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Abstract: Flaviviruses pose a major public health concern across the globe. Among them,
Zika virus (ZIKV) is an emerging and reemerging arthropod-borne flavivirus that has be-
come a major international public health problem following multiple large outbreaks over
the past two decades. The majority of infections caused by ZIKV exhibit mild symptoms.
However, the virus has been found to be associated with a variety of congenital neural
abnormalities, including microcephaly in children and Guillain–Barre syndrome in adults.
The exact prediction of the potential of ZIKV transmission is still enigmatic and underlines
the significance of routine detection of the virus in suspected areas. ZIKV transmission from
mother to fetus (including fetal abnormalities), viral presence in immune-privileged areas,
and sexual transmission demonstrate the challenges in understanding the factors govern-
ing viral persistence and pathogenesis. This review illustrates the transmission patterns,
epidemiology, control strategies (through vaccines, antivirals, and vectors), oncolytic as-
pects, molecular insights into neuro-immunopathogenesis, and other neuropathies caused
by ZIKV. Additionally, we summarize in vivo and in vitro models that could provide an
important platform to study ZIKV pathogenesis and the underlying governing cellular and
molecular mechanisms.

Keywords: neurotropic flaviviruses; zika virus; neuropathies; transmission; neuropathogenesis;
prevention; vaccines; treatment; antivirals; mosquito/vector control; oncolytic; animal and
cell models
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1. Introduction
Flaviviruses (family Flaviviridae) are small (approximately 50 nm in diameter), en-

veloped, icosahedral viruses that possess a positive sense single-stranded RNA genome
of between 9–12 kb [1–4]. The viral genome consists of a single long ORF (open reading
frame) encoding around ten proteins, which are formed by co- and post-translational pro-
cessing and proteolytically processed into three structural (Cap, prM, and E) and seven
non-structural (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5) proteins by a complex
combination of host and viral proteases [5–8]. Currently, there are about 70 members in this
genus, the majority of which are transmitted by arthropods [9–16]. The incidence of flavivi-
ral infections has increased dramatically in the last seven decades [17,18]. These infections
are associated with significant morbidity and mortality in humans. Factors responsible
for the rapid increase in flaviviral infections are changes in the sizes and distributions of
the vector arthropods that transmit the pathogens, further aggravated by climate change
and a large number of potential vertebrate hosts [19–22]. Details of various neurotropic
flaviviruses and their associated neuropathies are summarized in Table 1.

Table 1. Comprehensive overview of Neurotropic Flaviviruses.

Type of
Flavivirus

Geographical
Distribution Vectors Vertebrates

Hosts
Incubation

Period
Neurological

Complications Diagnosis References

West Nile
Virus (WNV)

Africa, Asia,
Middle East,
United States

(1999) and
France (2002)

Culex pipiens
and Culex

quinquefascia-
tus (America,
Asia, Africa)

Culex
australicus,
and Culex
globcoxitus
(Australia).

Wild birds,
birds from
corvidae

family
(crows,

magpies,
jays) and

horses

4 to 14 days

Ataxia, ex-
trapyramidal

syndrome,
confusion,

cranial
neuropathies,
encephalitis,
meningitis,

somnolence,
flaccid

paralysis
(asymmetric),

and coma.

ELISA (IgM;
serum and

spinal fluid),
RT-

PCR/PCR
(whole blood,

plasma,
serum, CSF,
urine, and

mosquitoes),
and MRI

(periventricu-
lar

inflamma-
tion)

[23–28]

Japanese
Encephalitis
Virus (JEV)

Asia, Western
Pacific Island

Aedes
albopictus,

Culex pipiens,
Culex tritae-
niorhyncus,

Culex quinque-
fasciatus, and

others.

Pigs and
water birds 5 to 15 days

Seizures,
neurological

abnormalities
(focal),

meningitis, and
encephalitis.

MRI, ELISA,
VNT/PRNT,
HI, CFT, and

RT-PCR.

[16,29,30]

Zika Virus
(ZIKV)

South and
Central

America,
Asia, Africa,

and
Caribbean

Aedes aegypti,
Aedes

albopictus,
Aedes vexans,
Aedes vittatus,

and Culex
quinquefascia-

tus.

Monkeys
(Rhesus

macaque)
7 to 14 days

Associated
with the onset

of GBS and
microcephaly
hypoplasia of

the spinal cord
and brain stem.

RT-PCR,
PRNT, and

ELISA (IgM).
[31–34]
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Table 1. Cont.

Type of
Flavivirus

Geographical
Distribution Vectors Vertebrates

Hosts
Incubation

Period
Neurological

Complications Diagnosis References

Saint Louis
Encephali-

tisVirus
(SLEV)

USA,
Canada,
Central

America and
Caribbean

Islands.

Culex tarsalis,
Culex pipiens,

and Culex
quinquefascia-

tus

Wild birds 5 to 15 days

Confusion,
dizziness,

disorientation,
tremors, stiff

neck,
encephalitis,

meningitis, and
meningoen-
cephalitis.

RT-PCR and
ELISA (IgG

and IgM) and
IFA

[35–39]

WNV-Kunjin
virus

Northern
Australia

Culex
annulirostris Water birds 5 to 15 days

Confusion,
drowsiness,

seizures, and
encephalitis.

RT-PCR [40,41]

Murray
Valley

Encephalitis
Virus (MVE)

Australia
(Northern)

and
New Guinea

Culex
annulirostris

Aedes
normanensis

Large water
birds (e.g.,

egrets)
5 to 15 days

Flaccid
paralysis,

coma,
confusion,

drowsiness,
seizures,

cranial nerve
palsy, tremors,
encephalitis,
and menin-

goencephalitis.

RT-PCR [42–44]

Tick-borne
Encephalitis
Virus (TBEV)

Europe and
Asia

Ixodes ricinus,
Ixodes

persulcatus,
and Ixodes

ovatus.

Birds and
small

mammals
7 to 14 days

Encephalitis
(sub-acute to

severe),
meningitis, and

myelitis.

RT-PCR and
ELISA (IgM) [45–47]

Powassan
Virus

(POWV)

North
America and

Eastern
Russia

Ixodes cookie,
Ixodes marxi,

Ixodes
scapularis,

Dermacentor
anders oni,

Dermacentor
silvarum, and

Haema-
physalis

longicornis.

Wild animals 7 to 14 days

Ataxia,
seizures,

mental status
alternation,

cranial nerve
palsies,

meningitis
encephalitis

with
meningismus,
and cerebral

edema.

RT-PCR,
ELISA (IgM),

and
Immunohis-
tochemistry.

[48–52]

Abbreviations: ELISA (Enzyme-Linked Immunosorbent Assay), IgM (Immunoglobulin M), IgG (Immunoglobulin
G), RT (Reverse Transcription), PCR (Polymerase Chain Reaction), CSF (Cerebrospinal Fluid), MRI (Magnetic
Resonance Imaging), VNT (Virus Neutralization Test), PRNT (Plaque Reduction Neutralization Test), CFT
(Complement Fixation Test), HI (Hemagglutination Inhibition Test), and IFA (Immunofluorescence Assay).

ZIKV is a significant pathogen that poses an imminent global threat. It was first
isolated from rhesus monkeys in Uganda in 1947 [53] (The genome organization of the Zika
Virus is sketched in Figure 1). Later, in the 1950s, its detection continued in several other
parts of Africa (Egypt, Nigeria) [54]. However, the first clinical infection in humans was not
detected until 1964, when it was found that the ZIKV infection in humans is associated with
mild fever and maculopapular rash [55]. From 1960 to 2000, ZIKV was detected in several
countries in Asia (Malaysia, Indonesia and Pakistan) [54]. The first major ZIKV outbreak
occurred in 2007 (in Yap Island), and then in March 2015, it caused a large outbreak in
the Americas (particularly Brazil), and the first time was associated with severe disease
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and congenital illnesses such as infant microcephaly [56–58]. In November 2015, Brazil
declared a national public health emergency, and in February 2016, the WHO (World Health
Organization) declared it a Public Health Emergency of International Concern [59].
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Figure 1. Genome Organization of Zika Virus: The ZIKV genome is composed of 10,794 nucleotides in
a single-stranded, positive-sense RNA that encodes a polyprotein of 3423 amino acids and 10 proteins
essential for the viral life cycle. ZIKV RNA has two untranslated regions (UTRs) and a single open
reading frame (ORF) comprising three structural (Cap, prM, and E) and seven non-structural (NS1,
NS2A, NS2B, NS3, NS4A, NS4B, and NS5) proteins [60–62].

The ZIKV employs multiple mechanisms to replicate (the ZIKV replication cycle is
illustrated in Figure 2) and causes a variety of neurological diseases. It has been proposed
that after viral entry through the crossing of the BBB (blood–brain barrier), ZIKV tends
to infect the microglia, astrocytes, and endothelial cells [63–65]. Damage to the CNS can
occur when ZIKV infects the CNS cells, and damage occurs either due to viral replication
or because of a host-mediated immune (inflammatory) response [66–68]. Moreover, ZIKV
infection is also associated with various neurological syndromes, e.g., Guillain–Barré syn-
drome (GBS), Congenital Zika syndrome (CZS), and others [69–71]. Multiple mechanisms
are known to cause damage to the CNS, which are also discussed in detail later in this
review article. Collectively, in this review, we have summarized the observations on biology,
transmission, control strategies (vaccines, antivirals, and vectors), oncolytic aspects, animal
and cellular models, neuropathies, and neuropathogenesis associated with ZIKV.
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Figure 2. Replication cycle of Zika Virus: The ZIKV replication in the cell is mediated through various
steps. (1). The binding of the ZIKV to the host cell is mediated by the interaction of ZIKV E protein
and host cell receptors (TIM, TAM, Axl, etc.). (2, 3) Following viral binding to the receptor, the
internalization of viral particles inside the cells is mediated through clathrin-coated vesicles, which
leads to the formation of endosomes. (4) Inside the endosome, viral E protein rearranges as trimmers
that cause the release of ZIKV nucleocapsid in the host cells (5, 6). Viral RNA then produces ZIKV
polyprotein, which then enters the ER for the biosynthesis of viral structural and non-structural
proteins (NSPs) (7). The immature ZIKV particles then bud off from the ER and migrate towards
the Golgi complex. In the Golgi complex, further necessary modifications (glycosylation and others)
happen that result in viral maturation. ZIKV then migrates from the Golgi complex to the cell
membrane where it leaves the cells through the process of budding (8, 9, 10) [72–75]. The figure was
created at https://BioRender.com.

