]. Perhaps not surprisingly, when screening family members
with cardiac imaging, the prevalence of familial DCM is higher due to identification of
subclinical disease. The recent DCM precision medicine study estimated 30% of IDC to
be familial. But, when utilizing an expanded definition that included either left ventricle
(LV) chamber dilation or reduced LV ejection fraction (LVEF), which portend a 10-fold
increased risk for progression to DCM [31], the prevalence of familial DCM was greater than
50% [32]. At the time of initial evaluation in seemingly asymptomatic relatives, up to 20%
will be found to have overt DCM, with an age-dependent increase in prevalence [27,29,33].
Importantly, these individuals warrant proper treatment as per guidelines [34]. These
facts underscore the guideline recommendations for both clinical and genetic screening in
IDC [4,34].

4. Gene Ontologies in DCM

Since the late 1990s, there have been tremendous advances in genetic sequencing
allowing for even more nuanced appreciation of the influence of genetic variants on
cardiomyopathy. DCM can result from a multiplicity of variants implicated in many
different cellular processes. This includes genes involved in force generation, signaling,
protein trafficking, electrolyte homeostasis, cellular architecture, energy regulation, and
gene expression (Figure 1A–E and Table 2). Currently, mutations in over 250 genes have
been associated with DCM. However, strong genetic evidence for the vast majority is
lacking [7,8]. To define variant pathogenicity, the American College of Medical Genetics
and Genomics (ACMG) and the Association for Molecular Pathology (AMP) published
guidelines based on a diverse set of criteria. Scores are used to classify variants according
to the following qualifiers: pathogenic (P), likely pathogenic (LP), variant of uncertain
significance (VUS), likely benign (LB), or benign (B) [35].
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genic genes; standard font—putatively pathogenic genes). 

Table 2. Gene ontologies in dilated cardiomyopathy. 

Gene OMIM Protein Associated Phenotype(s) Other Than 
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Sarcomere 
ACTC1 [36] 102540 Cardiac actin  HCM 

MYH7 [37,38] 160760 β-myosin heavy chain HCM [3,39] and LVNC [40,41] 
TNNT2 [37] 191045 Troponin-T HCM [42,43] 

TNNI3 [44,45] 191044 Troponin-I  HCM [46] 
TNNC1 [44] 191040 Troponin-C  HCM (putative) [47–49] 
TPM1 [50] 191010 ɑ-Tropomyosin HCM [42,43] 
MYBPC3 

[51,52] 600958 
Myosin binding protein 

C HCM [53,54] 

TTN [55,56] 188840 Titin 

ACM [57], Tibial Muscular Dystrophy 
[58], LGMD2J [59], Hereditary Myopa-
thy with Early Respiratory Failure [60], 

and Salih Myopathy [61] 
MYL2 [62] 160781 Myosin light chain 2 HCM [63] 

MYPN [64,65] 608517 Myopalladin HCM (putative) [64] 
Nuclear and cytoskeletal architecture 

LMNA [66,67] 150330 Lamin A/C  
ACM [68], EDMD type 2 [69], LGMD1B 
[70], and Congenital Muscular Dystro-

phy [71] 

LEM2 616312 
LEM domain-contain-
ing protein 2 (LEMD2) ACM [72,73] 

FLNC [74] 102565 Filamin C 
ACM [74,75], HCM (putative) [76,77], 

and MFM [78] 

DMD [79,80] 300377 Dystrophin 
Duchenne muscular dystrophy and 

Becker muscular dystrophy [81] 
EMD [82] 300384 Emerin EDMD type 1 [83] 

DES [84–87] 125660 Desmin  LVNC [88,89], RCM [90], ACM and 
MFM [84,86] 

Figure 1. Visual illustration of the breadth of gene ontologies in dilated cardiomyopathy. Summarized
are genes involved in (A) cell junctions, (B) the sarcomere, (C) mitochondria, (D) nuclear architecture
and protein trafficking, and (E) cytoskeletal architecture (bold font—definitively pathogenic genes;
standard font—putatively pathogenic genes).

Table 2. Gene ontologies in dilated cardiomyopathy.

Gene OMIM Protein Associated Phenotype(s) Other than DCM

Sarcomere

ACTC1 [36] 102540 Cardiac actin HCM

MYH7 [37,38] 160760 β-myosin heavy chain HCM [3,39] and LVNC [40,41]

TNNT2 [37] 191045 Troponin-T HCM [42,43]

TNNI3 [44,45] 191044 Troponin-I HCM [46]

TNNC1 [44] 191040 Troponin-C HCM (putative) [47–49]

TPM1 [50] 191010 α-Tropomyosin HCM [42,43]

MYBPC3 [51,52] 600958 Myosin binding protein C HCM [53,54]

TTN [55,56] 188840 Titin
ACM [57], Tibial Muscular Dystrophy [58], LGMD2J [59],
Hereditary Myopathy with Early Respiratory Failure [60],

and Salih Myopathy [61]

MYL2 [62] 160781 Myosin light chain 2 HCM [63]

MYPN [64,65] 608517 Myopalladin HCM (putative) [64]

Nuclear and cytoskeletal architecture

LMNA [66,67] 150330 Lamin A/C ACM [68], EDMD type 2 [69], LGMD1B [70], and Congenital
Muscular Dystrophy [71]

LEM2 616312 LEM domain-containing
protein 2 (LEMD2) ACM [72,73]

FLNC [74] 102565 Filamin C ACM [74,75], HCM (putative) [76,77], and MFM [78]

DMD [79,80] 300377 Dystrophin Duchenne muscular dystrophy and Becker muscular
dystrophy [81]

EMD [82] 300384 Emerin EDMD type 1 [83]

DES [84–87] 125660 Desmin LVNC [88,89], RCM [90], ACM and MFM [84,86]

Mitochondrial

TAZ [91] 300394 Taffazin Barth syndrome [91]
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Table 2. Cont.

