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Abstract: Afatinib-induced tumor and microenvironment modifications in head and neck
squamous cell carcinoma were evaluated by spatial transcriptomics in surgical specimens
and RNA-sequencing in tumor biopsies of patients included in the EORTC-90111-24111
window-of-opportunity study. The aim was to explore tumor evolution and composition
under anti-HER therapy. Based on our previous investigations by RNA-seq on tumor biop-
sies, surgical slides of ID08 and ID15 from the epithelial-to-mesenchymal (EMT) cluster and
ID30 from the non-EMT cluster were investigated with spatial transcriptomics. Dimension
reduction in ID30 revealed 14 clusters, with clusters overlapping three tumor nodules and
the stroma. Differential expression analysis between tumor nodules showed enrichment of
the hallmark EMT genelist, with 123 genes in common between the analyses. These genes
were involved in PDGF and MET signaling pathways. By comparing gene expression in
paired tumor biopsies and the 123 genes from differential analyses obtained in ID30, a list of
13 genes involved in cancer pathways and EMT emerged, which were also highly expressed
in ID08 and ID15. These results show a progressive apparition of genes implicated in EMT,
MET, and PDGF pathways in tumors after afatinib. Notably, a list of 13 genes emerged
which may contain targets to prevent tumor evolution after anti-HER therapy.

Keywords: head and neck squamous cell carcinoma; afatinib; window-of-opportunity
study; tumor microenvironment; spatial transcriptomics

1. Introduction
With 650,000 cases worldwide, squamous cell carcinoma of the head and neck (HN-

SCC) is the sixth most common cancer [1]. Curative treatment for early disease (American
joint commission on cancer (AJCC) stages I and II) includes radiotherapy or surgery.
Standard treatment for stage III and IV disease is multimodal and includes primary chemo-
radiation or surgery followed by post-operative (chemo)radiotherapy. In Europe, cetuximab
plus platin-based chemotherapy (EXTREME regimen) is administered as first-line treat-
ment for programmed death-ligand (PD-L)1 negative recurrent and/or metastatic (R/M)
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HNSCC [2]. Cetuximab is a monoclonal antibody targeting the epidermal growth factor
receptor (EGFR), which is a member of the human epidermal growth factor (HER)/ErbB
family of receptor tyrosine kinases, wherein activation is known to induce survival and
tumor growth of cancer cells [3]. However, the benefit of the EXTREME regimen is low,
median survival being only 10.1 months [2] with few patients benefiting of the long-term
therapeutic effects of these treatments. A better understanding of the resistance mechanisms
involved could be beneficial to improve treatment response. Notably, the activation or up-
regulation of other members of the ErbB receptor family (e.g., following cetuximab [4]) may
lead to resistance to anti-EGFR therapy. Because HER2 signaling uses many of the same
EGFR downstream effectors, it has been shown to be linked to cetuximab resistance [5]. The
fourth member of the family, HER-4, is a transmembrane tyrosine kinase, which can also
activate downstream pathways linked to tumor growth. Blocking several HER receptors
may, therefore, be of interest.

Afatinib is an oral, irreversible inhibitor of the EGFR, HER2, and HER4 kinases
(“pan-HER” inhibitor) and blocks the signaling of all homodimers and heterodimers of
the HER family [6]. Afatinib has shown activity in pre-clinical HNSCC studies [7,8] and
improves progression-free survival (median = 2.6 months) compared with methotrexate
for R/M HNSCC after platinum therapy [9]. We performed a window-of-opportunity
(WOO) study with afatinib (EORTC-90111-24111) [10] in primary HNSCC and recently
reported our translational findings [11]. In this study, we have shown on paired biopsies
that some patients developed epithelial-to-mesenchymal transition (EMT) and activation
of cancer-associated fibroblasts (CAFs) after only two weeks of preoperative treatments,
while other patients did not. Safety, clinical, and translational data for cetuximab studied in
a similar study design (CHIRON study, NCT00714649) showed similar conclusions [12,13].
Emerging techniques for genome-wide spatial transcriptomics hold great promise for
producing precise molecular maps that get through bulk RNA-sequencing’s loss of spatial
information. Importantly, these technologies utilize an on-slide cDNA synthesis method
that records gene expression in the structure of intact tissue, meaning that gene expression
from tumor and stroma can be analyzed separately [14]. We analyzed gene expression in
three surgical specimens of patients included in the EORTC 90111-24111 WOO study to
increase our understanding of gene expression in the context of the spatial organization of
afatinib-treated HNSCC.