2. Transmission of Zika Virus
The principal mode of transmission of ZIKV is through mosquitoes; however, studies

have found that various other routes may play an important role in the transmission of
the disease. These include venereal transmission, vertical transmission, transmission to
infants through mother milk, and blood transfusion This makes it very difficult to devise
an appropriate strategy for the control of disease in countries where the disease is endemic.
The transmission cycle of ZIKV is illustrated in Figure 3.

https://BioRender.com
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Human-to-human horizontal transmission of ZIKV occurs through body fluids, contaminated 
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be through Ae. hensilli and Ae. Polynesiensis, respectively) [91–93]. The extrinsic incubation 
period is reported to be 10 days [84]. The vector competence (the ability of the vector to 
transmit the virus biologically) has not been determined for ZIKV transmission in most of 
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Figure 3. Transmission cycle of Zika Virus: This figure illustrates the transmission of ZIKV. There are
two types of ZIKV transmission: Vertical and horizontal transmission. Vertical transmission has been
observed both in mosquitoes as well as in humans. In humans, vertical transmission results in the
infection of the fetus and results in fetal loss, microcephaly, and a variety of CNS disorders. Horizontal
transmission can occur in many different ways. It can happen in the form of sylvatic cycles where
ZIKV transmission occurs between non-human primates (NHPs) and mosquitoes, whereas in urban
transmission, transmission occurs by contact of infected mosquitoes with humans. Human-to-human
horizontal transmission of ZIKV occurs through body fluids, contaminated instruments and blood
transfusion, etc. [76–79]. The figure was created at https://BioRender.com.

2.1. Vector Borne Transmission

Vector-borne transmission of ZIKV occurs through mosquitoes [13,80]. In the sylvatic
transmission cycle, ZIKV circulates between non-human primates and mosquitoes, while
in the urban transmission cycle, ZIKV circulates between humans and mosquitoes. The
presence of ZIKV has been reported from many species of mosquitoes in Africa and Asia
(Aedes aegypti (Ae. aegypti), Ae. africanus, Ae. albopictus, Ae. apicoargenteus, Ae. furcifer, Ae.
luteocephalus, Ae. opok, and Ae. vittatus) which may transmit the virus to humans [53,81–90].
However, in Yap and French Polynesia, the transmission of ZIKV was suggested to be
through Ae. hensilli and Ae. Polynesiensis, respectively) [91–93]. The extrinsic incubation
period is reported to be 10 days [84]. The vector competence (the ability of the vector to
transmit the virus biologically) has not been determined for ZIKV transmission in most
of these species [94] and it may be the area of future research. In the urban cycle, the
transmission of ZIKV is mainly through the Ae. aegypti and Ae. albopictus. ZIKV has
been detected/isolated from wild Ae. aegypti, and they have been demonstrated to be

https://BioRender.com


Int. J. Mol. Sci. 2025, 26, 47 7 of 49

competent vectors in the laboratory where they can transmit the virus to mice and rhesus
monkeys [82,86,88]. Recent studies have demonstrated ZIKV transmission by Ae. albopictus
as well [84,95]. Both of these mosquitoes remain active during the daytime, and they are
prevalent in tropical and subtropical regions [96,97]. However, the geographical range of
Ae. albopictus is further extended to the temperate regions [98–100]. In the USA, both of
these mosquitoes have been found in southern and south-eastern states and their maximum
numbers have been found from June to October [101].

2.2. Sexual Transmission

Many cases of transmission of ZIKV have been observed following sexual contact.
Several studies have demonstrated ZIKV transmission from males to females. In most
cases, the male had a travel history to ZIKV-endemic countries, and when he returned,
his partner became infected [102–104]. ZIKV’s presence has been detected in human
semen [105]. It has been found that ZIKV can persist in semen for over 6 months following
infection, suggesting the possibility for prolonged sexual transmission [106–108]. Later
studies demonstrated that sexual transmission from male to male is also possible [109].
ZIKV RNA has also been detected in urine and saliva [110,111]. Experiments conducted on
lab animals have demonstrated that ZIKV is able to replicate in vaginal and rectal mucosa,
thus serving as a reservoir of infection [112].

2.3. Vertical Transmission

ZIKV has been reported to be transferred from mother to fetus during the gestation
period. Normally the placenta acts as an effective barrier to curtail transmission of infec-
tions from mother to fetus. However, ZIKV is able to bypass these barriers by unknown
mechanisms [113]. Studies conducted in a mouse model demonstrated that ZIKV damages
the placenta and results in fetal death [114]. In Brazil, during the ZIKV outbreak, a large
increase in the number of neonates with microcephaly was reported from mothers who
were infected with ZIKV [115]. ZIKV antigen and RNA have been detected in the placenta,
amniotic fluid, and fetal brain tissue [115–117]. Therefore, it can be postulated that ZIKV is
transmitted from mother to fetus through a damaged placenta (induced by ZIKV) and then
ZIKV damages the nervous system of the fetus.

2.4. Venereal Transmission in Mosquitoes

The maintenance of arboviruses in nature is significantly facilitated when venereal
transmission occurs alongside other modes of transmission. Venereal transmission in
mosquitoes has been reported for multiple arboviruses, including ZIKV [118,119]. ZIKV
is found to be transmitted in the sexual fluids of mating mosquitoes. Intrathoracically
ZIKV-infected Ae. aegypti males can transmit the virus to uninfected females during mating,
and Ae. aegypti females who are orally infected with ZIKV have the potential to transmit the
virus to uninfected males by copulation under laboratory conditions [120]. Furthermore,
Aedes mosquitoes acquire and transmit Zika virus by breeding in contaminated aquatic
environments [121]. The continuous venereal transmission in mosquitoes could pose a
significant public health concern by boosting infection rates and virus spread.

2.5. Transmission Through Breast Milk

Detection of ZIKV RNA has been observed in the breast milk of ZIKV-infected moth-
ers [122]. This makes it possible for the transmission of ZIKV from the infected mother
to the neonates. Studies have demonstrated the presence of ZIKV RNA in babies whose
mother’s serum and milk were positive for ZIKV RNA [123]. Transmission through breast
milk has also been observed for the flaviviruses WNV and DENV [124,125].
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2.6. Transmission Through Ocular Fluid/Tears

Researchers have found the existence of ZIKV in tears thirty days following ZIKV
infection. Their study suggests the possible transmission of ZIKV through tears [126,127].
This is possible as previously a case study revealed that transmission through tears occurred
from mother to her child [128].

3. Zika Virus Associated Neurological Diseases
ZIKV infection has been reported to be associated with a number of neurological

diseases (illustrated in Figure 4) which are described in detail below.
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3.1. Microcephaly

Congenital microcephaly has been previously associated with viral infections, e.g.,
rubella and cytomegalovirus. However, it was unknown for ZIKV until the Brazilian
outbreak [129]. ZIKV RNA was also detected in the amniotic fluid of these fetuses [130]. In
2015, Brazilian authorities reported that the incidence of microcephaly was twenty times
higher compared to previous years. This led to further investigations, and in two years
(2015–2016), more than 8000 cases of microcephaly were reported [131]. Later on, an analy-
sis of an outbreak in French Polynesia also demonstrated a correlation between ZIKV and
microcephaly [132,133]. Further investigations showed that aborted fetuses (during 1st and
2nd trimesters) contained ZIKV RNA in the amniotic fluid, meninges, CSF, and umbilical
cord of the microcephalic newborn babies [57,134]. Several studies have been performed to
identify the molecular mechanism of ZIKV-associated microcephaly. Cells associated with
the BBB, such as pericytes, astrocytes, and endothelial cells, are susceptible to infection
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with ZIKV and their infection with ZIKV leads to upregulation of ICAM-1 and a variety
of cytokines (IL-6, CCL5, and CXCL-10) that causes enhanced binding and subsequently
crossing of the BBB by the immune cells. The access of immune cells to the CNS is associ-
ated with neuro-inflammation which contributed to the neuro-pathogenesis of ZIKV [135].
Neuronal progenitor cells (NPCs) exhibit high susceptibility to ZIKV and undergo apop-
tosis following infection [136]. During pregnancy, the immune response directed against
ZIKV leads to the inflammation of the fetal–maternal interface, causing inflammation and
disruption of barrier functions. This allows the recruitment of various immune cells to the
fetal tissue, releasing TNF-α (tumor necrosis factor) and IFN-γ (interferon) that lead to neu-
roinflammation, resulting in the damage and destruction of NPCs required for the neural
development of the fetus [137]. The CNS is susceptible to ZIKV infection during all stages
of pregnancy, but earlier infection results in severe damage. CNS infection with ZIKV may
result in impaired multiplication and migration of neurons, myelination, synaptogenesis,
and even apoptosis that may contribute towards ZIKV-associated microcephaly [138]. In
cells infected with ZIKV, mitofusion 2 (MFN-2) expression is reduced. Normal expression
of MFN-2 is required for the fusion of mitochondria. Therefore, in ZIKV-infected cells,
mitochondrial fragmentation occurs. This leads to the activation of apoptosis through a
p53-mediated pathway in NPC cells [139,140]. Recently, Gladwyn-Ng et al. [141] have
demonstrated the mechanism of apoptosis in neuronal cells infected by ZIKV in mouse
embryos and neuronal stem cells (human), showing that ZIKV infections trigger unfolded
proteins in cells that lead to activation of the ER stress response Subsequently, these cells
migrate to the cortex and undergo apoptosis.

3.2. Ophthalmological Manifestations

ZIKV infection during pregnancy has been associated with congenital abnormalities
in the fetal eye. Neural crest cells (NCCs) are required for normal development of the
corneal and uveal stroma, the corneal epithelium, and the trabecular meshwork. They
also play an important role in the closure of the optic fissure [142,143]. NCCs express
AXL and thus exhibit susceptibility to ZIKV. Infection of NCCs with ZIKV results in viral
replication resulting in loss of NCCs [144]. ZIKV infection can also disrupt the normal
differentiation of the NCCs leading to defective development of the anterior eye segment
leading to micropthalmia [142,145–147]. The loss of NCCs during ZIKV infection has also
been found to disrupt closure of the optic fissure leading to iris coloboma and abnormal
development of the lens zonules. Infection of NCCs with ZIKV can also lead to reduced
thickening of the corneal stroma causing corneal ectasia [142]. It can also contribute towards
impaired development of trabecular meshwork causing glaucoma [144,148–150]. Neuronal
depletion during ZIKV infection can also contribute to thinning of the retinal ganglion
layer [151,152]. Apoptosis of NCCs during ZIKV infection can also lead to defects in axonal
development [145].