Gene OMIM Protein Associated Phenotype(s) Other than DCM

DNAJC19 [92,93] 608977 DnaJ heat shock protein
family (Hsp40) member C19 Dilated cardiomyopathy with ataxia syndrome [92,93]

Protein trafficking

BAG3 [94,95] 603883 Bcl2-associated athanogene 3 ACM, MFM

Gene expression

RBM20 [96] 613171 Ribonucleic acid binding
protein 20 ACM [97]

TBX20 [98] 606061 T-box protein 20 Congenital heart defects [98], LVNC [99]

Desmosomal proteins

JUP [100] 173325 Plakoglobin ARVC/ACM and Naxos syndrome [101–103]

DSP [104] 125647 Desmoplakin ARVC/ACM [105] and Carvajal syndrome [104,106]

PKP2 [107] 602861 Plakophilin ARVC/ACM [108–110]

DSG2 [107] 125671 Desmoglein 2 ARVC/ACM [111–113]

DSC2 [100,107] 125645 Desmocollin 2 ARVC/ACM [114–116]

Membrane proteins

TMEM43 [117] 612048 Transmembrane protein 43 ARVC/ACM [117–119]

ILK 602366 Integrin-linked kinase ARVC/ACM [120]

Sarcoplasmic reticulum

PLN [121–123] 172405 Phospholamban

Channels

SCN5A [124–126] 600163 Voltage-gated sodium channel
α-subunit

ACM, long-QT syndrome (type 3), Brugada syndrome,
conduction delay, ectopic Purkinje foci, sinus node

dysfunction [124], and atrial fibrillation [125]

HCM hypertrophic cardiomyopathy, LVNC left ventricular non-compaction, ACM arrhythmogenic cardiomyopa-
thy, ARVC arrhythmogenic right ventricular cardiomyopathy, LGMD limb-girdle muscular dystrophy, EDMD
Emery-Dreifuss muscular dystrophy, MFM myofibrillar myopathy.

4.1. Sarcomere Mutations in DCM

Similar to HCM, mutations in sarcomere genes are causal in DCM [37]. Definitive
disease-causing variants in both disorders have been identified in cardiac actin (ACTC1),
β-myosin heavy chain (MYH7), the troponins (TNNT2, TNNI3), and α-tropomyosin (TPM1),
with putative DCM mutations also identified in cardiac troponin-c (TNNC1) and myosin
binding protein C (MYBPC3) [1]. Sarcomere gene mutations underlie 30–40% of HCM
and constitute nearly all P/LP variants on clinical genetic testing [127,128]. By contrast,
sarcomere gene mutations are present in <10% of IDC cases [37,129–132].

Notably, detailed genetic and molecular analyses have shown that causal DCM and
HCM variants in a given gene have opposing pathophysiologic effects. In a genome-wide as-
sociation study (GWAS) of 1733 unrelated patients with HCM and 5521 patients with DCM,
six loci were associated with HCM and three with DCM [133]. GWAS was also performed
on LV phenotypic traits (e.g., LVEF, LV wall thickness, LV strain) in 19,260 participants
who underwent CMR in the UK Biobank. This demonstrated strong associations between
LV phenotypic traits, with opposing genetic effects in HCM and DCM. For instance, a
positive genetic correlation was identified between HCM and LV wall thickness, while a
positive genetic correlation was found between DCM and LV end diastolic volume, both
disease hallmarks. Strikingly, all four measures of LV contractility assessed were positively
correlated with HCM and negatively correlated with DCM. To identify additional genetic
loci associated with HCM and DCM, the authors performed multi-trait analysis of GWAS
(MTAG). MTAG improves the power of GWAS by identifying genetic loci that are associ-
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ated with two correlated phenotypes (e.g., HCM and LVEF). This identified 10 additional
loci for each HCM and DCM. Remarkably, 72.4% of these loci were significantly associated
with both HCM and DCM, and of these, all but one were associated with an opposite
direction of effect (i.e., if positively correlated with HCM, the risk allele was negatively
associated with DCM and vice versa) [133].

This translates to in vivo models of sarcomere gene mutations. Distinct mutations
in the TNNC1 gene alter the calcium binding affinity of cardiac troponin-c [134], which
in turn alters myofilament tension. Variants that increase calcium binding prolonged
tension, producing hypercontractility, while those with lower calcium binding reduced
myofilament tension and thereby contractility. This difference leads to differential activation
of the nodal extracellular signal regulated kinase (ERK1/2) pathway. High myofilament
tension increased ERK1/2 pathway signaling, while reduced tension blocks this activation.
The result is concentric (HCM) or eccentric (DCM) cardiac hypertrophy, respectively. Thus,
distinct cardiomyopathy mutations in the same gene can alter myofilament tension in very
different ways, leading to marked differences in myocardial remodeling and, consequently,
phenotype [134]. Collectively, these data prove that shared genetic pathways in HCM
and DCM result in opposing pathophysiologic effects and demonstrate how genetics can
provide a critical window into mechanistic understanding.

4.2. Nuclear and Cytoskeletal Architecture Mutations in DCM

Mutations in several structural genes also cause DCM, though the exact mechanisms
remain unclear. These structural genes encode for key proteins in cytoskeletal and nuclear
architecture. The most common of these structural genes, accounting for approximately 6%
of all DCM cases, is LMNA, which encodes lamin A/C, a critical component of the nuclear
lamina [135]. In humans, patients with LMNA variants have high disease penetrance
(>90%) and a very high burden of electrophysiologic abnormalities including atrioven-
tricular (AV) block, atrial fibrillation, and malignant ventricular arrhythmias (VAs) [136].
One third of cases of DCM with AV block are due to LMNA mutations [137], and nearly
two thirds of individuals will have some degree of AV block within 7 years of a diag-
nosis of LMNA cardiomyopathy [138]. Risk factors that predict malignant VAs include
(1) male sex; (2) non-missense mutation; (3) documented history of non-sustained VAs;
and (4) LVEF < 45%. Defibrillator placement is reasonable in the presence of two or more
of these risk factors [139]. These electrophysiologic complications are both progressive
and highly prevalent in LMNA cardiomyopathy [138]. Consequently, when a cardiac
implantable electronic device (CIED) is required for either a pacing or arrhythmia indi-
cation, placement of a dual chamber defibrillator is reasonable [139,140]. Hence, LMNA
cardiomyopathy constitutes one of the few genotype-specific evidenced-based guideline
recommendations in the cardiomyopathies.

A recently identified DCM gene, filamin C (FLNC) [74], binds to actin and is crucial
for anchoring the cytoskeleton to the sarcomere and intercalated discs. It is required for
sarcomere thin filament assembly [141–143]. Mutations in FLNC cause accumulation of
Z-disc proteins, activate aberrant intracellular signaling, and alter cardiomyocyte calcium
handling, which ultimately leads to reduced contractility [142,144]. FLNC mutations
account for approximately 3% of DCM cases [74,131,145]. FLNC variants have also been
associated with ACM [74] and HCM [77]. Interestingly, the type of variant seems to
influence the phenotype: truncating variants almost exclusively cause DCM while missense
variants predominate in those with HCM.