The goal of the present article is to decipher the molecular behavior of tumor cells
and their stroma separately following in vivo exposure to afatinib. Therefore, we explore
further spatial transcriptomic data of selected samples of the EORTC-90111-24111 study.
The second objective is to confirm data from previous investigations using multiplex
immunohistochemistry and bulk RNA-sequencing on tumor biopsies [11], by studying
gene expression in the stromal and tumor compartments separately, with a focus on EMT.

2. Results
2.1. Patients

After careful selection (RNA quality and H&E staining), surgical sections from four
patients were selected for spatial transcriptomic analyses. Three patients from the afatinib
arm were used, notably two patients (ID08 and ID15) from the cluster 1 (i.e., patients
developing EMT following afatinib, as previously described in translational analyses of
their paired tumor biopsies [11]) and one patient (ID30) from the cluster 2 (i.e., a patient
not developing EMT in post-treatment biopsies [11]). A control patient had been included
in the experiments (patient ID14 from study EORTC90111), but after verification of the
tissue analyzed on the Visum slide, a procedural error in the experiment rendered the
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tissue analysis impossible. We, therefore, decided to exclude this patient from the spatial
transcriptomic translational analyses. Patient characteristics are available in Table 1

Table 1. Patient characteristics.

ID08 ID15 ID30

Sex Male Female Male
Smoker Yes No Yes

Pathological status
pT T2 T2 T2
pN N0 N2c N1

Grade Well-differentiated Moderately
differentiated Poorly differentiated

Localization Oral cavity Oral cavity Oropharynx
RECIST v1.1 after

afatinib Stable disease Stable disease Stable disease

Relapse No No Local: 28 months
Regional: 38 months

RECIST: Response Evaluation Criteria in Solid Tumors.

2.2. Quality Control

Mean DV200 for the RNA of the three samples included in the analysis was 46.9 (DV200
for ID08, ID15 and ID30 was 53.9, 41.7 and 45.0, respectively). The arbitrary stringent cut-off
of 500 expressed genes per spot and 500 UMIs per spot showed that 96.1% of spots from the
selected region of interest could be included in the analyses (Figure 1). Unfortunately, in the
case of this study, quality control (tumor evaluation on HE staining or DV200) on available
FFPE surgical sections from the patients included in the CHIRON study conducted by
Schmitz et al. [12] did not allow the realization of spatial transcriptomic analysis.
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spots represented on the hematoxylin and eosin slides in a region of interest. A high number of 
genes is represented in red, a lower number of genes is represented in blue. (C) Violin plots showing 
number of genes per spot in the surgical specimens. The dotted red line represents the 500 arbitrary 
thresholds. 
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stochastic neighbor embedding (t-SNE) in our samples. Patient ID30, classified in the non-
EMT cluster 2 after afatinib in our previous results [11], showed 14 different clusters inside 
the region of interest (Figure 2A,B). In the ID30 sample, the clustering perfectly matched 
the tumor compartments (tumor nodules and stroma) visible on the HE section. 

Based on the dimension reduction and clustering, we decided to merge clusters in 
the “tumor nodule (TN) 1” area (top left tumor nodule with clusters 2, 4 and 12); “TN2” 
(middle tumor nodule with cluster 1 only); “TN3” (bottom right tumor nodule with clus-
ter 9 and 0). Similarly, the TME, or regions surrounding the “tumor nodules” were classi-
fied as followed: TME1 (clusters 8, 11, and 13, around TN1) and TME3 (clusters 3 and 7, 
around TN3). Using the epithelial and fibroblast gene lists of Puram et al. [15], we were 
able to confirm that the clusters with a high epithelial score were in the subgroups TN 1, 
2, and 3 (Figure 2C) and the clusters with a high fibroblast score were in the subgroups 
TME 1 and 3 (Figure 2D). Cluster 5, 6, and 10 were not included in a subgroup because 
they were not limited to a single tumor nodule. 

