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Abstract: Colorectal cancer (CRC) is a leading cause of cancer-related deaths worldwide,
characterized by high incidence and poor survival rates. Glycosylation, a fundamental post-
translational modification, influences protein stability, signaling, and tumor progression,
with aberrations implicated in immune evasion and metastasis. This study investigates the
role of glycosylation-related genes (Glycosylation-RGs) in CRC using machine learning and
bioinformatics. Data from The Cancer Genome Atlas (TCGA) and the Molecular Signatures
Database (MSigDB) were analyzed to identify 67 differentially expressed Glycosylation-
RGs. These genes were used to classify CRC patients into two subgroups with distinct
survival outcomes, highlighting their prognostic value. Weighted gene coexpression net-
work analysis (WGCNA) revealed key modules associated with CRC traits, including
pathways like glycan biosynthesis and PI3K–Akt signaling. A machine-learning-based
prognostic model demonstrated strong predictive performance, stratifying patients into
high- and low-risk groups with significant survival differences. Additionally, the model
revealed correlations between risk scores and immune cell infiltration, providing insights
into the tumor immune microenvironment. Drug sensitivity analysis identified potential
therapeutic agents, including Trametinib, SCH772984, and Oxaliplatin, showing differential
efficacy between risk groups. These findings enhance our understanding of glycosylation
in CRC, identifying it as a critical factor in disease progression and a promising target for
future therapeutic strategies.
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1. Introduction
Colorectal cancer (CRC) is one of the leading causes of cancer-related mortality world-

wide, characterized by high incidence and poor survival in advanced stages [1–3]. Despite
significant advances in therapeutic strategies, the prognosis for CRC patients remains
suboptimal, largely due to tumor heterogeneity, delayed detection, and the limited sen-
sitivity of current diagnostic tools [4,5]. These challenges complicate early intervention
and necessitate the development of more precise diagnostic approaches. Understanding
these mechanisms is essential for improving early detection and developing personalized
therapeutic approaches [5–7].

Glycosylation is a fundamental post-translational modification that plays a critical
role in protein folding, stability, and signaling [8,9]. Aberrant glycosylation has been impli-
cated in various biological processes, including tumor progression, immune evasion, and
metastasis [10,11]. It affects cell–cell communication, alters the tumor microenvironment,
and enables cancer cells to evade immune surveillance [10,12,13]. Recent studies have
highlighted its potential as a biomarker for cancer prognosis and a target for therapeutic
interventions [14,15]. However, the specific contributions of glycosylation-related genes
(Glycosylation-RGs) to CRC remain inadequately explored.

The dynamic interplay between glycosylation and oncogenic pathways has garnered
attention, particularly in its role in modulating epithelial–mesenchymal transition (EMT),
angiogenesis, and drug resistance [16,17]. Furthermore, glycosylation patterns are known
to vary across different stages of cancer progression, presenting an opportunity to refine
staging and risk stratification for CRC patients [18,19].

Advancements in high-throughput sequencing technologies and bioinformatics have
provided an unprecedented opportunity to investigate the molecular landscape of CRC [20–22].
Computational methods, including machine learning algorithms, enable the integration of multi-
omics data to uncover novel biomarkers and predict patient outcomes with high accuracy [23,24].
Specifically, machine learning models can analyze complex datasets to predict patient-specific
responses to therapies, identify early-stage biomarkers with improved sensitivity, and stratify
patients into risk groups to guide personalized treatment strategies [21,25,26]. In recent years,
machine learning has emerged as a powerful tool for predicting cancer prognosis, particularly
in the context of biochemical recurrence. Some studies have employed the weighted gene
coexpression network analysis (WGCNA) method [27,28] with the Gene Expression Omnibus
(GEO) and The Cancer Genome Atlas (TCGA) to identify and filter differentially expressed genes
that are significantly associated with development of cancer progression and prognosis [29].
Integrating gene expression data with clinical outcomes can reveal critical pathways and identify
prognostic biomarkers [30,31]. This study focuses on the systematic analysis of glycosylation-
related genes in CRC, aiming to elucidate their role in tumor progression and the tumor immune
microenvironment [19,32–34].