Structural genes implicated in DCM are often associated with syndromic forms of
disease, most commonly with muscular dystrophy, secondary to their expression in both
cardiac and skeletal muscle tissue. The archetypal syndromic cardiomyopathy is Duchenne
muscular dystrophy, caused by mutations in the dystrophin (DMD) gene [81]. DCM is
typically present in patients with Duchenne by their early 20 s. Mutations in DMD also
cause Becker muscular dystrophy and X-linked DCM, a rare cardiac-only form of the
disease [79]. Variants in FLNC have long been associated with myofibrillar myopathy,
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with cardiomyopathy only being identified recently. LMNA cardiomyopathy is associated
with Emery-Dreifuss muscular dystrophy (EDMD) type 2, limb girdle muscular dystrophy,
and congenital muscular dystrophy. Similarly, the inner nuclear envelope protein emerin,
encoded by the EMD gene, is the cause of EDMD type 1, which is associated with cardiomy-
opathy in a majority of cases [146]. Mutations in the cytoskeletal protein desmin, encoded
by the DES gene, cause DCM that frequently coexists with skeletal myopathy [82]. Skeletal
muscle involvement has recently been found in the giant protein titin, though the clinical
impact of these findings was unclear [147]. The presence of skeletal myopathy in other
putative DCM genes as well as DCM being identified in other neuromuscular disorders
pervade the literature. Importantly, when DCM is accompanied by neuromuscular disease,
a P/LP variant is identified in >60% of cases on clinical genetic testing [129].

Mitochondrial genes also cause congenital forms of syndromic DCM. For example,
Barth syndrome is a consequence of a rare X-linked mutation in the TAZ gene that encodes
for tafazzin, which is responsible for altering mitochondrial membrane lipids [148]. This
disease can be fatal in childhood and is further characterized by short stature and neutrope-
nia [91]. Additionally, DCM with ataxia syndrome is an autosomal recessive disorder of the
DNAJC19 gene that encodes for the DnaJ heat shock protein family (Hsp40) member C19, an
inner mitochondrial membrane protein. Predominantly occurring in a Hutterite population
in Alberta, Canada, these patients are characterized by DCM and developmental delay
with early mortality in childhood [149].

4.3. Protein Trafficking

The Bcl2-associated athanogene 3 (BAG3) gene encodes a multi-functional protein
that is a structural component of the sarcomere and also functions to maintain normal
cell function by regulating protein folding, apoptosis, autophagy, and mitochondrial func-
tion [150]. It is a very ancient protein found throughout the animal kingdom and has a
close homolog in plants, suggesting it arose early in the development of multicellular life.
Mutations have been identified in several DCM cohorts, with high penetrance [94,151,152].
Pathogenic mutations seem to reduce cellular BAG3 levels. Interestingly, BAG3 levels also
decline in advanced HF, suggesting that reduced BAG3 expression is a common pathway
in both genetic and non-genetic forms of DCM, marking BAG3 as a particularly intriguing
therapeutic target [151].

4.4. Titin

Despite the many disease-causing genes identified in the first two decades of the
genetics era, the yield of clinical genetic testing for DCM remained frustratingly low
(~10%). With the advent of massively parallel—so called “next generation”—sequencing
(NGS) technology in the first decade of the new millennium, this would soon change with
the identification of titin (TTN) as the commonest DCM-causing gene. Titin is, by far,
the largest protein encoded by the human genome. A single titin protein spans half the
length of the sarcomere to connect the Z-disc to the M-line [153]. It is essential for proper
sarcomere assembly [154,155], and provides most of the passive tensile strength of the
sarcomere [156,157]. Its incredibly large size made it cost-prohibitive to fully sequence
in a large cohort of patients until the advent of NGS technology. Using NGS in a large,
multi-center cohort of patients with DCM, researchers identified TTN mutations in over
21% of patients, doubling the yield of clinical genetic testing across other established DCM
genes [56].

In this landmark study, TTN cosegregated in DCM families with a combined lod score
of 11.1, unequivocally confirming the pathogenicity of TTN in DCM. However, putatively
causal TTN variants were also identified in 3% of well-phenotyped controls without cardiac
structural abnormalities, a prevalence roughly 20-fold greater than the estimated population
prevalence of DCM. This created a vexing problem in establishing pathogenicity of novel
variants on clinical genetic testing. An elegant molecular genetic analysis demonstrated
that the majority of these pathogenic variants were located in exons that were not expressed
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in the final protein (e.g., the exon was spliced out of the transcript, yielding a normal
TTN protein) [158]. In the remaining ~1% of ostensibly normal individuals harboring
potentially pathogenic TTN variants in constitutively expressed exons, CMR demonstrated
mild eccentric remodeling and mildly reduced contractility (i.e., subclinical disease) in
most, revealing high penetrance but very variable expressivity for TTN in DCM [159].
Consequently, clinical genetic testing assesses not only the variant but whether that variant
is in an exon that is part of the final mRNA transcript.

Importantly, the variants identified to be causal in TTN are truncating variants (TTNtv)
that drastically alter titin structure by the removal of a large portion of the protein that
variably contributes to distensibility, stretch-sensed signaling, and attachment to the M-line.
When analyzed across a range of cohorts, TTNtv were identified in 11–15% of adult cases
of sporadic DCM and 23–27% of familial DCM [56,158–163]. Assuming that up to 40%
of DCM has a monogenic basis, then the approximate prevalence of currently actionable
TTNtv in adult DCM is around 17–18%.

Non-truncating variants in TTN can also cause disease. A recent analysis identified
non-canonical splice site variants as pathologic in an additional 1–2% of DCM cases [164],
bringing the yield for TTN close to 20% in an unselected DCM cohort. Missense vari-
ants (those that cause a single amino acid change, leaving the protein intact) in TTN can
also cause DCM as evidenced by several detailed familial studies [55,165,166]. Human
induced pluripotent stem cells carrying putatively damaging TTN missense variants ex-
hibit contractile dysfunction similar to TTNtv-expressing cells, further supporting causality
of TTN missense variants [167]. Using in silico testing to predict pathogenicity suggests
that TTN missense variants could be causal in up to an additional 5 to >20% of DCM
cases [162,168,169]. However, due to the immense size of the TTN coding region, missense
variants are extremely common, with an average of 23 per person [56,170]. When limiting
to just rare variants with a minor allele frequency of at least <0.01, all individuals (i.e., not
just those with DCM) carry ~1–2 rare TTN missense variants [56,168,170]. Importantly,
in all but one study, TTN missense mutations are not enriched among DCM patients as
compared to the general population [56,162,169,170]. Therefore, in the absence of detailed
linkage studies in families of sufficient size, the majority of TTN missense variants currently
remain uninterpretable (reported as VUS) on clinical genetic testing; this is a highly active
area of research.