Ocular manifestations have been reported in approximately 50% of infants who have
ZIKV-induced microcephaly. ZIKV infection has been reported to involve the eyes and this
represents the viral ability to cross the blood–brain barrier (BBB), the blood–retinal barrier
(BRB), and the blood–aqueous barrier (BAB). The first ZIKV-related eye abnormality was
reported in 2016. More than sixty percent of people with ZIKV infections are reported to
have conjunctivitis (the most common eye abnormality associated with ZIKV). Other abnor-
malities are associated with the anterior segment, the posterior segment, and the neurooph-
thalmic. The abnormalities associated with the anterior segment include microphthalmia,
anterior uveitis (with or without raised intraocular pressure), and non-purulent conjunc-
tivitis [153–155]. The posterior segment anomalies associated with ZIKV involve the retina
and choroid and include maculopathy and multifocal choroiditis [153,156–159]. Neuro-
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ophthalmic conditions are related to the paresis of the abducens and oculomotor muscles
and can cause ocular flutter, ophthalmoplegia, and papilledema [156,160–163]. ZIKV in-
fection also causes optic nerve involvement, and this includes hypoplastic disk, enhanced
cup-to-disk ratio, and nerve pallor. Viral entry into eyes is facilitated by both hematogenous
and retrograde transport of ZIKV through the optic nerve and optic tract [164]. Although
ocular tissue is immune privileged, it is more permissive to ZIKV infection because of
the higher viral load [151]. Certain cells in the retina are relatively more permissive to
ZIKV infection including RPE cells, pericytes, and endothelial cells [165]. Choriocapillaris
(highly fenestrated) are highly susceptible to ZIKV infection and it can facilitate the ZIKV
entry into the RPE cells, which are also permissive to ZIKV infection. RPE infection results
in inflammation and this subsequently leads to breaking the BRB [108,166]. Normally,
the immune response helps the host in eliminating the infection, however, in this case,
immune-mediated injury to the eye tissue leads to pathogenesis of ZIKV-associated eye
abnormality [167]. Infection of BRB with ZIKV leads to the generation of IL-1β, IL-6, IFN-α,
IFN-β, TNF-α, CCL5 and CXCL-10. This leads to subsequent events that culminate in the
atrophy of the retina and RPE mottling [168,169].

Another mechanism of viral entry in ocular tissue is through ZIKV-infected mono-
cytes, which possess the ability to cross the retinal microvasculature endothelium and
subsequently cause retinal infection. Later on, ZIKV-infected monocytes become activated
and release cytokines and chemokines that result in immune-mediated injury/damage
to ocular tissue [170,171]. The cornea can also act as reservoir of ZIKV infection as it ex-
presses RIG-1, MDA-5, and TLR 3 which facilitate the synthesis of IFN-I and III to mediate
antiviral response [136,172]. Infection of the cornea with ZIKV leads to the synthesis of
the IL-1β, TNF-α, CCL5, and CXCL-10 which recruits other cells of the immune system
to the cornea and this promotes inflammation and damage to corneal tissue leading to
keratitis [173]. Through the hematogenous route, ZIKV infects the iris and ciliary body.
From here, the virus can infect BAB cells, which damages this barrier and results in viral
entry into the aqueous humor [133]. From the aqueous humor, ZIKV gains entry to the
trabeculae meshwork and results in the production of cytokines and chemokines including
IL-1β, IL-6, IL-1, IFN-α, IFN-β, CCL5, and CXCL-10. This leads to the recruitment of the
other immune cells such as Th1 and CD8+ cells that secrete TNF-α and IFN-γ, damaging
the trabeculae meshwork and resulting in blockage of aqueous humor outflow, leading to
enhanced intraocular pressure and causing glaucoma. Persistent glaucoma can damage the
optic nerve and retinal ganglion cells leading to optic neuropathy [174].

3.3. Guillain-Barré Syndrome (GBS)

GBS is a condition where there is immune-mediated polyradiculoneuropathy. The
condition is characterized by the loss of reflexes and flaccid paralysis. The disease occurs in
1/100,000 persons. It has been observed that GBS typically occurs after certain infections
such as Campylobacter jejuni, Epstein–Barr virus (EBV), Cytomegalovirus, and HIV. Spo-
radic GBS cases have also occurred following the flaviviral infections (WNV, DENV and
JEV) [175]. In 2014, the first report was published about the occurrence of GBS following
ZIKV infection in French Polynesia. It was reported that in ZIKV patients, 1/4000 people
suffer from GBS (20 times increased incidence) [176]. In the recent ZIKV outbreak in the
Americas, approximately 1500 cases were reported between 2014–2015. At the majority
of locations, GBS incidence following ZIKV was reported to be 2–10 times higher than
background [177]. In Colombia, more than 100 thousand cases of ZIKV were reported with
42 GBS cases/100,000 ZIKV cases. These findings indicate the possibility of the association
of ZIKV with GBS [178]. Until now, no clear mechanism is known about the molecular
pathogenesis of ZIKV-associated GBS. However, it is thought that the mechanism of molec-
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ular mimicry may be an important contributing factor in the pathogenesis of disease (i.e.,
antibodies formed against ZIKV cross-react with myelin sheath or other neural tissues).
However, others have proposed that immune system dysregulation occurs (that is not
directly against ZIKV) and that contributes towards its pathogenesis [176].

3.4. Cerebrovascular Involvement

Certain viral diseases are associated with cerebral vascular abnormalities. Recently,
ZIKV cases have also been reported to involve cerebral vascular abnormalities. A 10-month-
old child infected with ZIKV was admitted to hospital with ischemic stroke and had serum
positive for ZIKV [179–181]. The exact mechanism remains to be determined; however, it
is thought that higher susceptibility of endothelial cells to be infected by ZIKV is a major
factor and is responsible for cerebral vascular abnormalities [182].

3.5. Encephalitis

ZIKV infection is considered a potential cause of encephalitis. An 81-year-old patient
with a travel history to a ZIKV-affected area had reduced consciousness, limb paresis
(upper right), and hemiplegia (left side). The patient was ZIKV positive by RT-PCR and
viral culture and isolation. The patient was treated and survived. However, fetal cases of
ZIKV-associated encephalitis have also been reported. In Brazil, a 37-year-old (y.o.) female
was admitted to the hospital with a complaint of rash and joint pain. Later on, she suffered
from weakness in her lower limbs, confusion, and difficulty with speech. RT-PCR was
positive for ZIKV, while the serum analysis was negative. The patient later died due to
brain swelling, leading to increased intracranial pressure [154]. In the Dominican Republic,
a female was admitted to the hospital with complaints of neck stiffness and confusion. Her
condition deteriorated, and seizures began. CSF examination revealed an increased number
of WBCs (white blood cells), the majority of which were lymphocytes (80%). RT-PCR of
urine was positive for ZIKV RNA (but negative in the CSF and serum). However, IgM
antibodies against ZIKV were detected from CSF and serum, confirming ZIKV exposure.
MRI examination revealed cortical edema, a common finding in meningoencephalitis [163].
In another study on ZIKV, subcortical hemorrhage and bilateral lesions were observed in
the temporal and frontal regions [162].

3.6. Myelitis and Encephalomyelitis

ZIKV infection has been associated with myelitis (inflammation of the spinal cord)
and encephalomyelitis (inflammation of the brain and spinal cord), which can result in
reduced consciousness, urinary retention, and paresis of lower limbs [183]. The first case
of myelitis associated with ZIKV was reported in Guadeloupe in a girl (15 y.o.) who
was admitted to the hospital with a complaint of headache and conjunctivitis. Later,
her condition continued to deteriorate, and she suffered from left-sided weakness and
urinary retention. MRI examination revealed a normal brain, whereas abnormalities were
revealed in the spinal cord cervical area and thoracic region. CSF, urine, and serum were
found to be positive for ZIKV by RT-PCR [184]. In another study, a 26 y.o. Brazilian
male was admitted to the hospital with a major complaint of fever, malaise, and neck
stiffness, CSF and urine examination revealed that the patient had a ZIKV infection. CSF
analysis showed hyper-protein levels and 100 WBCs (white blood cells) per mL (95%
mononuclear cells) [183]. Other studies have also indicated an association between ZIKV
and myelitis/encephalomyelitis [183–185].
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4. Zika Virus Infection and Extracellular Vesicles
Viruses can employ extracellular vesicles (EVs) that can facilitate infection, pathogene-

sis, and transmission. EVs are particles surrounded by membranes that can be released into
the extracellular space by living or dying cells. Various viral components may be packed
inside the EVs [186]. One of the final fates of EVs is their release into blood circulation,
through which they can reach distant cells and tissues [187]. It is important to note that
EVs share most of the biochemical and biophysical properties of viruses. Both EVs and
viruses (naked and enveloped) use the Endosomal Sorting Complex Required For Trans-
port (ESCRT) complex [188,189]. Moreover, Rab GTPases (particularly Rab11, Rab35, and
Rab27A/B) are also shared during the viral replication cycle as well as EV biogenesis [190].
Many studies have indicated that EVs play a facilitating role during viral infections. These
effects can be due to EVs carrying viral receptors, carrying viral particles themselves, or
carrying their genome, proteins, or miRNA. Ultimately, it can lead to the priming of the
recipient cells and/or inhibiting IFN pathways, apoptosis of immune cells, and the trans-
mission of viral genome and/or proteins to distant organs and tissues [188,191–193]. In
the case of ZIKV, NS1 protein, viral E protein (inside and outside) and viral RNA can be
packed inside the EVs [194]. Interestingly, mosquito cells (C6/36 cells) infected with ZIKV
are found to release EVs (containing viral RNA and protein E), which was found to infect
both naïve mosquito and mammalian cells (monocytes and endothelial cells) [195].

Given ZIKV’s neurotropic nature, it is important to emphasize that ZIKV-derived
EVs are found to disrupt the structure of human brain microvasculature endothelial cell
junctions (hcMEC/D3), facilitating ZIKV entry into cells of the human CNS [196]. ZIKV
can also spread to the CNS through autophagy (a process associated with viral infections
and may be regulated by EVs [197–199]. In the case of ZIKV, the autophagic vesicles
may play an important role in crossing the placental barrier. Normally, the placenta is
protected from various pathogens (aided by the autophagy process); however, ZIKV can
hijack this process [200,201]. A study using a mouse model has shown that chloroquine or
hydroxychloroquine inhibits viral replication (autophagy-dependent) and also effectively
prevents mother–fetal transmission of the virus [202,203].

5. Models for Studying Zika Virus Infection and Pathogenesis
Developing appropriate cellular and animal models for studying ZIKV is becom-

ing increasingly important to gain appropriate understanding of viral pathogenesis and
host-related factors that aid or inhibit viral replication and to devise appropriate disease
prevention and treatment strategies.

5.1. Cell Lines

The cell lines are widely used to grow and study ZIKV because they provide a con-
trolled environment for viral replication. These cell lines allow scientists to watch viral
behavior, examine molecular interactions between ZIKV and host cells, and test antiviral
agents. The use of cell lines is essential to virology as they provide a reliable, reproducible
system for studying viral pathogenicity and mechanisms in a laboratory setting. The cells
susceptible to Zika Virus infection are illustrated in Figure 5 and detailed comprehensively
in Table 2.
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Table 2. Cellular models for studying ZIKV infection and pathogenesis.