Figure 1. Surgical specimens and nFeature count. (A) Surgical specimens of three HNSCC tumors
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spots represented on the hematoxylin and eosin slides in a region of interest. A high number
of genes is represented in red, a lower number of genes is represented in blue. (C) Violin plots
showing number of genes per spot in the surgical specimens. The dotted red line represents the
500 arbitrary thresholds.

2.3. Dimension Reduction and Clustering

Dimension reduction and clustering of the spots were realized using t-distributed
stochastic neighbor embedding (t-SNE) in our samples. Patient ID30, classified in the
non-EMT cluster 2 after afatinib in our previous results [11], showed 14 different clusters
inside the region of interest (Figure 2A,B). In the ID30 sample, the clustering perfectly
matched the tumor compartments (tumor nodules and stroma) visible on the HE section.

Based on the dimension reduction and clustering, we decided to merge clusters in
the “tumor nodule (TN) 1” area (top left tumor nodule with clusters 2, 4 and 12); “TN2”
(middle tumor nodule with cluster 1 only); “TN3” (bottom right tumor nodule with cluster
9 and 0). Similarly, the TME, or regions surrounding the “tumor nodules” were classified
as followed: TME1 (clusters 8, 11, and 13, around TN1) and TME3 (clusters 3 and 7, around
TN3). Using the epithelial and fibroblast gene lists of Puram et al. [15], we were able to
confirm that the clusters with a high epithelial score were in the subgroups TN 1, 2, and 3
(Figure 2C) and the clusters with a high fibroblast score were in the subgroups TME 1 and
3 (Figure 2D). Cluster 5, 6, and 10 were not included in a subgroup because they were not
limited to a single tumor nodule.

In patient ID08 and ID15, classified in the EMT cluster 1 after afatinib in our previous
results [11], dimension reduction and clusterization highlighted 13 and 14 clusters, respec-
tively (Supplementary Figures S1–S4). However, the clusters in these two samples did not
overlap precisely the tumor and stromal compartments, probably related to the mixed and
heterogeneous morphology of the tissue compartments in tumor undergoing EMT [16].
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Figure 2. Dimension reduction and clustering for patient ID30. (A) t-SNE (t-distributed stochastic neighbor
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embedding) dimension reduction of spots included in the region of interest of sample ID30. Fourteen
clusters were discovered and are represented. Circles represent merge cluster into the subgroups
tumor nodules (TN) and the tumor microenvironment (TME). (B) Clusters spatially represented on
the hematoxylin and eosin of patient ID30. (C,D) Boxplots (clusters on x-axis, scores on y-axis) of the
epithelial and fibroblasts scores, respectively.

2.4. Differential Expression and Enrichment Analyses in Patient ID30

TN2 vs. TN1 differential expression analyses showed 394 differentially expressed
genes, including 313 upregulated genes (e.g., COL1A1, COL1A2, POSTN, PDGFRA, FN1,
SNAI2, SPARC, . . .) and 81 downregulated genes (e.g., KRT13, KRT6B, SPRR3, SPRR2A, . . .)
in TN2 compared to TN1 (Figure 3A,B and Supplementary Table S1). ORA of upregulated
genes showed significant activation of the hallmark epithelial–mesenchymal transition
(p < 0.001) and the hallmark myogenesis (p < 0.05) gene lists. ORA of downregulated genes
showed significant activation of the hallmark myc targets V1 (p < 0.05) gene list.
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Figure 3. Differential expression analysis of the tumor nodules (TN). (A) Volcano plot of the differen-
tial expression analysis for TN2 vs. TN1 (x-axis: log2 fold-change; y-axis: −log10 (adjusted p-value).
Upregulated genes included in the hallmark epithelial transition gene list are highlighted in red.
Genes with adjusted p-values < 10–35 are represented by triangles. (B) Gene expression of FN1, one
of the most upregulated gene in differential expression analysis of TN2 vs. TN1 and TN3 vs. TN1.
(C) Volcano plot of the differential expression analysis for TN3 vs. TN1 (x-axis: log2 fold-change;
y-axis: −log10 (adjusted p-value). Upregulated genes included in the hallmark epithelial transition
gene list are highlighted in red. Genes with adjusted p-values < 10–80 are represented by triangles.
(D) Gene expression of COL1A1, one of the most upregulated gene in differential expression analysis
of TN2 vs. TN1 and TN3 vs. TN1.