4.5. Gene Expression

The critical role played by TTN is supported by mutations in ribonucleic acid bind-
ing protein 20 (RBM20) gene [96], which encodes a nuclear protein that splices mRNA
transcripts prior to their translation into protein. Interestingly, the molecular mechanism
in the majority of RBM20 variants appears to be the inability of an otherwise functional
RBM20 protein to be transported into the nucleus [171]. Among many other genes, RBM20
is necessary for the proper splicing of TTN mRNA [172]. In disease causing variants, a
shift occurs in titin production from the N2B isoform to the larger and more compliant
N2BA isoform, creating longer sarcomeres with altered Frank Sterling mechanics [173,174].
RBM20 also controls splicing of additional genes important in cardiomyocyte contraction,
including those involved in Ca2+ regulation (CAMK2D and CACNA1C) [175], which may
account for the notably high burden of VAs in these patients [176].

The T-box protein 20 (TBX20) gene, encoding a key developmental cardiac transcrip-
tion factor, has long been associated with congenital heart defects [98]. While isolated
cases in adult DCM have been reported, a recent analysis of nearly 7500 unrelated DCM
probands identified substantial enrichment for TBX20 truncating variants, making up 0.3%
of all DCM cases [99]. Subsequent cosegregation analyses confirmed linkage with a lod
score of 4.5. These individuals have a high prevalence of LV non-compaction (LVNC), and
34% also had concomitant congenital heart defects. This is the largest study of its kind and
suggests other congenital defects may also constitute a small proportion of DCM cases.
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5. Overlapping Cardiomyopathic Syndromes
5.1. Arrhythmogenic Cardiomyopathy

Arrhythmogenic right ventricular cardiomyopathy (ARVC) has been identified for
decades [177] and is characterized by fatty infiltration and fibrosis of the right ventricle in
association with HF and a particularly high burden of malignant VAs [178]. Early genetic
studies defined ARVC as a disease of the cardiac desmosome with the identification of
mutations in desmosomal genes plakoglobin (JUP), desmoplakin (DSP), plakophilin (PKP2),
desmoglein 2 (DSG2), and desmocollin 2 (DSC2), and the non-desmosomal transmembrane
protein 43 (TMEM43) gene [1]. Mutations in one of these genes may be found in ~60% of
cases of ARVC [179,180].

With larger studies and improved imaging, particularly via CMR, it has become appar-
ent that ARVC is not limited to the right ventricle. LV involvement is identified in 66–84%
of cases of classic ARVC [181–183]. Up to 25% will have outright LV systolic dysfunction,
with the causal gene having a large influence on this phenotypic trait (e.g., 0% LV systolic
dysfunction with JUP and TMEM43 mutations, but >50% with DSP) [182]. Conversely,
classic ARVC has also been identified in several definitive DCM genes, namely phospho-
lamban (~5% of those with a putative pathogenic mutation) [182], LMNA (~4%) [68], and
FLNC (1–3%) [184,185].

Improvements in imaging and the phenotyping of larger cohorts with mutations in
specific genes has recently led to the discovery of ARVC-like features but with predom-
inantly LV involvement, so-called ALVC. Because of this phenotypic heterogeneity, the
consensus term now utilized in guidelines is “arrhythmogenic cardiomyopathy” (ACM),
which encompasses ARVC and ALVC, and includes numerous known DCM genes that fea-
ture a high burden of arrhythmias in addition to the classic ARVC genes [34,186] (Figure 2).
These include LMNA, DES, FLNC, RBM20, BAG3, and TTN. Additionally, multiple muta-
tions in phospholamban (PLN), the molecular regulator of sarcoplasmic reticulum calcium
cycling, cause DCM with a high burden of arrhythmias [121–123]. The altered flux of
calcium between the sarcoplasmic reticulum and cytosol alters myofilament tension, lead-
ing to both reduced contractility [134] and electrical instability [122]. Mutations in the
voltage-gated sodium channel α-subunit (SCN5A) can also cause DCM with VAs. SCN5A
is a particularly promiscuous gene, with mutations that cause ACM, long-QT syndrome
(type 3), Brugada syndrome, conduction delay, ectopic Purkinje foci, atrial fibrillation, and
sinus node dysfunction via the varying effects of gain- or loss-of-function mutations that
alter sodium current and membrane potential [187].

The desmosomal gene DSP is associated with a particularly unique form of ACM.
DCM-causing mutations in DSP were originally described as part of Carvajal syndrome,
an extremely rare autosomal recessive disease with DCM, palmoplantar keratoderma,
and wooly hair [104]. With the contemporaneous discovery of the desmosome as the
genetic basis of ARVC, rare autosomal dominant ARVC-causing mutations in DSP were
soon identified [105]. However, subsequent work revealed that dominant mutations
in DSP could also cause ALVC [188]. In a large natural history study of 107 patients
with DSP cardiomyopathy, primary LV dysfunction was nearly four times as prevalent
as RV-predominant disease and was associated with particularly poor outcomes [189].
Penetrance was also found to be much higher (nearly 60% by age 40) than what is typically
seen with other desmosomal gene mutations. Interestingly, the disease is punctuated
by episodic myocardial injury with troponin elevation mimicking acute myocarditis, a
unique feature heretofore not definitively observed with other cardiomyopathy genes. This
finding suggests that at least a subset of DSP cardiomyopathy might be responsive to
immunosuppression, marking an active area of research that as yet is supported only by
case reports [190].
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5.2. Left Ventricular Non-Compaction Cardiomyopathy

Formation of LV trabeculations is a normal part of early embryologic development,
with myocardial compaction occurring at later fetal stages [191]. LVNC defines a state
where ventricular trabeculation exceeds normal parameters. This need not be found with
aberrant cardiac function. Among healthy individuals, LVNC is common [192] and the
prevalence is substantially higher in those who engage in vigorous physical activity [193].
Indeed, non-compaction is consistently identified in 1.5–8% of athletes [194,195] and in
~8% of healthy pregnant women [196]. Notably, excess LV trabeculation is not a static
phenotypic trait, with both appearance and resolution occurring in various physiologic
states [196,197]. The reason for this transience remains elusive.

Confounding our understanding of LVNC is a progressive change in diagnostic crite-
ria [198]. Also, the prevalence of LVNC varies drastically by the imaging modality used:
criteria for LVNC are met in approximately 1.3% of cases by echo, whereas this increases
to 14.8% (a more than 11-fold difference) with CMR [199]. Among individuals with car-
diomyopathy, LVNC can be a coexistent phenotype, most commonly with DCM [200],
and also with HCM [201,202]. However, coexistent hypertrabeculation does not impact
outcomes [198].