Sr No. Cell Line Susceptible to ZIKV Source
Mechanistic

Evidence of Infection
Susceptibility

References

1 Neuronal cell
lines

SF268 Human

Viral titers, synthesis
of viral proteins, and

cytopathic effects
(CPE)

[208]

CRL-2267,
CCL-127,

CRL-2271 (male
origin) CRL-2266,

and CRL-2149
(female origin)

Human
Viral titers and

cytopathic effects
(CPE)

[209]

SH-SY5Y Human
Viral titers and

cytopathic effects
(CPE)

[210–212]

U87-MG Human -- [213]

SK-N-SH Human -- [214]

2 Fibroblasts (dermal, lungs) Human

Viral titers, synthesis
of viral proteins,

replication of positive
and negative strands
of viral genome, and

cytopathic effects
(CPE)

[215,216]

3 Vero cells Non-human
Viral titers and

cytopathic effects
(CPE)

[212,216–219]

4 Human hepatocellular carcinoma
cells (HuH-7) Human

Viral titers and
cytopathic effects

(CPE)
[208,212,216,217]

5 Human cervical adenocarcinoma
cells (HeLa) Human

Viral titers and
cytopathic effects

(CPE)
[216,217,220]

6 A549 cells Human
Viral titers and

cytopathic effects
(CPE)

[211,212,218,219,
221]

Other cell lines

7
Primary human amnion epithelial

cells (HAECs) form the lining of the
amniotic sac

Human [217]

8
Placental (JEG-3), muscle (RD),

retinal (ARPE19), pulmonary (Hep-2
and HFL), colonic (Caco-2),

Human and
non-human

Viral titers, synthesis
of viral proteins, and

cytopathic effects
(CPE)

[208]
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Table 2. Cont.

Sr No. Cell Line Susceptible to ZIKV Source
Mechanistic

Evidence of Infection
Susceptibility

References

9 Sertoli, Hs1.Tes, SEM-1 and
TCam-2 cells, Human

Viral titers, synthesis
of viral proteins, and

cytopathic effects
(CPE)

[214]

10

Human renal carcinoma cells (Caki),
Human astroglia (SVG p12,

American Type Culture Collection
CRL-8621 (caco-2) and Human
embryonic kidney cells (293T)

Human

Viral titers, synthesis
of viral proteins, and
replication of positive
and negative strands

of viral genome

[216]
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microglial cells. This may result in the causation of several congenital neural diseases as discussed 
in the paper. Furthermore, ZIKV has also been found to establish active infection in male 
reproductive tract and thus, is transmitted from male to female [204–207]. The Figure was created 
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Figure 5. Cells susceptible to Zika Virus infection: ZIKV gains access to body through bite of an
arthropod vector. Following bite, viremia occurs and in a pregnant mother, ZIKV infects the Hofbauer
cells in placenta and in this way, it is transmitted to the fetus. In fetus, ZIKV is capable of infecting
a myriad of cells, including neural progenitor cells, oligodendrocytes, astrocytes, and microglial
cells. This may result in the causation of several congenital neural diseases as discussed in the paper.
Furthermore, ZIKV has also been found to establish active infection in male reproductive tract and
thus, is transmitted from male to female [204–207]. The Figure was created at https://BioRender.com.

5.2. Organoids

Although cell culture has been used to determine ZIKV replication and pathogenesis,
this system is not without its downsides. Cells are unable to mimic in vivo conditions
as they lack the cellular structure, composition, and physiology of an organ in which
a virus replicates [222]. To overcome this drawback, people are now developing organ
analogues in vitro where stem cells are used to generate 3D tissue structures resembling
organs. These 3D models are known as organoids and are being used to model and better
understand the molecular events that occur following viral invasion and replication in
that organ [223]. Studies have provided confirmatory evidence of microcephaly following

https://BioRender.com
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ZIKV infection by using organoids [224,225]. Qian et al. (2016) used a mini-bioreactor to
generate brain organoids and demonstrated that ZIKV infection in brain organoids that
mimic the first-trimester fetal brain resulted in ZIKV infection of NPCs, IPC, astrocytes,
and neurons, while infection of brain organoids mimicking the second-trimester fetal
brain exhibited ZIKV infection of the outer radial glial cells [224]. These findings are
correlated with reduced cellular proliferation and enhanced apoptosis providing evidence
of ZIKV-associated microcephaly [136]. Yoon et al. showed that the ZIKV NS2A protein is
responsible for the alteration and reduced multiplication of the radial glial cells resulting in
altered neuronal positioning in the brain [226]. Another study reported that ZIKV infection
of NPCs during early pregnancy was associated with the upregulation of TLR-3 receptors,
leading to apoptosis of NPCs, resulting in microcephaly [227]. Recently, brain organoid
models have also been used to determine the various drug targets against ZIKV [228–231].
Organoids resembling the placenta have also been developed using first-trimester human
chorionic placental villi where ZIKV established infection and proliferated in Hofbauer
cells, villus cytotrophoblasts (CTB), and produced the NS3 and E protein [232,233]. To
summarize, organoids offer a promising approach to studying the ZIKV viral pathogenesis
and also to screening compounds’ antiviral activity in a system more relevant than in vitro
cell culture.

5.3. Animal Models

Animal models have been developed to study ZIKV replication and pathogenesis
in vivo.

5.3.1. Non-Human Primates (NHPs)

Non-Human Primates (NHPs) exhibit significant similarities with humans (pregnancy
physiology, long gestation periods, and hemomonochorial placenta) and offer a promising
model to study ZIKV infection, neuropathogenesis, and drug discovery. They also exhibit
vertical transmission from mother to fetus similar to humans [234]. Rhesus macaques,
olive baboons, marmosets, and pigtail macaques have been employed to study ZIKV
pathogenesis during gestation. Olive baboons have been able to demonstrate clinical
infection when infected during the gestation period. When infected during 4th month
of pregnancy, they developed conjunctivitis and moderate rash, with viremia peak at
7 dpi (days post-infection). Pro-inflammatory cytokines and immunoglobulins were also
detected [235,236]. In other NHPs (i.e., rhesus macaques, marmosets, and pigtail macaques)
no clinical infection occurs following ZIKV inoculation. However, in all NHPs, antibodies
are formed following ZIKV infection, and placental and fetal ZIKV infection is observed.
In rhesus macaques, fetal loss occurs following ZIKV infection, while marmosets and olive
baboons exhibit viral RNA in amniotic fluid and placenta. Severe placental infection is
observed during pregnancy in marmosets and rhesus macaques [237–239].

5.3.2. Mice

Many viral replication and pathogenesis studies involve the use of mice as animal
models because they have large litter sizes and a short gestational period. However, vari-
ability in their placental structure and heterogeneity in gestation can be problematic [240].
Another complication occurs due to differences in the cell biology of mice as compared
to humans. On viral entry, the viral NS5 protein is able to degrade the cellular STAT2
protein, thereby making IFN signaling ineffective, resulting in viral replication and the
development of clinical disease. Degradation of STAT-2 is not observed in mouse cells
infected with a virus, leading to unimpaired IFN signaling resulting in low viral titer and
failure to develop clinical infection [241]. Therefore, biological modifications are needed to
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use mice for studying ZIKV replication and pathogenesis events. This can be achieved by
using either immunocompromised mice or using alternative routes of inoculation.

Immunocompromised Mice

Immunocompromised mice are modified for interferon (IFN) insufficiency. This may
be conducted by either creating knockout (KO) mice, e.g., interferon alpha receptor knock-
out (Ifnar-/-), or by using antibodies to block the IFN receptors (MARI-5A3) [242,243]. It has
been found that pregnant Ifnar-/- mice exhibit high susceptibility to ZIKV infection with
subcutaneous inoculation and are able to produce fetal and placental abnormalities [114].
The infection is established in homozygous as well as heterozygous mice, suggesting that
partial deficiency in IFN signaling is sufficient to produce fetal neuropathology. As ZIKV
infection can occur through venereal transmission; therefore, models have been developed
for this purpose. Intravaginal inoculation of ZIKV from 5–8 days of conception results
in high levels of viral RNAs in the placenta and fetal tissues in Ifnar-/- mice [244]. ZIKV
infection (intravaginal) of IFN regulator factor (IRF) KO e.g., Irf3-/- Irf7-/- mice exhibit
higher vaginal and fetal titers of the virus. This implies that inhibition of IFN signaling is a
key factor in establishing different mice models.

Immunocompetent Mice

As discussed previously, ZIKV infection often fails in immunocompetent mice. How-
ever, some researchers have used alternative strategies to produce ZIKV infection by using
higher viral titer or other routes of inoculation. A Brazilian ZIKV strain has been used to
produce successful fetal infection in SJL mice. In this study, high viral inoculation (1010

to 1012 pfu/mL) was used to produce uterine and fetal infection that ultimately resulted
in fetal microcephaly [245]. However, these mice showed higher levels of T cells in the
blood and later on developed autoimmunity and sarcoma [246]. The intraamniotic route
has also been used for ZIKV inoculation in embryos and resulted in damage to the retina
and blood–brain barrier and produced neuronal death and defects in motor neurons in the
fetal brain. Intrauterine infection also resulted in ZIKV infection of placental endothelial
and trophoblast cells and in the fetus, the virus localizes in the microglial, endothelial, and
NPCs of the fetal brain [67,247,248]. Another model has also been developed to study the
postnatal CZS progression by inoculating C57BL/6 mice intraperitoneally, and it was seen
that the fetus had reduced body weight and microcephaly. Later on, these mice exhibited
motor and memory deterioration in adulthood [249]. These studies pave a path towards vi-
ral replication and neuropathogenesis studies in immunocompetent mice models that may
be deployed for further understanding of ZIKV neuropathogenesis and drug discovery.

5.3.3. Farm Animals

Although less common as animal models, pregnant sheep, and pigs may be used as
a model for ZIKV replication and pathogenesis. They are widely available and exhibit
susceptibility to the virus [250,251]. They can also be used as a model for human pregnancy
and fetal growth [252]. ZIKV infection during the first trimester in sheep resulted in
placental pathology, reduced fetal growth, and fetal loss [253]. Maternal ZIKV infection
during the 4th to 5th week resulted in the detection of ZIKV RNA in the PBMCs of the
mother; however, clinical infection failed to occur [253]. Similarly, in pigs, intrauterine
infection during pregnancy resulted in placental abnormalities as well as microcephaly in
piglets [254]. It has also been seen that following intrauterine ZIKV infection, the African
ZIKV lineage was found to produce a more pronounced viral infection as compared to the
Asian strain [255]. These findings clearly establish the role of sheep as a possible animal
model to study fetal neuropathogenesis due to ZIKV.
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5.3.4. Rats

As rats become immunocompromised during the final stage of gestation, similar to
humans, they may also be utilized as a model to investigate ZIKV neuropathogenesis [256].
Upon subcutaneous (S/C) inoculation of ZIKV to pregnant rat females, reduced cortical
and hippocampus volumes were observed in rats, although no pathological findings and
viral detection were observed in the maternal counterpart [114,257].