Int. J. Mol. Sci. 2025, 26, 1830 7 of 15

TN3 vs. TN1 differential expression analyses showed 765 differentially expressed
genes, including 476 upregulated genes (e.g., COL1A1, COL1A2, FN1, PDGFRA, POSTN,
SPARC, CXCL9, . . .) and 289 downregulated genes (e.g., IGKC, KRT13, S100A8, SPRR3) in
TN3 compared to TN1 (Figure 3C,D and Supplementary Table S2). ORA of upregulated
genes showed significant activation of the hallmark epithelial–mesenchymal transition
(p < 0.05) and the hallmark hypoxia (p < 0.05) gene lists. No gene list emerged from the
enrichment analysis of downregulated genes.

Finally, 123 genes were commonly upregulated in the differential expression anal-
ysis described above (TN2 vs. TN1 and TN3 vs. TN1) (Supplementary Figure S5 and
Supplementary Table S4). The g:Profiler enrichment analysis showed that these genes were
involved, notably, in extracellular matrix component, cell adhesion, platelet-derived growth
factor (PDGF) binding and MET pathway (Supplementary Figure S5). In addition, these
EMT-related genes highly expressed in the differential expression analyses described in
patient ID30 are preferentially expressed in contact with normal tissue (depth) in tumors
ID08 and ID15 (Figure 4). Furthermore, by comparing the upregulated genes (i.e., p < 0.05
and log2fold change > 0) from bulk RNAseq analysis in post vs. pre-afatinib tumor biopsies
and the tumor nodules differential expression analyses, 13 genes in common were discov-
ered: COL1A1, COL1A2, POSTN, PDGFRA, SLC38A11, SPARC, VWA5A, MUC4, SLC9A9,
CXCL9, DCLK1, ZNF652 and ASPN (Supplementary Figure S6 and Supplementary Table
S5). This gene list is highly expressed in TN2 and TN3 of patient ID30 and in the depth,
close to the invasion margin, of tumors from patients ID08 and ID15 as well (Figure 5). This
list of 13 genes is also upregulated after afatinib in tumor biopsies from the 13 available
patients as described in our previous translational findings (Supplementary Figure S7).
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Figure 4. Spatial visualization of genes expression in ID08 and ID15. Some upregulated genes
discovered by differential expression analysis in ID30 and included in the 13 common genes between
differential expressions analyses of ID30 tumor nodules and afatinib-treated tumor biopsies.

Similarly, TME3 vs. TME1 differential expression analyses showed 900 differentially
expressed genes, including 858 upregulated genes (e.g., MMP11, POSTN, FN1, COL1A1,
CXCL9, CXCL14) and 42 downregulated genes (e.g., KRT13, S100A8, S100A9) in TME3
compared to TME1 (Figure 6A–D and Supplementary Table S3). ORA of upregulated genes
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showed significant activation of the hallmark epithelial–mesenchymal transition (p < 0.05).
On the other hand, ORA of the downregulated genes showed significant activation of
the hallmark epithelial–mesenchymal transition (p < 0.001), hallmark hypoxia (p < 0.05),
hallmark coagulation (p < 0.05), hallmark apoptosis (p < 0.05) and hallmark estrogen
response late (p < 0.05) gene lists.
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No differential gene expression analysis was performed for ID08 and ID15. But as
previously described [11], an HNSCC-adapted mesenchymal and epithelial gene list [17]
was highly and weakly expressed in these tumors, respectively.