The best evidence supporting a genetic basis for LVNC comes from rare mutations
in the mindbomb homolog 1 (MIB1) gene, a key component to the NOTCH signaling
pathway, which plays a critical role in normal cardiac embryologic development [203].
Two distinct loss-of-function mutations were identified in two families with LVNC. How-
ever, subsequent modeling of these heterozygous mutations in mice failed to reproduce the
phenotype [204]. This prompted whole exome sequencing that revealed co-inheritance of
multiple modifier mutations with the MIB1 variants in all affected individuals. These mod-
ifiers were required for development of LVNC in vivo, painting a complex genetic picture.

Other putative LVNC variants often display mixed phenotypes both within and across
pedigrees. This variant-specific phenotypic heterogeneity most commonly coincides with
DCM [165,205,206], but also occasionally with HCM, particularly apical HCM [207,208]. In
large cohorts, the spectrum of putative pathogenic mutations largely resembles that of DCM,
with variants in TTN being most common and multiple distinct gene ontologies identified,
though HCM genes are also found [209–212]. Notably, in a cohort of 840 LVNC patients,
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a very small subset of mutations, particularly truncating variants in MYH7, were highly
enriched in LVNC patients relative to controls or those with HCM and DCM, suggesting
that a small subset of mutations within known cardiomyopathy genes either cause or act as
modifiers to produce the LVNC phenotype [212].

These data demonstrate that the presence of LVNC is not necessarily a pathophysi-
ologic state, and even when it is, there is substantial overlap with DCM, and to a lesser
extent HCM, in the vast majority of cases. Importantly, LVEF is the primary driver of
adverse events in LVNC and is a key metric to assess when considering therapy [213].
Because of this phenotypic pleiotropy, recent guidelines have dropped LVNC as a distinct
cardiomyopathy, rather indicating that LVNC is a phenotypic variant of DCM and/or HCM,
with the recommendation to manage patients according to guidelines specific for those
disorders [214,215]. Whether a small subset of LVNC has a distinct underlying genetic
architecture remains to be determined.

5.3. Restrictive Cardiomyopathy

Linkage analysis defined a mutation in TNNI3 as the cause of restrictive cardiomyopa-
thy (RCM) in a large family [216]. However, multiple family members met clinical criteria
for HCM, and histologic analysis showed myocyte hypertrophy, fibrosis, and myofibrillar
disarray consistent with HCM, a finding that has been observed in other patients with
RCM [216,217]. Similarly, a mutation in the myopalladin (MYPN) gene was identified
in RCM [64]. However, histologic analysis showed evidence for myofibrillar disarray,
and other MYPN mutations have been associated with HCM [218] and DCM [65]. Addi-
tional mutations in ACTC1 [217], TNNT2 [217,219], and MYL2 [220] have been associated
with RCM, but phenotypic heterogeneity, including HCM and DCM, existed in affected
first-degree relatives.

Restrictive physiology is an extreme phenotypic variant in HCM, being identified in
1.5–6% of cases, and portends a particularly poor prognosis [221–223]. While rare regardless
of the subgroup, restrictive physiology appears to be more common with thin filament
gene mutations in HCM [223]. Much like LVNC with DCM, these data suggest that RCM
is indicative of a genetic predilection to restrictive physiology in the context of a different
cardiomyopathy (HCM) rather than a distinct genetic entity.

6. Genetics in Secondary Forms of DCM

Approximately 25–30% of non-ischemic DCM is associated with an identifiable sec-
ondary cause [18]. Recent evidence has demonstrated that several of these secondary
forms of DCM have at least a partial genetic basis. The commonest mutations identified in
all populations are TTNtvs. Importantly, this suggests that these insults are non-genetic
modifiers that may alter the penetrance and/or expressivity of TTNtvs and indicate that
TTNtvs are a likely genetic predisposition to other secondary forms of non-ischemic DCM.

6.1. Peripartum Cardiomyopathy

Peripartum cardiomyopathy (PPCM) is defined as new onset DCM occurring between
~1 month prepartum and ~5 months postpartum, and has long been noted to have familial
clustering in some cases [26,224]. Recent evidence from large multicenter cohorts has
identified truncating variants in definitive DCM genes among 15% of unselected PPCM
cases [225,226]. TTNtvs account for the majority, and constitute ~10% of all PPCM cases,
a rate similar to that observed in sporadic DCM. Additional genes significantly enriched
in PPCM include FLNC, DSP, and BAG3 [226]. This subset of genes mirrors DCM and
suggests that other genetic factors are likely to play a role (e.g., other DCM genes, missense
variants, genetic modifiers). However, since PPCM is a rare disease, the power to detect
even rarer variants will be limited.
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6.2. Cardiotoxins

Similar findings have been noted in patients with chemotherapy-induced cardiomy-
opathy [227] and alcohol-induced cardiomyopathy [228]. In a diverse cohort of adult
patients with DCM attributed to cancer therapies (> 90% anthracyclines), 13.4% had poten-
tially pathogenic variants in known DCM genes [227]. This was nearly triple the rate found
in unselected cancer patients from the Cancer Genome Atlas. Again, TTNtvs were the most
common, accounting for 60% of all variants identified in adults, and being found in 8.1% of
all adult patients with chemotherapy-induced DCM. Notably, in pediatric cancer, TTNtvs
were less common, accounting for 5% of all cases. This is concordant with pediatric DCM
data, where TTNtvs consistently make up a significantly lower percent of P/LP variants,
particularly in younger children (6% in children < 13 years old) [229].

Alcohol-induced cardiomyopathy is classically defined when DCM is present in the
absence of another cause in an individual that is consuming ≥80 g/day (approximately six
each of: 12 oz beers that are 5% alcohol; 5 oz glasses of wine that are 12% alcohol; 1.5 oz
shots of liquor that is 80 proof) for more than 5 years, a hard metric to quantify definitively.
However, using this strict definition, 141 patients were identified who met criteria [228]. In
these individuals, 13.5% were found to carry putatively causal variants in known DCM
genes, again with TTNtv constituting the majority and being found in 10% of all individuals
with alcohol-induced cardiomyopathy. Notably, over 40% of these individuals were found
to have a family history of DCM.