Here, we conducted a comprehensive analysis using publicly available datasets to
identify glycosylation-related genes associated with CRC. We explored their differential
expression, constructed a prognostic risk model, and examined their correlation with
immune cell infiltration. Our findings provide valuable insights into the functional and
clinical significance of glycosylation-related genes in CRC, paving the way for potential
therapeutic strategies.
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2. Results
2.1. Identification of Differentially Expressed Overlapping Glycosylation-Related Genes

To identify glycosylation-related genes involved in CRC, we analyzed TCGA datasets
and identified 1661 differentially expressed genes (DEGs). Using the MSigDB database,
663 glycosylation-related genes were retrieved. Among these, 67 genes were identified as
differentially expressed (Supplementary File S1) and overlapping with glycosylation-related
genes. The volcano plot shows the distribution of DEGs, with significant upregulation
and downregulation patterns (Figure 1A). The Venn diagram highlights the intersection
between glycosylation-related genes and DEGs, underscoring the relevance of these genes
in CRC (Figure 1B).

Figure 1. Identification of differentially expressed glycosylation-related genes in CRC. (A) Volcano
plot displaying the distribution of differentially expressed genes in the TCGA-COAD dataset. Blue
dots indicate downregulated genes, red dots indicate upregulated genes, and black dots represent non-
significant genes. The x-axis shows log2 (fold change), while the y-axis shows −log10 (FDR). (B) Venn
diagram illustrating the overlap between glycosylation-related genes and differentially expressed
genes in TCGA-COAD. The intersection identifies 67 overlapping genes critical for further analysis.

Functional enrichment analysis of the 67 overlapping genes revealed significant in-
volvement in biological pathways, such as glycan biosynthesis, N-glycan modification, and
cell adhesion processes. These pathways are known to contribute to tumor progression and
metastasis, suggesting their critical role in CRC.

2.2. Identification of Glycosylation-Related Subgroups

Unsupervised consensus clustering was performed using the expression profiles of the 67
glycosylation-related genes, classifying CRC patients into two distinct subgroups, C1 and C2. The
optimal number of clusters (k = 2) was determined using the consensus cumulative distribution
function (CDF) (Figure 2A). Principal component analysis (PCA) confirmed the clear separation
between the two subgroups, indicating distinct molecular characteristics (Figure 2B). Kaplan–
Meier survival analysis revealed that patients in subgroup C1 exhibited significantly poorer
survival outcomes compared to those in subgroup C2 (p < 0.001, Figure 2C). The heatmap of gene
expression further illustrated distinct glycosylation-related gene expression patterns between the
two subgroups, correlating with clinical traits such as tumor stage and metastasis (Figure 2D). A
heatmap illustrating the differences in immune cell composition between the subgroups highlights
variations in the infiltration of key immune cell types (Figure 2E). Figure 2F further quantifies these
differences through boxplots, demonstrating statistically significant variations in specific immune
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cell populations, such as macrophages (M0, M1, and M2), dendritic cells, and Tregs between
the subgroups. These findings provide insights into the tumor immune microenvironment and
suggest that glycosylation-related molecular subtypes may be associated with distinct immune
responses, which could have implications for immunotherapy strategies in CRC.