5.3.5. Hamsters

Infection of immunocompetent females during pregnancy was unable to produce
productive viral infection; ZIKV RNA was not found in fetal or placental tissue and fetus
size remained unaffected [114]. However, ZIKV infection (Malaysia Strain) in immunocom-
promised hamsters (8 days post-mating) resulted in ZIKV infection of placental tissue and
also caused vertical transmission of the ZIKV from mother to offspring [258].

5.3.6. Chicken

Chicken embryos have been demonstrated to support ZIKV viral growth in the chicken
brain and other tissues [259]. Intraamniotic inoculation of ZIKV resulted in stunted embryo
growth and microcephaly [260]. Furthermore, comparison of the Asian and African ZIKV
strains showed that the African strain caused more embryonic pathologies [261].

6. Treatment and Prevention Against Zika Virus and Zika Virus
Associated Neuropathies
6.1. Prevention from Zika Virus Through Vaccines

One of the major methods for viral disease prevention and control is vaccination.
Immediately after the outbreak of ZIKV, research began to find ideal vaccine candidates to
prevent future ZIKV outbreaks [262]. Several vaccine candidates have emerged; however,
very few have been used in clinical trials. The various ZIKV vaccine candidates are
summarized in Table 3.

Table 3. Vaccines developed and tested against Zika Virus (ZIKV).

Purified Inactivated ZIKV Vaccines (PIZIKV)

Zika Virus
Strain Vaccine Type Development

Strategy Study Conducted Mechanism Route Reference

ZIKV strain
PRVABC59

(Asian genotype
associated with

American
outbreak)

Alum-
adjuvanted
Inactivated

Virus inactivation
with formalin

followed by use
of adjuvant
(aluminum
hydroxide).

CD-1 and AG-129 mice were
vaccinated with alum

adjuvanted vaccine (2 doses of
vaccines having 0.1 ug of Ag).

Following vaccination,
AG-129 showed protection

and were found to neutralize
ZIKV from both African and

Asian lineages.

Neutralizing
antibodies may

play an important
role in protection
when challenged

with virus.

Intramuscular
(IM) [263]

ZIKV strain
PRVABC59

ZIKV purified
inactivated

vaccine (ZPIV),
adjuvanted

with aluminum
hydroxide

Virus inactivation
with formalin

followed by use
of adjuvant
(aluminum
hydroxide).

Sanofi Pasteur Institute
upgraded the vaccine and

their studies in mice (BALB/c)
and found that vaccine

protects against homologous
challenge. Furthermore,
studies in cynomolgus

macaques have shown that
vaccines provide good

humoral and CMI and also
completely protect it from

ZIKV challenge

neutralizing
antibodies,

specific T-, and
memory B-cells

Intramuscular
(IM) [264,265]
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Table 3. Cont.

Purified Inactivated ZIKV Vaccines (PIZIKV)

Zika Virus
Strain Vaccine Type Development

Strategy Study Conducted Mechanism Route Reference

ZIKV
PRVABC59

Inactivated
Vaccine

Aluminum
hydroxide
adjuvanted

purified
inactivated Zika

vaccine

Indian rhesus macaques
were vaccinated twice
with ZIKV vaccine and

were challenged at
6 weeks and 1 year

following vaccination. It
was observed that

following challenge,
vaccine provided

protection in a dose
dependent manner.

Highest protection was
achieved at 10 µg.

Vaccine induced
neutralizing

antibodies in a
dose-dependent

manner

Intramuscular
(IM) [266]

ZIKV PIZV in
adengue virus

(DENV)

Inactivated
Vaccine

Purified
inactivated Zika

vaccine.

Two doses of vaccine
protected the rhesus

macaques 1 year
following vaccination

Vaccine induced
neutralizing
antibodies

Intramuscular
(IM) [267]

ZIKV
PRVABC59

Inactivated
Vaccine

5 µg ZPIV and
500 µg

aluminium
hydroxide
adjuvant

(Alhydrogel).

Phase I clinical trials was
conducted in humans
(18–50 years of age).
Computer generated

randomization was used
within groups and were
vaccinated with 5 ug of

inactivated ZIKV vaccine.
Vaccine was found to be
safe however, one dose

was proven to be
insufficient to provide

complete protection and
hence twice vaccination

was recommended

Vaccine induced
neutralizing
antibodies

Intramuscular
(IM) [268]

Live Attenuated Vaccines (LAVs)

Zika Virus
Strain Vaccine Type Development

Strategy Study Conducted Mechanism Route Reference

ZIKV
Cambodian

strain (FSS13025)
and Puerto Rico

strain
(PRVABC59)

Live attenuated
vaccine (LAV)

Nucleotide
deletion from 3′

end.

The vaccine was used in
IFN deficient mice

(AG129). A total of 10 nts
were deleted from 3′ end
of ZIKV and inoculation
was made in 3 weeks old

mice through SC route.
that ZIKV proved safe,

immunogenic, and
induced higher antibody
titers. The vaccine also
prevented the viremia

following challenge
(Cambodian strain

FSS13025 and Puerto Rico
strain PRVABC59). The
attenuated virus also

proved to be the
non-virulent for 1 day old
mice @1 × 104. The LAV

was also unable to be
transmitted

to mosquitoes.

Induction of
humoral

immunity and
cell-mediated

immunity.

Subcutaneous
(SC) [269]
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Table 3. Cont.

Live Attenuated Vaccines (LAVs)

Zika Virus
Strain Vaccine Type Development

Strategy Study Conducted Mechanism Route Reference

ZIKV
Cambodian

strain
(FSS13025) and

Puerto Rico
strain

(PRVABC59)

Live attenuated
vaccine (LAV)

Nucleotide
deletion from

3′ end.

LAV was prepared by
deletion of 20 nts from the

3′UTR of ZIKV. On
challenge (with

Cambodian strain
FSS13025 and Puerto Rico

strain
PRVABC59 at 6 days post
vaccination), this vaccine

prevented the ZIKV
infection in maternal,

placental, and fetal tissues
in A129 mice. In males,

testes damage was
prevented. Furthermore,

vaccination in rhesus
macaques demonstrated

the effective development
of humoral immune

response and also
prevented the infection

on challenge.

Induction of
humoral

immunity and
cell-mediated

immunity.

Subcutaneous
(SC) [270]

ZIKV Puerto
Rico strain

(PRVABC59)
Live attenuated
vaccine (LAV)

Containing NS1
gene without
glycosylation,

through changes
in 10 nucleotides.

Vaccine was inoculated in
IFN deficient mice (A129)

@105 PFU through SC
route. Following

vaccination animals were
challenged with 106 PFU

of ZIKV PRVABC59
(heterologous strain) at 6
days of conception. At 13

days post conception,
animals were sacrificed
and they demonstrated
minimal levels of viral

RNA in maternal,
placenta, and fetus, thus

inhibiting the
maternal–fetal

transmission of the ZIKV.

Induction of
humoral

immunity and
cell mediated

Immunity
CD4+ and CD8+
T cell responses.

Subcutaneous
(SC) [271]

VacDZ
Live attenuated

vaccine
(LAV)

Chimeric
dengue/Zika

virus

VacDZ was administered
@106 PFU per mouse

(AG129 mice) for initial
and booster dose (4 weeks

apart). After 4 weeks of
the booster dose (8 weeks

after initial vaccine
administration),

vaccinated mice were
sacrificed to determine the

immune responses.
Similarly, vaccinated mice
were challenged with the
lethal dose of ZIKV (105

PFU per mouse), 4 weeks
after vaccination.

Strong humoral
and Th1 immune

response in
AG129 mice (Th1

response was
stronger than

Th2); also
protected mice

against the lethal
ZIKV challenge.

Intraperitoneal
(IP) [272]
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Table 3. Cont.

Live Attenuated Vaccines (LAVs)

Zika Virus
Strain Vaccine Type Development

Strategy Study Conducted Mechanism Route Reference

DNA-launched
LAV

Live attenuated
vaccine
(LAV)

Plasmid-
Launched

LAV

Six-week-old mice (A129)
inoculated with 20 µL of

DNA solution. At various
time points, inoculated

mice were bled via
retro-orbital sinus (to

determine viremia and
immune response). On

day 29, after vaccination,
the viral challenge was

given (ZIKV strain
PRVABC59 @106 PFU).

After 48 h, mice were bled
again to determine
viremia and then at

various time points, mice
were sacrificed and

necropsied (along with
preservation and
examination of

various organs).

Robust humoral
and cell-mediated
immune response;

protected mice
from the virus
challenge; also
protected testes
(in vaccinated

males)
following challenge.

IM or a
combination of

IM and
electroporation

(EP)

[273]

ZIKV LAV
(having a

nine-residue
capsid protein
deletion (C7)

Live-
attenuated

vaccine
(LAV)

Nine amino-acid
deletions in the

viral capsid
protein.

Three-week-old A129
mice were vaccinated

with a single dose (105

FFU) of the vaccine; 28
days following

vaccination, blood was
collected (to measure

immune response) and
then challenged with

ZIKV PRVABC59 strain
(106 PFU).

Robust humoral
immune response;

protected mice
from the virus
challenge; also

prevented ZIKV
transmission to

fetus
(from mother).

Subcutaneous
(SC)/Intracranial [274]

ZIKV NS4B
protein mutant

(s)

Live attenuated
vaccine
(LAV)

Site-directed
mutagenesis (in
viral NS4B) was

used to create
mutants. C100S
was observed to

be more
attenuated than

the other 2
mutants

(NS4B-C100A and
NS4B-P36A).
C100S also

maintained good
immunogenicity.

WT B6 and AB6 mice
(5–6-week-old) were

inoculated with WT ZIKV
FSS13025ic and its

mutants (50 to 1 × 104

FFU). Various assays
(neutralization, passive

immunization, and T-cell
depletions), assays were

used to determine the
vaccine efficacy.

Induction of
humoral

immunity and
cell-mediated

immunity
CD4+ and CD8+
T cell responses.

Intraperitonial
(IP) [275]

ZIKV carrying
mutations in E
(N154A) and

NS1 (N130A and
N207A)

Live attenuated
vaccine
(LAV)

Mutations were
created by
employing

site-directed
mutagenesis.

Three to four week old
mice (A129) were

vaccinated (1000 PFU of
recombinant MR766
[rMR] or the mutant
[m2MR and m5MR]

viruses diluted in 100 µL
of PBS). A total of 28 days

following vaccination,
mice were challenged
with the 10,000 PFU of

rMR. Blood was collected
for determining

immune response.