After establishing the contribution of genetics to alcohol-induced cardiomyopathy,
these authors sought to assess the role of moderate alcohol intake on DCM. Using a
large and unselected DCM referral cohort, 15.5% were found to have “excess alcohol
consumption” (defined by the authors as >24 g/day, similar to the upper limit of societal
and government health guidelines across multiple countries) [228]. In a multi-variable
analysis, neither the presence of a TTNtv nor excess alcohol consumption alone were
associated with LVEF. However, in individuals with both a TTNtv and excess alcohol
consumption, the LVEF was significantly and substantially (~10%; p < 0.01) lower than the
cohort mean. This clever analysis identifies even moderate alcohol intake as a phenotypic
modifier in DCM.

6.3. Acute Myocarditis

Acute myocarditis has confounded physicians for decades as the etiology typically
remains elusive, even in the setting of a biopsy-confirmed histopathologic subset. While
viruses have long been implicated, proving causality is extremely hard [230]. Recent
evidence has shown there is a strong genetic predilection in at least a subset of cases. As
noted above, there is a clear inflammatory subset among patients with DSP cardiomyopathy,
a form of ACM [189]. In several cohorts of patients with biopsy-proven myocarditis,
putatively causal DCM and ACM mutations are found in 8–33%, with TTNtv typically
the commonest gene identified [231–235]. Notably, DSP mutations were identified in
all cohorts.

Acute myocarditis presents with a very broad phenotypic spectrum from mild cases
with normal LVEF to fulminant cases with severely reduced LVEF and cardiogenic shock.
DCM-associated genes are more likely to be identified in myocarditis with reduced LVEF
and shock [231,234,235]. By contrast in less severe cases and those with normal LVEF, fewer
potentially pathogenic variants are identified, and the majority are in genes that cause
ACM, in particular DSP. In nearly six years of follow-up, those with acute myocarditis and
a pathogenic mutation were 3.1-fold less likely to have recovery of LVEF. Thus, identifying
these individuals via genetic testing provides important prognostic information and could
identify a cohort requiring closer long-term monitoring for maintenance of standard HF
GDMT, though data supporting that approach remain limited.
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7. The Natural History of DCM

With the dawn of the genetics era came great hope that genotyping would allow for
gene-specific therapies for HF (i.e., pharmacogenomics). However, with the growth in our
knowledge of cardiomyopathy genetics came the understanding that incomplete penetrance
and variable disease expressivity were the norm in nearly all forms of genetic DCM. Within
families, those carrying the same mutation can have starkly different clinical trajectories.
Remarkably, this variability is even true in monozygotic twins [236]. This, coupled with the
high cost of sequencing large cohorts of patients limited the ability to define gene-specific
phenotypes that could in turn result in therapy tailored to the underlying cause.

The advent of NGS has permitted sequencing of large cohorts of patients with DCM
at exponentially lower cost than was possible in the first two decades of the genomics
era. Recently, this has led to several natural history studies of genetic DCM. Typically
patients with genetic DCM are younger [23,237], have higher overall event rates [238], and,
importantly, have an increased risk of progression to end-stage HF requiring advanced HF
therapies including transplant or mechanical circulatory support (MCS) [23,237]. In the
presence of a genetic etiology, patients also had higher likelihood of malignant VAs and are
less likely to have reverse remodeling with standard HF treatments [23,24,237,239].

As more patients with genetic DCM have been identified, the power to detect dif-
ferences between carriers of variants in specific genes has also grown. Several large
studies in carriers of TTNtv have identified features unique to titin cardiomyopathy. While
some studies show lower survival than IDC [158], the balance of evidence holds that
TTNtv carriers have outcomes (death, transplant, MCS) that are similar to non-genetic
DCM [23,56,160,240,241]. TTNtv carriers also have a higher incidence of VAs than non-
genetic DCM [56,158] and may have poorer right ventricular function [158]. However,
TTNtv seems particularly amenable to reverse remodeling, supporting the importance of
GDMT in these individuals [23,242].

LMNA mutations produce the most malignant genetic DCM [243]. A hallmark feature
of LMNA cardiomyopathy is a high burden of conduction system disease, atrial arrhythmias,
and malignant VAs [138,243]. These are inexorably progressive, eventually develop in
the majority of individuals, and guide management when considering CIED placement.
LMNA cardiomyopathy also shows low rates of reverse remodeling [23,242] and very
high rates of progression to end-stage HF [23,138,243]. Finally, LMNA mutations have
high penetrance [243,244], which influences genetic counseling and makes cascade genetic
testing particularly important.

Several other DCM genes have also been found to have disease-specific features.
These influence prognosis and genetic counseling for patients and family members. BAG3
mutations are highly penetrant (>80% by age 40), have high rates of malignant VAs, and
a composite of death/transplant/MCS [152]. FLNC patients have a lower survival than
those with TTNtv and have a high burden of malignant VAs [245,246]. Notably, this burden
is identified even in those with only mildly reduced LVEF (36–49%) and the total burden
is comparable to those with LMNA cardiomyopathy. This raises the consideration for
defibrillator implantation with higher LVEF, though there is insufficient data for a specific
recommendation. Sarcomere variants may have the highest penetrance among all DCM-
causing genes [244], with penetrance of MYH7 reaching nearly 90% by age 60 [247]. Over
1/3 of patients with MYH7 variants will have LVNC, but notably, rates of malignant VAs are
lower than most other forms of DCM and overall outcomes are comparable to TTNtvs [247].
Notably, the rate of adverse events is substantially higher in DCM-causing MYH7 variants
than in those causing HCM [248]. Understanding the natural history of distinct genetic
causes is crucial for the future development of targeted therapies and is analogous to
understanding the differences between different forms of cancer.

8. DCM: Beyond the Monogenic Hypothesis

The last 30 years have clearly defined a causal role for rare monogenic forms of DCM.
Yet, putative pathogenic variants are only identified in ~40% of cases on genetic testing
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in unselected DCM cohorts. As noted, penetrance and expressivity are highly variable
in DCM, and are influenced by genetic modifier variants [249], the epigenome, which is
highly dynamic in DCM [250], and environmental factors, including other disease states,
which are often associated with a worse prognosis [239]. With the rise of NGS and the
sequencing of large cohorts, it is now apparent that rare putative disease-causing variants
have a population prevalence that is much greater than that of overt or even subclinical
DCM [19,251–253]. For instance, the penetrance of TTNtvs in the population may be as low
as 10% [19]. It is important to note, however, that the penetrance of a putatively pathogenic
variant in a family with the disease phenotype is much higher than those in an unselected
population, a clear example of selection bias. This must be considered when providing
genetic counseling.