Figure 2. Identification of glycosylation-related subgroups in CRC. (A) Consensus matrix heatmap
demonstrating optimal clustering into two subgroups (C1 and C2) using glycosylation-related genes.
(B) Principal component analysis (PCA) showing the separation between subgroups C1 and C2.
(C) Kaplan–Meier survival curves illustrating overall survival differences between the subgroups,
with subgroup C1 showing poorer survival outcomes (p = 0.043). The x-axis represents time in
months. (D) Heatmap displaying glycosylation-related gene expression in subgroups C1 and C2,
alongside clinicopathological characteristics. (E) Heatmap depicting immune cell infiltration patterns
in the two subgroups. (F) Boxplots showing significant differences in the abundance of specific
immune cell types between subgroups C1 and C2 (e.g., macrophages M0, macrophages M1, and
macrophages M2, ns: not significant, * p < 0.05, ** p < 0.01, and *** p < 0.001).
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2.3. Identification of Highly Correlated Gene Modules in CRC

Using WGCNA, we constructed a gene coexpression network to identify modules
associated with CRC traits. The turquoise module exhibited the strongest correlation with
tumor traits and included several glycosylation-related genes (Figure 3A–D). Functional
enrichment analysis of the turquoise module genes highlighted pathways such as cGMP–
PKG signaling, cytoskeleton in muscle cells, extracellular matrix organization, and PI3K–
Akt signaling (Figure 3E). Gene significance and module membership analysis revealed
key glycosylation-related genes. These genes are known to influence tumor invasiveness
and immune suppression [35].

Figure 3. Identification of highly correlated gene modules using weighted gene coexpression network
analysis (WGCNA). (A) Soft thresholding power determination for constructing a scale-free network,
showing the scale-free topology fit index and mean connectivity for different power values. (B) Cluster
dendrogram of glycosylation-related genes grouped into distinct modules, with colors representing module
membership. (C) Module–trait relationships illustrating correlations between modules (e.g., turquoise,
blue, brown) and clinical traits, such as tumor presence. (D) Scatter plot showing the correlation between
module membership and gene significance in the turquoise module, which is highly associated with CRC.
(E) KEGG pathway enrichment analysis for genes in the turquoise module, highlighting pathways such as
“focal adhesion,” “PI3K–Akt signaling,” and “ECM–receptor interaction.
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2.4. Identification of Glycosylation-Related Gene Clusters

Consensus clustering was extended to identify four distinct gene clusters (C1–C4) us-
ing glycosylation-related genes (Figure 4A). PCA showed clear separation of these clusters
(Figure 4B), while Kaplan–Meier analysis revealed significant survival differences, with
cluster C1 associated with the poorest prognosis (Figure 4C). A heatmap illustrates the
differential expression of glycosylation-related genes across clusters, along with clinico-
pathological annotations (Figure 4D).

Figure 4. Identification of glycosylation-related gene clusters in CRC. (A) Consensus matrix heatmap
defining four gene clusters (C1, C2, C3, and C4) based on glycosylation-related gene expression.
(B) Principal component analysis (PCA) visualizing the separation of samples into four clusters.
(C) Kaplan–Meier survival curves showing significant differences in overall survival among the four
clusters (p = 0.0018), with cluster C1 demonstrating the poorest survival. (D) Heatmap depicting
the expression patterns of glycosylation-related genes across the four clusters, alongside associated
clinicopathological characteristics.

2.5. Construction of a Glycosylation-Related Prognostic Risk Model

LASSO regression and Cox proportional hazards analysis were employed to construct a
prognostic risk model based on glycosylation-related genes. Four genes (TUB, TCF7L1, MPP2,
and TMEM59L) were selected for the final model, which stratified patients into high- and
low-risk groups (Figure 5A,B). Kaplan–Meier survival analysis demonstrated that high-risk
patients had significantly worse survival outcomes (p < 0.00013, Figure 5C) compared to those in
the low-risk group. Furthermore, the distribution of risk scores and survival outcomes is shown
in Figure 5D. The top panel displays the stratification of patients by risk score, while the middle
panel illustrates survival status, where green dots denote living patients and orange triangles
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represent deceased individuals. The heatmap in the bottom panel highlights the expression
profiles of the selected prognostic genes across the high- and low-risk groups, demonstrating
distinct expression patterns correlating with risk stratification.