Robust humoral
and cell-mediated
immune response;

protected mice
from the

virus challenge.

Subcutaneous
(SC) [276]
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Table 3. Cont.

Live Attenuated Vaccines (LAVs)

Zika Virus
Strain Vaccine Type Development

Strategy Study Conducted Mechanism Route Reference

Codon pair-
deoptimized

ZIKVs

Live attenuated
vaccine
(LAV)

Three codon
pair-deoptimized

ZIKVs (Min E,
Min NS1, and

Min E+NS1). The
amino acid

sequence of these
viruses are 100%

preserved.

AG6 mice lacking the type
I and type II IFN

(IFN-α/β/γ) receptors
were inoculated with the
vaccine strains (@104, 103,
102, 101, or 100 PFU). At 3-

and 6-days post
vaccination (DPV),

viremia was accessed. At
various time points,

various body tissues were
collected for examination
and viral load estimation.

A total of 28 DPV mice
were challenged with
ZIKVwt(@104 IFU). A

total of 2 days post
challenge, mice were bled
for viremia determination

and 14 days post
challenge, all mice were

bled (for determining
humoral immune

response) and sacrificed.

Min E+NS1,
caused induction

of sterilizing
immunity and
induction of

strong humoral
immune response;

single vaccine
dose was found

effective (in
response to

challenge and
preventing ZIKV
transmission to

fetus
from mother).

Intraperitonial
(IP) [277]

Attenuated
ZIKV (rGZ02a)

Live attenuated
vaccine
(LAV)

Live attenuated
ZIKV vaccine

6-week-old female
C57BL/6 mice were s.c.
immunized twice with
1× 104 (low), 1× 105

(medium), or 1× 106

(high) FFU of rGZ02a at a
3-week interval. Humoral

immune response was
measured 2- and

8.5-weeks
post vaccination.

Medium and high
doses induced a
long lasting (at
least 8.5 weeks)

and robust
humoral immune

response;
neonates born

from vaccinated
dams remain free
of brain damage
and neurological
disorders; rGZ02a

vaccine also
exhibited good

anamnestic
immune response
when primed by
Ad2-prME; ZIKV

vaccine having
prM and

E proteins.

Subcutaneous
(SC)/Intraperitonial

(IP)
[278]

Live-attenuated
ZIKV strain
(named Z7)

Live attenuated
vaccine
(LAV)

Modified 5′ UTR
(by inserting 50

amino acids) of a
pre-epidemic

ZIKV Cambodian
strain, FSS13025

Four-week-old Ifnar1-/-
mice (in C57BL/6J
background) were

subcutaneously injected
with 1 × 105 FFU of Z1 or

Z7 (G10) in phosphate
buffer saline (PBS) on D0.

Serum samples were
collected on day 24. On
D42 p.i., the mice were

challenged with 1 × 105

PFU of ZIKV (strain
PRVABC59), and blood

was collected from D1 to
D3 post-challenge (to

measure the viremia). On
D3 p.c., the mice were

euthanized, and the liver
and spleen were collected
to measure the viral load.

Robust humoral
and cellular

immune
responses that

prevented
viremia after the
challenge (with a
high dose of an

American
epidemic ZIKV

strain PRVABC59
infection)

Subcutaneous
(SC) [279]
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Table 3. Cont.

DNA Vaccines

Zika Virus
Strain Vaccine Type Development

Strategy Study Conducted Mechanism Route Reference

ZIKV Puerto
Rico Strain

(PRVABC59)
DNA Vaccine

DNA vaccine
containing prM
and E protein.

Vaccination was done in
Ifnar1-/- mice (2 doses,

2 weeks apart). Following
the challenge (Puerto Rico

Strain PRVABC59), the
mice did not demonstrate
the testicular damage and

sperm deterioration,
proving it a safe

vaccine candidate.

Humoral and T
Cell immunity

Intramuscular
(IM) [280]

ZIKV Puerto
Rico Strain

PRVABC59, West
African IbH

30656 and East
African MR766

(challenge
strains)

DNA Vaccine

Amphiphilic
block copolymer
(ABC) encoding
the sequence of

prM and E.

Vaccination was carried
out in C57BL/6c mice @
Day. 0, 24, 42, and 199.
With the challenge of
various ZIKV isolates

(Puerto Rico Strain
PRVABC59, West African

IbH 30656, and East
African MR766),

Humoral and T
Cell immunity in
a dose-dependent

manner (low
protection was

observed at 5 ug
but high

protection from
diseases was

observed at 10
and 50 ug).

Intramuscular
(IM) [281]

ZIKV SMGC-1
strain

(Challenge)
DNA Vaccine

DNA vaccine
encoding

pVAX1-ZME of
ZIKV.

Three doses of vaccine
(50 ug of pVAX1-ZME)

were inoculated
(3 weeks apart) in

immunocompetent
BALB/c mice, and it was
shown that mice exhibited
potent humoral and CMI

and also prevented the
transfer of infection from

mother to offspring.

Induction of both
Th1 and Th2

responses and
cytokines (IL-2,
IL-4, IL-5, and

IFN-γ).

In vivo
electroporation [282]

ZIKV Subunit Vaccines

Zika Virus
Strain Vaccine Type Development

Strategy Study Conducted Mechanism Route Reference

ZIKV Puerto
Rico Strain
PRVABC59

Subunit Vaccine
Subunit ZIKV

vaccine
containing E

Protein.

Vaccine was inoculated in
3 different mice models;
BALB/c, C57BL/6, and
Swiss Webster mice (3

doses at 3 week intervals).
The vaccine caused the

induction of higher levels
of the antibodies that

protected the mice from
developing clinical

infection in challenge with
Puerto Rico Strain

PRVABC59. CoVaccine
HT-based vaccine induced
higher antibody responses
as compared to the alum

adjuvanted vaccines.

Robust Humoral
Immune
response.

Intramuscular
(IM) [283]

ZIKV Puerto
Rico Strain
PRVABC59

Subunit Vaccine
Subunit ZIKV

vaccine
containing E

Protein.

Vaccine was inoculated in
non-human primate

(Cynomolgus macaques)
with 3 doses at 3 week

intervals and
demonstrated the strong

humoral response
following vaccination and

also prevented the
maternal infection

transfer to the fetus.

Robust Humoral
Immune
response.

Intramuscular
(IM) [284]
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Table 3. Cont.

ZIKV Subunit Vaccines

Zika Virus
Strain Vaccine Type Development

Strategy Study Conducted Mechanism Route Reference

ZIKV Puerto
Rico Strain
PRVABC59

Subunit Vaccine

Subunit ZIKV
vaccine

containing ED-III
fragments.

ED III domain was
produced in E. coli. A total

of 4 doses of vaccines
were inoculated in
C57BL/6 mice and

resulted in higher levels
of IL-4, IL-6, and IFN-γ.

Vaccine also elicited good
humoral immune
response in mice.

Robust Humoral
Immune
response.

Intra-Peritoneal
(IP) [285]

ZIKV
2015/Honduras
(R103451) and

2015/Colombia
(FLR) Challenge

Subunit Vaccine

Subunit ZIKV
vaccine

containing ED-III
different fragments.

To compare the
immunogenicity of 3

different ED-III, residues
296–406, 298–409, and
301–404 of the ZIKV
envelope (E) protein

domain III (EDIII) fused
with a C-terminal Fc of

human IgG and
inoculated in BALB/c

mice and A129 mice (Five
doses at days 0, 21, 42,

210, and 300). The vaccine
having ED-III residues
298–409 elicited most

strong humoral immune
response. The immunity

was transferred from
mother to offspring and
also protected the pups

from ZIKV infection
on challenge.

Robust Humoral
Immune
response.

Intramuscular
(IM) [286]

Viral Vector Based ZIKV Vaccines

ZIKV Puerto
Rico strain
PRVABC59

Viral Vector

ZIKV prM-E gene
expression in Ad4
and Ad5 (to form
Ad4-prM-E and

Ad5-prM-E,
respectively).

Vaccination was done in
immunodeficient mice
and C57BL/6 mice (2

doses at 3 week intervals).
Ad4-prM-E induced only
CMI whereas Ad5-prM-E

induced both humoral
and CMI. On challenge
with virulent ZIKV in

C57BL/c, all mice
survived indicating the
protective role of both

Ad4-prM-E and
Ad5-prM-E in inducing

protective
immunity levels.

Induced both
humoral and

CMI.
Intramuscular

(IM) [287]

Brazilian
ZIKVand Puerto

Rico
strain

PRVABC59

Viral Vector RhAd52-prMEnv.

ZIKV vaccine inoculation
was done in rhesus

macaques and elicited
good humoral immunity

in rhesus macaques.

Humoral
immunity

Intramuscular
(IM) [288]

ZIKV
Cambodian

strain
FSS13025

Viral Vector
(rVSV)-based

ZIKV prM-E-NS1
vaccine.

Single dose of vaccine in
A129 and BALB/c mice

induced protective
humoral and CMI that

protected the mice
partially on

ZIKV challenge.

Humoral and
CMI

Intramuscular
(IM) [289]
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Table 3. Cont.

Viral Vector Based ZIKV Vaccines

ZIKV Puerto
Rico strain
PRVABC59

Viral Vector
VSV-Capsid and
VSV-ZikaE260–

425.

Single dose of both
vaccines was done in

BALB/c mice and both
vaccines induced good

humoral immune
response however,
however, vaccine

containing capsid region
induced stronger T cell

immunity as compared to
the vaccine containing

E260–425.

Humoral and
CMI

Intramuscular
(IM) [290]

“IM” indicates Intra-Muscular, “IP” indicates Intraperitoneal, “EP” indicates Electroporation, and “SC” indicates
Subcutaneous routes of vaccine administration/inoculation.

6.1.1. Purified Inactivated Zika Virus Vaccines (PIZIKV)

Several inactivated vaccines have been developed and tested by animal models. The
majority of these vaccines have been able to demonstrate higher antibody titer, reduced
viremia, successful passive transfer of antibodies, and protection in mice (interferon defi-
cient) after homologous or heterologous vaccination [263]. In India, one vaccine has entered
phase I clinical trials (CTRI/2017/05/008539) [291]. Using mice and non-human primates
(NHPs), an aluminum hydroxide-based inactivated ZIKV vaccine has demonstrated promis-
ing antibody titers and protection against homologous antigen challenge [265]. Another
PIZIKV provided complete protection in a dose-dependent manner (0.016 to 10 ug) and
was found to be effective one year following vaccination in macaques [266]. A double-blind
randomized controlled trial (Phase I) was performed to evaluate the safety and immuno-
genicity of PIZIKV, and it was found that the vaccine was safe for 52 h. However, protection
was not found to be effective as only a single dose was given and for better immunogenicity,
a double dose may be needed [268].