These data may cast doubt on whether such mutations are truly causal. How-
ever, the sequencing and aggregation of very large population cohorts (e.g., gnomAD:
https://gnomad.broadinstitute.org/ accessed on 19 April 2024) also permits burden
testing—an aggregate statistical method used to identify phenotypically significant rare
variants based on the difference between the prevalence of putative disease-causing vari-
ants in disease cohorts vs. controls. Burden testing has demonstrated a strong enrichment
of most major DCM genes over the general population [7,132]. This cements pathogenicity
when coupled with the robust genetic and functional data already published in these genes.
In addition, by virtue of sequencing thousands of DCM patients and hundreds of thousands
of individuals in the general population, burden testing essentially rules out the possibility
of another as-yet-discovered gene making a large contribution to the monogenic basis of
DCM. Extremely rare causal variants in new genes will continue to be found, but they will
contribute only a very small percent to the etiology of IDC.

So, what of the 60% or more who have DCM without a definitive monogenic pre-
disposition? Three GWASs and one exome-wide association study specifically focusing
on idiopathic or sporadic DCM have been performed, identifying a collective 11 risk al-
leles [95,254–256]. Approximately half of the loci contain known DCM-causing genes,
thereby establishing a link between common genetic variants and DCM, and identifying
other genetic loci that are also involved. Using a discovery cohort of nearly 7000 individ-
uals and eight identified common risk alleles for DCM, a polygenic risk score (PRS) was
generated. A PRS is a cumulative score of single-nucleotide polymorphisms associated
with a disease that can be used to determine disease associations and aid in prognosis. This
PRS found a ~3-fold increased risk of DCM in individuals with eight vs. five risk alleles
(the median of the population); similarly, there was a ~3-fold decrease in the risk of DCM
in those with only one or two risk alleles [256].

Structural changes identified by imaging are a defining feature of DCM, are often
perceptible before overt DCM is diagnosed, and are another powerful way to identify
potential genetic loci [257]. A GWAS in over 36,000 patients without HF, DCM, or coronary
disease who underwent CMR in the UK Biobank, identified 57 loci associated with some
parameter of LV structure or function (45 of which had not previously been associated with
DCM or cardiac imaging) [258]. A PRS for LV systolic function (highly correlated to DCM
in the discovery cohort) was performed in the remaining participants in the UK Biobank
(nearly 360,000 individuals) and found a strong association with incident DCM over nine
years of follow-up. The polygenic background also influences the phenotype in TTNtv
carriers. Per one SD increase in this PRS, LV end systolic volume increased by 7.2 mL and
LVEF decreased by 2.6% [258].

Collectively, these data demonstrate that genetic DCM is not simply a monogenic/Mendelian
disorder, but rather a complex genetic disease that has both a monogenic and polygenic
basis. The polygenic component of DCM also helps to explain the marked variance in
penetrance and expressivity that is a hallmark of this disease (Figure 3). With continued
refinement in larger and more diverse cohorts, PRS testing may become an important
compliment to cascade genetic testing that can influence the potential penetrance and
prognosis in family members with genetic DCM.

https://gnomad.broadinstitute.org/
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size refers to the magnitude of influence the variant has on a phenotype, whereas allele frequency
describes the prevalence of the variant in a population. DCM is an example of a complex genetic
disorder with a causal genetic basis ranging from monogenic, whereby very rare variants in specific
genes have a marked effect on cardiac phenotype, to polygenic, where more prevalent minor variants,
which individually have little effect on phenotype, can in aggregate result in the disease.

9. Using Genetics in the Management of DCM

The use of genetic testing is increasing rapidly in clinical practice. In addition, there
has been a steady rise in direct-to-consumer genetic testing, with patients occasionally
coming to clinic with genetic results in-hand. Consequently, understanding the utility and
limitations of genetics and genetic testing is important for modern clinical practice.

9.1. Guideline-Based Recommendations

Numerous documents across multiple medical societies provide guidance on DCM
(Figure 4). All guidelines recommend (1) collecting a three-generation family history [4,34,259];
(2) clinical screening for potential at-risk first-degree relatives; and (3) management at a cen-
ter with expertise in genetic cardiomyopathies. The family history is often an afterthought
in a busy clinical practice. A study comparing family histories taken by inpatient car-
diology teams to those collected by genetic health care professionals demonstrated a
4-fold increase in the detection rate of a familial pattern by the latter group [260]. Further,
reviewing ≥ three generations is useful in identifying the mode of inheritance and detect-
ing variants with low penetrance [261]. These data support both the need for detailed family
histories as well as the important role of the genetics counselor in cardiology practice.

There is also consensus across guidelines to offer cascade genetic screening and genetic
counseling to first-degree relatives of patients with genetic DCM [4,34,259]. However, guide-
lines differ on which probands with IDC to refer. Guidelines and consensus documents
endorsed by the ESC, HFSA, ACMG, HRS, and EHRA support genetic testing/counseling
in all patients with IDC. By contrast, the recent AHA/ACC/HFSA HF guidelines only
support testing of “select” patients with DCM without providing additional details. While
controlled prospective studies have not shown a direct benefit of genetic testing, it informs
prognosis, risk stratification and, in the case of LMNA cardiomyopathy, treatment. In a
study of 4782 patients with suspected genetic cardiomyopathy or arrhythmia syndromes,
genetic testing identified a putative pathogenic variant in 20% [262]. Of those gene-positive
individuals, two thirds were variants that would alter prognosis and/or management.
Importantly, had genetic testing only been offered to patients with a high suspicion of
genetic disease, 14.4% of positive test results would have been missed [262]. Further, in
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first-degree relatives of probands with genetic DCM, cascade genetic testing was a more
cost-effective approach to periodic clinical surveillance [263].
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9.2. The Burden of VUSs

Commercial genetic testing panels include many genes with weak genetic evidence,
and/or that have only been identified in a very small number of individuals. These
weakly associated genes virtually always return VUSs because nearly all variants will be
novel/private to that individual, and there simply is not enough data without detailed
familial cosegregation studies to define pathogenicity [127,128,262,264]. For example, in
240 HCM patients who did not have a variant in one of the eight sarcomere genes, only
one of 186 rare variants (0.5%) across 51 additional genes was reported as likely pathogenic,
with 94.5% being VUSs [128]. Dealing with VUSs represents perhaps the single most
challenging aspect of clinical genetics.