Figure 5. Construction of a glycosylation-related prognostic risk model for CRC. (A) Coefficient
profiles of selected genes during LASSO regression. Different-colored lines represent individual
genes. (B) Partial likelihood deviance plot to determine the optimal lambda value for the model,
with the minimum value marked by a dotted line. (C) Kaplan–Meier survival curves showing a
significant difference in overall survival between high-risk (red) and low-risk (blue) groups in the
training dataset (p = 0.00013). (D) Distribution of risk scores, survival status, and gene expression
profiles in the high- and low-risk groups. The top panel shows risk scores, the middle panel displays
survival outcomes (green dots: alive; orange triangles: deceased), and the bottom heatmap illustrates
the expression patterns of selected prognostic genes.

2.6. Validation of the Glycosylation-Related Prognostic Risk Model

The glycosylation-related prognostic risk model for CRC was validated using time-
dependent ROC curves, as shown in Figure 6A. The model demonstrated good predictive
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accuracy for overall survival, with AUC values of 0.7, 0.7, and 0.74 for 1-year, 3-year, and
5-year survival, respectively. Figure 6B presents boxplots comparing the expression levels of the
key prognostic genes, TUB and MPP2, between high- and low-risk groups. Both genes were
significantly overexpressed in the high-risk group (*** p < 0.001), supporting their relevance to
the risk stratification. Kaplan–Meier survival analysis for individual genes (Figure 6C) revealed
that high expression levels of TUB and MPP2 were significantly associated with poorer overall
survival (log-rank p = 0.019 and p = 0.00094, respectively). These findings further confirm the
robustness and prognostic value of the model in predicting CRC outcomes.

Figure 6. Validation of the glycosylation-related prognostic risk model for CRC. (A) Time-dependent
ROC curves for predicting overall survival at 1, 3, and 5 years, showing AUC values of 0.7, 0.7,
and 0.74, respectively. (B) Boxplots comparing the expression levels of the key prognostic genes
(TUB and MPP2) between high- and low-risk groups, indicating significant differences (*** p < 0.001).
(C) Kaplan–Meier survival curves for individual genes TUB (left) and MPP2 (right), with high
expression associated with poorer overall survival (p = 0.019 and p = 0.00094, respectively).
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2.7. Correlation Between Risk Scores and Immune Cell Infiltration

CIBERSORT analysis revealed significant correlations between glycosylation-related
risk scores and immune cell infiltration. High-risk patients exhibited increased infiltration
of suppressive immune cells, such as regulatory T cells and M2 macrophages, alongside
reduced activation of cytotoxic T cells and NK cells. These findings suggest that aber-
rant glycosylation may contribute to an immunosuppressive tumor microenvironment
(Figure 7A–K).

Figure 7. Correlation between immune cell infiltration and glycosylation-related risk scores in CRC.
(A–J) Scatter plots showing significant correlations between the glycosylation-related risk score and
the infiltration levels of various immune cell types, including activated (A) dendritic cells, (B) resting
dendritic cells, (C) macrophages M0, (D) macrophages M1, (E) macrophages M2, (F) regulatory T cells,
(G) resting memory CD4+ T cells, (H) monocytes, (I) neutrophils, and (J) resting mast cells. Each
purple line indicates the linear regression trend, with shaded areas representing the 95% confidence
interval. (K) Heatmap illustrating the relationship between the expression of key prognostic genes
(TUB and MPP2) and immune cell infiltration. Red indicates positive correlation, and blue indicates
negative correlation (* p < 0.05, ** p < 0.01, and *** p < 0.001).

Heatmap analysis further illustrated the relationship between key glycosylation-
related genes and immune cell infiltration, highlighting their potential role in modulating
immune escape mechanisms in CRC. These findings provide a comprehensive view of the
molecular and immunological landscape shaped by glycosylation in CRC progression.