6.1.2. Live Attenuated Vaccines:

Live-attenuated vaccines (LAVs) are known for eliciting swift and long-lasting pro-
tective immunity and represent a crucial strategy for managing flavivirus diseases [292].
These are made by modifying the virus in such a way that it may replicate within the
organism and stimulate the immune system without causing disease. Since 1938, they have
been used as the gold standard as they exhibit good safety and effective protection from
viral infection [293]. LAVs are known to stimulate the immune system for long-lasting
periods (without the need for an adjuvant or any booster). Currently, three approaches
are being used for generating ZIKV LAVs, which are (i) generating chimeric strains (using
the backbone of an attenuated flavivirus), (ii) codon deoptimization, and (iii) mutagenesis.
One of the most important advantages of using live vaccines is their ability to elicit robust
humoral and cell-mediated immune responses (with a single dose of immunization); as
the virus continues to multiply within the host cells, allowing continuous loading of MHC
(I and II) with viral peptides. In addition, they are cost-effective (both during manufac-
turing as well as transportation). The past experiences of successful development of LAV
against Japanese Encephalitis Virus (JEV) and Yellow Fever Virus (YFV) have clearly shown
their potential to be used as safe viral vaccines [279,293]. However, manufacturing of live
vaccines usually requires eggs or cell culture and also maintaining a cold chain during
transportation. In countries having warm climates, maintaining cold chain only can account
for up to 80% of the total vaccine cost [294]. Another major concern associated with the
use of live vaccination is inadequate attenuation (once they are at the stage of the human
clinical trials [295]. A variety of LAVs have been tested against the ZIKV [292], and the
selective studies are summarized in Table 3.
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6.1.3. Nucleic Acid Vaccines

DNA and RNA-based vaccines are being developed for different infectious diseases.
They offer the advantage of prolonging immune response following vaccination and induce
both humoral and cell-mediated immunity (CMI) [296]. However, one major disadvantage
is that DNA vaccines often fail to elicit adequate immune response or offer protection from
challenge [297]. Despite these advantages, DNA vaccines may have the risk of eliciting
autoimmunity (by eliciting anti-DNA antibody production) and also causing insertional
mutations [298]. Another point to keep in mind is that in the case of DNA vaccines,
DNA must enter inside the nucleus of the cell, and then after transcription, mRNA must
travel outside the nucleus (into the cytoplasm), where it is translated into the proteins. In
contrast, for RNA vaccines, RNA can directly be translated into proteins in the cytoplasm,
which are then secreted from the cells (into the extracellular matrix) where they can be
presented to the antigen-presenting cells (APCs). mRNA vaccines have become more
popular after the introduction of SARS-CoV-2 vaccines. However, it is also important to
note that storage of mRNA vaccine requires maintaining a cold chain, which may not be
feasible in developing countries [299]. The summary of various DNA vaccines available
against ZIKV is summarized in Table 3.

6.1.4. Subunit Vaccines

Due to their rapid production and stability, a variety of ZIKV vaccines have been
developed. The majority of these vaccines have used the Envelope protein (E protein) and
its different segments. These vaccines have been tested in various animal models, which
are summarized in Table 3.

6.1.5. Viral Vector-Based Vaccines

Viral vector-based vaccines are prepared by using a vector virus for the insertion of the
genetic components of ZIKV, and they have been found to induce good humoral immunity.
Lentovirus, adenovirus, and retroviruses are known to be good viral vectors. Various
ZIKV vaccines have been developed using various viral vector systems, which have been
summarized in Table 3.

6.2. Zika Virus Prevention Through Vector Control

Mosquitoes play a central role in the transmission of ZIKV. Therefore, reducing ZIKV
transmission through vector control methods involves diverse and innovative strategies
and tools designed to manage disease-spreading mosquito population. One of the most
widely used strategies is the use of chemical insecticides (due to their cost-effectiveness and
easy availability). However, due to the emergence of insecticide resistance and their delete-
rious effects on the environment, the focus is now diverted towards various other control
methods [300,301]. Due to their eco-friendly nature, herbal-based control methods have
now gained attention. Promising insecticide activities have been shown by extracts derived
from the Illicium verum, Zanthoxylum limonella, Cymbopogon citratus, Cymbopogon winterianus,
Eucalyptus citriodora, Eucalyptus camaldulensis, etc. [302–308]. Furthermore, nanoparticles
derived from Ambrosia arborescens have also shown good larvicidal activity. However, their
toxicity profile should be determined against other environment-friendly insects, animals,
and humans [307]. Similarly, biological control methods are also being employed due to
their minimal impact on the environment [309]. This includes the use of entomopathogenic
bacteria and fungi. Various species of entomopathogenic fungi (Metarhizium anisopliae, Beau-
veria bassiana, Aspergillus flavus, Aspergillus fumigatus, and Aspergillus terreus) and bacteria
(Bacillus thuringiensis israelensis (Bti), Wolbachia) have been tested against ZIKV-transmitting
mosquitoes [310–315]. Particularly, the introduction of Wolbachia in mosquitoes has demon-
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strated the ability to disrupt the reproductive potential of disease-transmitting vectors.
Similarly, the use of various natural predators, i.e., Toxorhynchites mosquitoes, fishes,
tadpoles, and copepods, have also been used against the mosquitoes and have shown
varying degrees of efficacy in controlling the mosquito population [316]. Moreover, genetic
engineering principles have been applied to release genetically modified mosquitoes into
the environment [317]. Furthermore, the use of the sterile insect technique is also an in-
novative approach to control the mosquito population [318]. When used in combination,
these strategies offer an integrated approach to vector control, addressing both short and
long-term goals of reducing ZIKV and its induced neuropathies. A summary of vector
control strategies developed so far is provided in Table 4.

Table 4. Strategies to control mosquitoes/vectors involved in ZIKV transmission.

Sr No. 1

Chemical Control

Compound/Organism Vectors Mechanism Remarks Reference

Pyrethroids Aedes aegypti

Disruption of voltage-gated
sodium channels in neuronal

membranes, thereby disrupting
the electrical signaling in the

insect nervous system.

Emergence of
resistance [319]

Organophosphorus Aedes aegypti Inhibition of acetylcholine
esterase in insects.

Emergence of
resistance [320]

Insect growth
regulators Aedes albopictus

Inhibiting specific biochemical
pathways essential for insect

growth and development.

Emergence of
resistance [321]

Carbamates
(propoxur,

bendiocarb)

Aedes aegypti, Aedes
albopictus

Inhibition of acetylcholine
esterase in insects.

Emergence of
resistance [322,323]

Sr No. 2

Herbal Control

Compound/Organism Vectors Mechanism Remarks Reference

Illicium verum (EO) Aedes aegypti, Aedes
albopictus

Morphological aberrations at
death in larvae and pupae. -- [302]

Zanthoxylum limonella
(EO)

Aedes aegypti, Aedes
albopictus

Morphological aberrations at
death in larvae and pupae. -- [302]

Cymbopogon citratus,
Cymbopogon
winterianus

Aedes aegypti Good larvicidal activity. -- [303]

Eucalyptus citriodora,
Eucalyptus

camaldulensis
Aedes aegypti Good larvicidal activity. -- [303]

Achillea biebersteinii,
Juniperus procera Aedes aegypti Adult stage was more sensitive

than larvae. -- [304]

Annona glabra
(nanoparticles)

Aedes aegypti,
Aedes albopictus

Aedes albopictus found to be
more susceptible -- [305]

Pavetta tomentosa,
Tarenna asiatica. Aedes aegypti Larvicidal and

adulticidal activity. -- [306]

Ambrosia arborescens
(nanoparticles) Aedes aegypti Good larvicidal activity. -- [307]

Lippia alba, L.
origanoides,

Eucalyptus citriodora,
Cymbopogon flexuosus,

Citrus sinensis,
Cananga odorata,

Swinglea glutinosa,
Tagetes lucida

Aedes aegypti Pupcidal and
adulticidal activity. -- [308]
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Table 4. Cont.

Sr No. 3

Control through Entomopathogenic Bacteria

Compound/Organism Vectors Mechanism Remarks Reference

Bacillus thuringiensis
israelensis (Bti)

Aedes aegypti,
Aedes albopictus Good larvicidal activity.

Bacteria-derived
toxin kills

mosquitoes.
[310,324–328]

Wolbachia Aedes aegypti

-Reducing cellular resources for
viral replication

-immune-priming
-induction of phenoloxidase

-miRNA-dependent
immune pathway.

Less chances of
resistance

development.
[311,329–331]

Sr No. 4

Control through Entomopathogenic Fungi

Compound/Organism Vectors Mechanism Remarks Reference

Metarhizium anisopliae Aedes aegypti,
Aedes albopictus

Fungal hyphae penetration
leads to mosquito death.

Cost effective and
less chances of

resistance
development.

[312,332,333]

Beauveria bassiana Aedes aegypti,
Aedes albopictus

Fungal toxins (beauvericin A or
F, beauvericin E) kill

the mosquito.
-- [313,334–336]

Aspergillus flavus,
Aspergillus fumigatus,
and Aspergillus terreus

Aedes aegypti, -- -- [314,315,337]

Sr No. 5

Control through Toxorhynchites Mosquitoes

Compound/Organism Vectors Mechanism Remarks Reference

Toxorhynchites
splendens, Tx.
amboinensis,

and Tx. moctezuma

Aedes aegypti,
Aedes albopictus

Larvae voraciously eat the
larvae of Aedes aegypti and

Aedes albopictus.

Share the same
environment and is

therefore used
effectively for

biological control
of Aedes spp.
mosquitoes.

[316,338–340]

Sr No. 6

Control through Fishes

Compound/Organism Vectors Mechanism Remarks Reference

Poecilia reticulata,
Rasbora daniconius,

Aplocheilus dayi,
Oriochromis

mossambicus, O.
niloticus, and Puntius

bimaculatus

Aedes aegypti

Engulf mosquito larvae
and pupa.

Share the same
environment and
are therefore used
effectively for the
biological control

of mosquitoes.

[341]

Chinese cat fish Aedes aegypti [342]

Poecilia reticulata,
Puntius bimaculatus,
and Rasbora caveri

Ae. albopictus [343]

Gambusia affinis Aedes sp. [344]

Melanotaenia splendida
splendida Aedes aegypti [345]

Sr No. 7

Control through Tadpoles

Compound/Organism Vectors Mechanism Remarks Reference

Bufo, Ramanella,
Euphlyctis, and
Hoplobatrachus
(genera used)

Aedes aegypti
Various tadpoles (belonging to

various genera) effectively
engulfed the mosquito eggs.

Share the same
environment and
are therefore used
effectively for the
biological control

of mosquitoes.