That said, using burden testing in DCM has shown that the prevalence of VUSs in
many DCM genes far exceeds the population prevalence of rare variations in those genes,
indicating that at least some of these VUSs are indeed pathogenic [7]. In silico tools are
used to predict whether a particular variant will alter protein function. However, none
are particularly sensitive. These in silico tools use machine learning and are trained using
genome-wide data; consequently, they are not disease-specific, a major flaw that ignores
disease-specific mechanisms or other evidence that may be known and aid in definitive
variant prediction in a well characterized subset of disease-specific genes. With this in
mind, a disease-specific prediction tool for inherited cardiomyopathies and arrhythmias
has been developed (Cardioboost: https://www.cardiodb.org/cardioboost/ accessed on
1 June 2024) [265]. Cardioboost far outperforms other in silico tools. It reclassifies many
variants that would otherwise be labeled as “indeterminate” and reduces the proportion of
such variants by more than half as compared to genome-wide tools. We use Cardioboost
to evaluate VUSs on clinical genetic testing in definitive DCM or arrhythmia genes. It is
not meant as a stand-alone tool to change a VUS to a different classification but can aid in
boosting a variant as part of the ACMG/AMP criteria (specifically as supporting evidence
in criteria PP3 and BP4).

https://www.cardiodb.org/cardioboost/


Int. J. Mol. Sci. 2024, 25, 11460 17 of 31

9.3. The Future of Genetic Testing

Genetics is one of the most rapidly progressing fields in all of cardiovascular medicine
(Figure 5). The first 30 years can be considered the monogenic era: numerous genes were
unequivocally defined to be causal in genetic DCM. This was greatly aided by the develop-
ment of NGS which has both increased throughput and decreased costs by several orders of
magnitude. While the future will likely bring more disease genes, burden testing strongly
suggests that the majority of monogenic causes of genetic DCM have been identified, with
the possible exception of the causal burden of TTN missense variants.

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 17 of 32 
 

 

particularly sensitive. These in silico tools use machine learning and are trained using ge-
nome-wide data; consequently, they are not disease-specific, a major flaw that ignores 
disease-specific mechanisms or other evidence that may be known and aid in definitive 
variant prediction in a well characterized subset of disease-specific genes. With this in 
mind, a disease-specific prediction tool for inherited cardiomyopathies and arrhythmias 
has been developed (Cardioboost: https://www.cardiodb.org/cardioboost/ accessed on 1 
June 2024) [265]. Cardioboost far outperforms other in silico tools. It reclassifies many var-
iants that would otherwise be labeled as “indeterminate” and reduces the proportion of 
such variants by more than half as compared to genome-wide tools. We use Cardioboost 
to evaluate VUSs on clinical genetic testing in definitive DCM or arrhythmia genes. It is 
not meant as a stand-alone tool to change a VUS to a different classification but can aid in 
boosting a variant as part of the ACMG/AMP criteria (specifically as supporting evidence 
in criteria PP3 and BP4). 

9.3. The Future of Genetic Testing 
Genetics is one of the most rapidly progressing fields in all of cardiovascular medi-

cine (Figure 5). The first 30 years can be considered the monogenic era: numerous genes 
were unequivocally defined to be causal in genetic DCM. This was greatly aided by the 
development of NGS which has both increased throughput and decreased costs by several 
orders of magnitude. While the future will likely bring more disease genes, burden testing 
strongly suggests that the majority of monogenic causes of genetic DCM have been iden-
tified, with the possible exception of the causal burden of TTN missense variants. 

 
Figure 5. A 60-year history of advances in cardiomyopathy genetics. Our understanding of the ge-
netic basis of the cardiomyopathies has paralleled major advances in genetics research tools. HCM 
hypertrophic cardiomyopathy; RFLP restriction fragment length polymorphism; MD muscular dys-
trophy; DCM dilated cardiomyopathy; ARVC arrhythmogenic right ventricular cardiomyopathy; 
NGS next-generation sequencing; GWAS genome-wide association study; ESP the NHLBI Exome 
Sequencing Project; ExAC exome aggregation consortium; gnomAD genome aggregation database 
consortium; TOPmed the NHLBI Trans-omics for precision medicine study. References in the figure 
include [2,3,36,43,53,54,56,81,95,105,133,266–279]. 

The field has now entered a new era of polygenic discovery. The future is sure to hold 
more sequencing of large cohorts with concomitant identification of more genetic loci. 
Hopefully, there will also be an increase in the diversity of population and disease cohorts, 
which remain dominated by those of European ancestry [280]. This will allow refinement 

Figure 5. A 60-year history of advances in cardiomyopathy genetics. Our understanding of the
genetic basis of the cardiomyopathies has paralleled major advances in genetics research tools.
HCM hypertrophic cardiomyopathy; RFLP restriction fragment length polymorphism; MD muscular
dystrophy; DCM dilated cardiomyopathy; ARVC arrhythmogenic right ventricular cardiomyopathy;
NGS next-generation sequencing; GWAS genome-wide association study; ESP the NHLBI Exome
Sequencing Project; ExAC exome aggregation consortium; gnomAD genome aggregation database
consortium; TOPmed the NHLBI Trans-omics for precision medicine study. References in the figure
include [2,3,36,43,53,54,56,81,95,105,133,266–279].

The field has now entered a new era of polygenic discovery. The future is sure to
hold more sequencing of large cohorts with concomitant identification of more genetic loci.
Hopefully, there will also be an increase in the diversity of population and disease cohorts,
which remain dominated by those of European ancestry [280]. This will allow refinement of
PRS testing, which will eventually aid in prognosis and genetic counseling. With continued
decreases in sequencing costs, direct-to-consumer testing will also likely increase. This will
pose challenges not only to patients struggling to interpret this information, but also to
practitioners for how to counsel them. Investment is therefore needed in genetic counseling
to address the growing proportion of individuals who will have access to genetic data.

Finally, we can anticipate the next era, which we hope will be dominated by therapeutic
advances in DCM treatment guided by or generated as a result of genetic and molecular
genetic discovery. Gene-specific medications are starting to become available [281], though
none has yet proven effective. Gene editing therapies are also being investigated. For
example, CRISPR-Cas9 technologies have been used to modify genetic DCM causing
variants in mice and human stem cells with promising results [282,283]. In-human studies
are far rarer—the first such clinical trial (NCT05836259) for genetic cardiomyopathy is
currently ongoing that targets the MYBPC3 gene implicated in HCM, but is still in the
1b phase [284]. Additional research is developing new viral vectors, also referred to as
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myotropic adeno-associated viral vectors (MyoAAVs), that are more specific to and effective
at delivering therapeutic genes to cardiomyocytes [285].

In conclusion, the role of genetics continues to expand in both IDC and non-ischemic
secondary causes of DCM and now encompasses fundamental aspects of the diagnosis,
management, and prognostication of patients with DCM.
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