2.8. Drug Sensitivity Prediction in High- and Low-Risk Groups

To investigate potential therapeutic strategies, drug sensitivity analysis was conducted
using the oncoPredict algorithm. The analysis identified the top five drugs with the largest
and smallest differences in predicted sensitivity between high-risk and low-risk groups.
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The low-risk group exhibited significantly higher sensitivity to drugs targeting the
MAPK pathway, including trametinib (Figure 8A) and SCH772984 (Figure 8B), as well
as the chemotherapy agent oxaliplatin (Figure 8C). Acetalax, a BCL-2 inhibitor, and VX-
11e, an ERK inhibitor, also showed significantly enhanced efficacy in the low-risk group
(Figure 8D,E). These findings highlight the potential for these agents to provide improved
therapeutic outcomes in patients with favorable risk profiles.

Figure 8. Drug sensitivity analysis (IC50) of high- and low-risk groups predicted by oncoPredict.
Boxplots display the top five drugs with the largest differences in predicted sensitivity between
high-risk (red) and low-risk (green) groups and the top five drugs with the smallest differences.
(A) Trametinib, (B) SCH772984, (C) oxaliplatin, (D) Acetalax, and (E) VX-11e are the top five drugs
with significantly higher sensitivity in the low-risk group. Conversely, (F) AZD8055, (G) doxorubicin,
(H) axitinib, (I) NU7441, and (J) ZM447439 showed lower differences in sensitivity between
the groups.

In contrast, the drugs AZD8055, doxorubicin, axitinib, NU7441, and ZM447439 demon-
strated higher predicted sensitivity between high-risk groups (Figure 8F–J). These results
suggest that these agents may exhibit significant stratified efficacy in CRC treatment based
on the identified glycosylation-related risk model. These findings provide a basis for further
exploring the translational application of these drugs in stratified CRC treatment, enabling
personalized therapeutic strategies to improve patient outcomes.

3. Discussion
This study systematically analyzed glycosylation-related genes in colorectal cancer

(CRC) and established their potential role in tumor progression, prognosis, and the tumor
immune microenvironment. Differential expression analysis revealed that 67 glycosylation-
related genes were significantly dysregulated in CRC, suggesting their functional involve-
ment in oncogenic pathways (Figure 1A,B) [36,37].

The identification of CRC subgroups based on glycosylation-related gene expression
profiles highlighted distinct clinical and molecular characteristics. Subgroup C2 demon-
strated significantly worse survival outcomes compared to C1, emphasizing the prognostic
value of glycosylation-related genes in CRC (Figure 2A–D). These findings align with pre-
vious reports implicating glycosylation in tumor heterogeneity and aggressiveness [11,38].
Notably, these subgroups provide a framework for personalized treatment strategies, un-
derscoring the potential of molecular classification in optimizing patient management [39].



Int. J. Mol. Sci. 2025, 26, 1648 11 of 17

Using WGCNA, the turquoise module was identified as a key coexpression network
associated with CRC traits. Functional enrichment analysis highlighted the role of this
module in critical pathways such as glycan biosynthesis, focal adhesion, and PI3K–Akt
signaling, supporting its biological relevance in CRC progression (Figure 3A–E). The strong
correlation between these pathways and tumor invasiveness, metastasis, and immune
evasion further validates the significance of glycosylation in the broader context of cancer
biology [40].

The construction of a prognostic risk model based on glycosylation-related genes
represents a significant advance in CRC management. High-risk patients identified by the
model exhibited markedly poorer survival, and the model demonstrated robust predictive
performance across multiple datasets (Figure 5A–D, Figure 6A–C). These results underscore
the clinical utility of glycosylation-related genes as prognostic biomarkers. Additionally, the
machine learning approach used to build this model exemplifies how computational tools
can optimize biomarker selection and stratification processes, ensuring higher accuracy
and reproducibility [41,42].