[346]

Hoplobatrachus
tigerinus Aedes aegypti Effective engulfment of

mosquito larvae. [347]

Sr No. 8

Control through Copepods

Compound/Organism Vectors Mechanism Remarks Reference

Mesocyclops
aspericornis, Aedes aegypti

Effective engulfment of
mosquito larvae.

Share the same
environment and
therefore is used
effectively for the
biological control

of mosquitoes.

[348]

Macrocyclops albidus Ae. albopictus [349]

Mesocyclops
thermocyclopoide Aedes aegypti [350,351]
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Table 4. Cont.

Sr No. 9

Control through Genetic Tailoring/Modification

Compound/Organism Vectors Mechanism Remarks Reference

Ae. aegypti OX513A Aedes aegypti Compete natural mosquitoes
for food and reproduction and
release of males leads to >95%

decline in larval and pupal
populations.

Cost and
labor-intensive. [317,318,352–355]

Ae. aegypti OX5034 Aedes aegypti Cost and
labor-intensive. [356]

Sr No.10

Control through Sterile Insect Techniques (SIT)

Compound/Organism Vectors Mechanism Remarks Reference

Release of sterile
males in the

mosquito habitat.
Aedes aegypti,

Aedes albopictus

Disruption of reproductive
cycle; sterile males inseminate
wild females, and no progeny

is produced.

The technique is
specific and

ecological friendly.
[357–363]

6.3. Treatment for Zika Virus
6.3.1. Antivirals Against Zika Virus

Since the outbreak of ZIKV, many compounds have been proposed to possess antiviral
activity against ZIKV. However, in the majority of cases, treatment is symptomatic, and
no specific antiviral has been approved for ZIKV treatment. A myriad of approaches are
being adopted for searching for anti-ZIKV drugs. These strategies include the screening
of different compounds for their anti-ZIKV activity or through repurposing drugs that
are already being used for the treatment of other viral infections. In addition, the anti-
ZIKV activity of several herbal/plant extracts is also being evaluated. Broadly, anti-ZIKV
compounds have been divided into 2 major categories: (a) direct-acting antivirals, which
inhibit the viral replication cycle; (b) antivirals targeting host cells [75]; both of these are
summarized in Table 5. The former drugs act on the viral RNA-dependent RNA polymerase
(RdRp); NS5. Polymerase inhibitors and nucleoside analogs are included in this category.
They act by targeting the catalytic domain of NS5. The other category of drugs (host-
targeting antivirals) targets the host cell processes (that play an important role in viral
replication). Viruses need host nucleosides for their genome replication. The host-acting
antivirals can act on various steps of viral replication (host cell binding, entry, replication
complex formation, viral maturation, and release from the host cell). An advantage of
targeting host processes is that they are less susceptible to developing drug resistance [75].

Table 5. Synthetic antivirals tested against Zika Virus.

Direct Acting Antivirals

Sr No. Compound Name Viral Target Inhibition Results Reference

1 Sofosbuvir Pan-methyltransferase Demonstrated in vitro
antiviral activity

[364]
[365]
[366]

2 NITD008 Pyrimidine synthesis Demonstrated in vitro and
in vivo antiviral activity

[367]
[368]

3 Suramin NS3 Demonstrated in vitro
antiviral activity [369]

4 Temoporfin and
novobiocin NS2B-NS3 protease Demonstrated in vitro and

in vivo antiviral activity
[370]
[371]

5

Myricetin, luteolin,
isorhamnetin, apigenin,
curcumin, niclosamide,

and nitazoxanide.

NS2B-NS3 protease Demonstrated in vitro
antiviral activity

[372]
[370]
[371]

6 7-deaza-2-CMA,
Sofosbuvir, and BCX4430

RNA dependent RNA
polymerase

Demonstrated in vitro and
in vivo antiviral activity

[373]
[374]
[375]
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Table 5. Cont.

Antivirals inhibiting the host targets

Compound name Host Target Inhibition Results Reference

1 Ribavirin Purine synthesis Demonstrated in vitro and
in vivo antiviral activity [376]

2 Azathioprine Purine synthesis Demonstrated in vitro
antiviral activity [217]

3 6-azauridine,
5-fluorouracil Pirimidine synthesis Demonstrated in vitro

antiviral activity [377]

4 Chloroquine pH-dependent steps of
viral replication

Demonstrated in vitro
antiviral activity [378]

5 Saliphenylhalamide
(SaliPhe) Viral entry Demonstrated in vitro

antiviral activity [379]

6 Memantine, MK-801,
agmatine, and ifenprodil Neuronal cell death Demonstrated in vitro and

in vivo antiviral activity [380]

6.3.2. Medicinal Plants as Zika Virus Antivirals

Modern scientific research has found numerous synthetic antiviral medications that
are effective against a variety of viral infectious disorders throughout the past few decades.
Unfortunately, a wide range of negative consequences associated with these synthetic med-
ications have been documented. They may occasionally lose their potency against newly
arising virus resistance strains [381]. Furthermore, people in developing nations cannot
afford expensive synthetic medications for the treatment of viral infections. Medicinal
plants may offer economical and efficient antiviral medications. To date, no plant-derived
antiviral has been approved for clinical use against ZIKV. Various research has been con-
ducted to identify medicinal plants possessing anti-ZIKV activity, and they have been
summarized in Table 6.

Table 6. Medicinal/natural plants possessing anti-ZIKV activities.

Sr No. Compound Name Source Mode of Action Results Reference

1 Labyrinthopeptin Actinomadura
namibiensis Viral envelope disruption Demonstrated in vitro

antiviral activity [382]

2 Epigallocatechin Green Tea
Inhibits viral entry,

inhibition of NS3, and
NS2B3 protease

Demonstrated in silico
antiviral activity

[383]
[384]

[385,386]
[387]
[388]

3 Gossypol Plants of the
Gossypium genus -- -- [389]

[390]

4 Resveratrol Various plant species Inhibits viral replication Demonstrated in vitro
antiviral activity

[391]
[392]

5 Berberine Berberis vulgaris -- Demonstrated in vitro
antiviral activity [393]

6 Cephalotaxine Cephalotaxus drupacea Inhibits viral replication Demonstrated in vitro
antiviral activity [394]

7 Nanchangmycin Streptomyces
nanchangensis

Inhibits clathrin-mediated
endocytosis

Demonstrated in vitro
antiviral activity [395]

8 Quercetin Various plant species -- Demonstrated in vitro
antiviral activity [396]

9 Sophoraflavenone G Sophora flavescens RNA polymerase
interference in vitro antiviral activity [397]

10 Pinocembrin Honey and tea Inhibits the synthesis of
viral E and RNA in vitro antiviral activity [398]
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Table 6. Cont.

Sr No. Compound Name Source Mode of Action Results Reference

11 Sinefungin Streptomyces griseoleus Inhibits viral RNA
cap methylation

Demonstrated in silico
and in vitro

antiviral activity
[399]

12 Cavinafungin Colispora cavincola
Inhibits host signal

peptidase (in ER), thus
inhibiting viral synthesis

in vitro antiviral activity [400]

13 Emetine Carapichea ipecacuanha Inhibition of viral NS5
RdRp activity in vitro antiviral activity [401]

14 Lycorine Amaryllidaceae species Inhibition of viral NS5
RdRp activity

Demonstrated in vitro
and in vivo

antiviral activity
[402]

15 Naringenin Citrus fruits Inhibition of viral
replication and assembly in vitro antiviral activity [403]

16 Delphinidin Various fruits
Inhibition of viral

attachment and entry in
host cells

in vitro antiviral activity [388]

17 Baicalein Scutellaria baicalensis
& Scutellaria lateriflora -- Demonstrated in silico

antiviral activity [404]

18 Baicalin Scutellaria baicalensis
& Scutellaria lateriflora -- Demonstrated in silico

antiviral activity [404]

19 Ginkgolic acid Ginkgo biloba Inhibits the viral fusion In vitro antiviral activity [405]

7. Zika Virus and Its Potential Oncolytic Activities
ZIKV exhibits tropism for a variety of cell types including normal neural stem/progenitor

cells (NSCs/NSPs), microglial cells, astrocytes, and oligodendrocyte precursor cells [406–408].
Following the entry into cells, the virus disrupts growth and development, causing cell
death. Studies in various animals have also supported the association between ZIKV
infection and neurodegeneration. Inoculation of ZIKV in rhesus monkeys during early
pregnancy has been shown to result in the aberrations of the microglial cells and also
cortical plate thinning (3 weeks post-inoculation) [409,410]. Therefore, ZIKV is a promising
virus that may be used as an oncolytic virus against glioblastoma as it infects the tumor cells.
Particularly, in vitro studies have shown that the ZIKV NS5 protein inhibits the migration,
proliferation, and invasion of glioblastoma. Studies in mice have shown that it increases
the survival of C57/B6 mice with intracranial glioblastoma [411]. Another study in C57/B6
mice has shown that ZIKV increases the survival of mice with glioblastoma (with the sup-
pression of tumor volume as well as the absence of clinical signs) [412]. Further molecular
studies have revealed that ZIKV protease causes the cleavage of human cellular gasder-
min D (GSDMD), which causes the activation of pyroptosis (caspase-independent) [413].
ZIKV infection in immunocompetent dogs (suffering from glioblastoma) has also been
shown to decrease the tumor mass volume and ameliorate neurological signs. Further
investigations revealed an increase in the number of immune cell infiltration in the tumor
microenvironment [414]. This increase in the numbers of immune cells (CD4+ and CD8+
T cells) has also been observed in C57BL6/J mouse models (suffering from glioblastoma)
infected with ZIKV. This infiltration of T cells into the tumor microenvironment provides
enhanced protection to mice. ZIKV infection is associated with enhanced activation of the
type I interferon signaling pathway in glioblastoma cells and increases the glioblastoma
sensitivity to the PD-L1 blockade, which is an important immune checkpoint [415–417].

8. Future Perspectives in Zika Virus Control
Since its emergence in 1947, ZIKV has only caused widespread epidemics in the

last two decades. The outbreaks of ZIKV also suggest the dynamics of transmission
variability of ZIKV. The outbreak of ZIKV in the Americas caused a rapid increase in
studies of ZIKV pathogenesis and its control measures and treatment strategies. It is of
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prime importance to continue working on establishing virological and immunological
diagnostics kits for ZIKV with enhanced specificity and sensitivity. Another area of focus is
ZIKV pathogenesis. Finally, prevention and treatment strategies remain pivotal to curtail
ZIKV-related morbidity and mortality. Currently, many vaccines are being tested on animal
models, but very few have entered into clinical trials, there is a dire need to improve
the quality of good vaccine candidates. Plus, the development of genetically modified
mosquitoes could be a groundbreaking tool for controlling Zika virus transmission.
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