Furthermore, this study revealed significant associations between glycosylation-
related risk scores and immune cell infiltration, including macrophages, regulatory T cells,
and neutrophils. These findings suggest that glycosylation may influence the tumor im-
mune microenvironment, offering new insights into potential immunotherapeutic strategies
(Figure 7A–K). Specifically, glycosylation patterns could affect the expression of immune
checkpoints or the recruitment of suppressive immune cells, which are critical in shaping
the tumor microenvironment [43].

The translational potential of targeting glycosylation pathways in CRC treatment is
immense. Aberrant glycosylation could serve as both a diagnostic marker and a thera-
peutic target. For instance, glycosylation inhibitors or monoclonal antibodies targeting
glycan-modified proteins might enhance the efficacy of existing therapies, including im-
mune checkpoint inhibitors and chemotherapy [44]. In addition, the interplay between
glycosylation and immune cell recruitment presents opportunities to modulate the tumor
immune microenvironment, potentially enhancing anti-tumor immunity. The integration of
glycosylation-targeted therapies with existing treatment regimens could lead to synergistic
effects, improving patient outcomes [45].

Machine learning played a pivotal role in this study, enabling the integration of
high-dimensional data and the identification of robust biomarkers. Its application to risk
stratification and survival prediction highlights its value in precision oncology. Future
research should incorporate additional omics layers, such as metabolomics and proteomics,
to develop more comprehensive models. Integrating these models with clinical data could
further refine prognostic predictions and guide individualized therapeutic strategies. More-
over, exploring deep learning techniques could further enhance the predictive capabilities
of models used for biomarker discovery [46,47].

Despite its contributions, this study has limitations including overfitting due to small
sample sizes, lack of specific gene markers for CRC prognosis, and insufficient external
validation. Validating the glycosylation-related prognostic risk model’s predictive power
using in vitro and in vivo validation would indeed provide direct experimental confirma-
tion. The reliance on publicly available datasets may introduce biases related to cohort
selection and data quality. Experimental validation of identified biomarkers in larger, more
diverse cohorts is necessary to confirm their clinical utility [48]. Additionally, while the
prognostic model showed high predictive accuracy, external validation in prospective stud-
ies is required to establish its generalizability. A further limitation is the lack of mechanistic
studies to directly validate the functional role of glycosylation in CRC progression and
immune modulation, which should be a focus for future research [49].
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The integration of drug sensitivity analysis represents a significant expansion by
this study, providing novel insights into potential therapeutic strategies for CRC patients
stratified by glycosylation-related risk groups. Using oncoPredict, we identified five drugs
(trametinib, SCH772984, oxaliplatin, Acetalax, and VX-11e) with significant differential
sensitivity between high- and low-risk groups (Figure 8A–E). These findings underscore
the translational potential of tailoring therapeutic approaches to molecularly defined
subgroups. The higher sensitivity of the low-risk group to trametinib and SCH772984
highlights the relevance of targeting the MAPK signaling pathway, which is frequently
dysregulated in CRC. This pathway, activated downstream of cGMP-dependent protein
kinases (PKG) in response to cGMP signaling (Figure 3E), has been implicated in increasing
tumor cell stemness and metastasis [50]. The cGMP–PKG–MAPK cascade underscores a
critical molecular mechanism by which tumor progression and therapy resistance may be
mediated, providing a further rationale for therapeutic intervention in this pathway.

Additionally, the increased efficacy of oxaliplatin in the low-risk group suggests that
stratification based on glycosylation-related risk scores may refine patient selection for
standard chemotherapy regimens. Acetalax, a BCL-2 inhibitor, demonstrated enhanced
sensitivity in the low-risk group, pointing to the potential of apoptosis-targeting therapies
in this cohort. Similarly, VX-11e further supports the utility of targeting the ERK pathway.
In contrast, drugs such as AZD8055, doxorubicin, axitinib, NU7441, and ZM447439 showed
lower differences in predicted sensitivity between high- and low-risk groups (Figure 8F–
J). This suggests that these agents may not exhibit substantial stratified efficacy in CRC
treatment based on glycosylation-related risk models. The identification of these drugs also
underscores the specificity of certain therapeutic agents to molecularly distinct subgroups.

These drug sensitivity predictions extend the utility of the glycosylation-related prog-
nostic model beyond survival forecasting to therapeutic guidance. By integrating molecular
stratification with drug efficacy predictions, this study provides a framework for precision
oncology. Future experimental validation of these predictions and exploration of combina-
tion therapies targeting glycosylation-related pathways and tumor-specific vulnerabilities
are warranted.

In conclusion, our findings highlight the critical role of glycosylation in CRC progres-
sion and its potential as a biomarker and therapeutic target. By leveraging machine learning
and advanced bioinformatics, this study provides a robust framework for understanding
glycosylation’s contributions to CRC and opens avenues for innovative therapeutic inter-
ventions. Further experimental and clinical investigations are warranted to fully realize the
potential of glycosylation-related therapies in CRC management.

4. Materials and Methods
4.1. Data Collection and Preprocessing

Gene expression profiles and corresponding clinical data for colorectal cancer (CRC)
were downloaded from The Cancer Genome Atlas (TCGA) database. The dataset included
RNA-seq data normalized as fragments per kilobase of transcript per million mapped reads
(FPKM) values. Clinical information included patient demographics, tumor stage, and
survival outcomes.

4.2. Identification of Glycosylation-Related Genes (Glycosylation-RGs)

To investigate the role of glycosylation-related genes in CRC, a comprehensive list of
glycosylation-related genes was obtained by searching the Molecular Signatures Database
(MSigDB; URL: https://www.gsea-msigdb.org/gsea/msigdb/human/collections.jsp) (ac-
cessed on 19 August 2024) using the keyword “Glycosylation”. A total of 663 glycosylation-
related genes were retrieved for further analysis.

https://www.gsea-msigdb.org/gsea/msigdb/human/collections.jsp
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4.3. Differential Gene Expression Analysis

Differentially expressed genes (DEGs) between CRC and adjacent normal tissue sam-
ples were identified using the “limma” R package. Genes with |log2 fold change| > 1 and
adjusted p-value < 0.05 were considered significantly differentially expressed. Overlapping
genes between DEGs and the 663 glycosylation-related genes were identified using Venn
diagram analysis.

4.4. Consensus Clustering

Unsupervised consensus clustering was performed using the “ConsensusCluster-
Plus” R package to classify CRC samples based on the expression profiles of overlapping
glycosylation-related genes. The optimal number of clusters was determined using the
consensus cumulative distribution function (CDF), which assesses the stability of clusters
by evaluating consensus values over repeated iterations. We selected k = 2 as the optimal
number of clusters.

4.5. Weighted Gene Coexpression Network Analysis (WGCNA)

WGCNA was conducted to construct coexpression networks and identify gene mod-
ules associated with CRC traits. A soft thresholding power was selected to achieve scale-free
topology, and modules were correlated with clinical traits to identify the most relevant
module for downstream analysis.

4.6. Prognostic Model Construction and Validation

LASSO regression and multivariate Cox proportional hazards analysis were used
to develop a glycosylation-related prognostic risk model. Gene expression profiles and
clinical survival data were obtained from The Cancer Genome Atlas (TCGA) dataset,
where preprocessing steps included normalization and log2 transformation to reduce batch
effects and enhance comparability. In LASSO regression, the optimal λ (lambda) value
was selected using 10-fold cross-validation, minimizing the mean squared error to balance
model complexity and predictive accuracy. The Cox proportional hazards model was
then applied to refine the selection of significant prognostic genes. A risk score formula
was then generated based on the expression levels of the four selected genes, weighted
by their LASSO-derived coefficients, and patients were stratified into high-risk and low-
risk groups using the median risk score as the cutoff. We used the TCGA-CRC dataset
for model development and validation. The dataset was randomly split into a training
set (70%) and a testing set (30%) to evaluate the generalizability of our model. Model
performance was assessed through Kaplan–Meier survival analysis, which demonstrated
a significant survival difference between the two groups (p < 0.001), and time-dependent
receiver operating characteristic (ROC) curves, achieving AUC values of 0.7, 0.7, and 0.74
for 1-year, 3-year, and 5-year survival predictions, respectively.

4.7. Immune Infiltration Analysis

The relative abundance of immune cell types in CRC samples was estimated using the
CIBERSORT algorithm. Correlation analysis was performed to evaluate the relationship
between glycosylation-related risk scores and immune cell infiltration levels. A heatmap
was generated to visualize the association between key prognostic genes and immune
cell infiltration.

4.8. Functional Enrichment Analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analyses were performed for genes in the turquoise module identified by
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WGCNA. Enrichment analyses were conducted using the “clusterProfiler” R package 4.0,
and pathways with adjusted p-values < 0.05 were considered significantly enriched.

4.9. Drug Sensitivity Analysis

Drug sensitivity predictions were performed using the oncoPredict R package, an
extension of the earlier pRRophetic tool developed by Paul Geeleher and colleagues at the
University of Minnesota. OncoPredict predicts in vivo or cancer patient drug response
based on gene expression data and IC50 values derived from cell line screening data. This
package builds on the oncoPredict algorithm [51], which was introduced in 2014 and
employs ridge regression to model relationships between baseline gene expression and
in vitro drug sensitivity in cell lines [52].

4.10. Statistical Analysis

All statistical analyses were performed in R software (version 4.4.1), and a p-value < 0.05 was
considered statistically significant.

5. Conclusions
This study systematically highlights the significance of glycosylation-related genes in

colorectal cancer (CRC) progression and prognosis. By integrating bioinformatics and ma-
chine learning approaches, we identified key glycosylation-related genes and constructed a
robust prognostic risk model capable of stratifying patients into high- and low-risk groups.
These findings not only deepen our understanding of the molecular mechanisms under-
lying CRC but also underscore the pivotal role of glycosylation in modulating the tumor
immune microenvironment.

The addition of drug sensitivity analysis further expands the translational potential of
this work. By leveraging oncoPredict, we identified five key drugs (trametinib, SCH772984,
oxaliplatin, Acetalax, and VX-11e) with significant differences in predicted efficacy between
high- and low-risk groups. These findings suggest that the identified risk model can serve
not only as a prognostic tool but also as a guide for personalized therapeutic strategies. The
low-risk group demonstrated higher sensitivity to targeted agents such as trametinib and
SCH772984, emphasizing the relevance of MAPK pathway inhibitors, while also exhibiting
enhanced efficacy with standard chemotherapy agents like oxaliplatin. These insights
pave the way for integrating molecular stratification with personalized drug selection to
optimize CRC treatment outcomes.

Furthermore, the study identified five additional drugs (AZD8055, doxorubicin, ax-
itinib, NU-7441, and ZM447439) that showed lower sensitivity differences between risk
groups. While these agents may not have stratified efficacy based on the current risk
model, their identification provides additional context for exploring broader therapeutic
applications in CRC treatment. The combined insights from prognostic modeling and
drug sensitivity analysis highlight the value of integrating molecular biomarkers with
therapeutic strategies to refine treatment paradigms.

The study’s results suggest that targeting aberrant glycosylation could hold promise
for improving therapeutic strategies, including enhancing the efficacy of immune check-
point inhibitors and chemotherapy. Furthermore, the integration of glycosylation-related
biomarkers into clinical workflows may refine CRC staging, improve early detection, and
inform tailored treatment regimens. Future studies should focus on validating these find-
ings in diverse cohorts and experimental settings to fully realize the clinical potential of
glycosylation-related therapies in CRC.
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