3. Discussion
In line with our previous findings [11], EMT-related genes were identified to be highly

expressed in surgical sections of patient ID08 and ID15, analyzed by spatial transcriptomics,
particularly in the invasive margin. However, patient ID30, initially clustered as a patient
not developing EMT after afatinib based on bulk RNA-seq analysis on paired tumor biopsy
analyses [11], also showed EMT-related genes occurring in TN2 and TN3 compared to TN1
in the surgical specimen. This is particularly interesting and a demonstration of tumor
heterogeneity leading to progressive intra-tumoral and intra-individual modifications after
exposition to a therapeutic agent. For this reason, performing analysis on the surgical
specimen is clearly an advantage when compared to analysis on a single biopsy. Spatial
transcriptomics has enabled us to study the whole tumor and to identify that EMT and
non EMT patterns can be present inside a same tumor as for ID30. The presence of
other TNs expressing EMT genes showed that patient ID30’s tumor could also potentially
have changed into a more mixed and heterogeneous tissue composed of oligoclusters of
mesenchymal-like cancer cells, like in patients ID08 and ID15. The patients included in the
EORTC90111-24111 study had only two weeks of treatment by afatinib in order to avoid
unethical delay in standard curative surgery [10]. Prolonged pre-operative afatinib could
have induced EMT in the whole tumor of patient ID30. EMT is a dynamic process that has
several transition states [18], and process times between states may vary from tumor to
tumor. Indeed, within the EMT transcription factors [18], only SNAI2 was overexpressed
in TN2 compared to TN1 in patient ID30, which is known to reach its peak expression
relatively early in the EMT process [15,18].

Our analyses show the presence of several therapeutic targets that can promote the
onset of EMT transition. Notably, 123 genes were commonly upregulated in the differential
expression analysis described between TN2 vs. TN1 and TN3 vs. TN1. Enrichment analyses
of these 123 upregulated genes show the activation of MET and PDGF-related signaling
pathways. As already suggested in our previous results [11], targeting multiple tyrosine
kinase receptors may overcome resistance to tyrosine kinase inhibitors and may be of
interest [19]. Our previous results [11] showed hyperexpression of hepatocyte growth
factor (HGF), MET’s main ligand [20], and PDGFRA/PDGFRB in post-afatinib biopsies in
patients classified in the EMT cluster, highlighting the interest of these targets in afatinib-
induced EMT. Indeed, Yi et al. [21] have shown that inhibition of HGF/cMet signaling in
lung cancer cell lines prevented CAF-induced EMT and EGFR-tyrosine kinase inhibitor
resistance. Furthermore, it has been found that tumor cell lines with a high EMT score
are, interestingly, responsive to PDGFR inhibitors yet resistant to EGFR inhibitors [22].
Indeed, recent data from the literature of a phase 2 trial [23] investigated the efficacy of
ficlatuzumab (monoclonal anti-HGF antibody) in combination with cetuximab in patients
with pan-refractory R/M HNSCC. Patients (n = 33) showed progression-free survival of
3.7 months with an objective response rate of 19%, including two complete and four partial
responses. Better survival was shown in patients with cMet overexpression. To the best of
our knowledge, the efficacy of a combination of anti-HER drug and anti-PDGF(R) therapies
has, however, not yet been investigated [24]. More pre-clinical data on the efficacy of
these anti-cancer treatment combinations could be of great interest before initiating phase
1 safety studies in patients. Among the 123 genes described above, 13 were in common
with differential expression analyses of tumor nodules in ID30 and post- vs. pre-afatinib
tumor biopsies [11]. Theses 13 genes (e.g., COL1A1, POSTN, ASPN, PDGFRA, MUC4,
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SPARC), implicated notably in EMT and cancer progression [25–31], were found to be highly
expressed in depth of tumor ID15 and ID08, near the invasive margin. Interestingly, in a
similar window-of-opportunity study where patients received cetuximab before surgery,
several common genes were also upregulated after cetuximab, such as ASPN, MUC4, and
PDGF-related genes [13]. Therefore, targets of choice may be included in this gene list.

Periostin, coded by POSTN, is a matricellular protein, which can be found in CAFs
or epithelial cancer cells in HNSCC [32,33]. The binding of periostin to integrins αvβ3
and αvβ5 on malignant cells triggers the FAK, Phosphoinositide 3-kinase (PI3K), and
Akt signaling pathways, resulting in cell migration [32]. In vitro experiments showed
that POSTN was expressed in the HNSCC cell line with high partial-EMT score [34]. In
addition, periostin overexpression in HNSCC cells induced invasion both in vitro and
in vivo [35]. In solid tumors, high POSTN expression is associated with a more aggressive
tumor behavior, advanced stage, and poor prognosis [29]. In a breast cancer mouse model,
anti-periostin antibody inhibited primary tumor growth, metastatic lesions, and increased
the survival rate [36], making periostin a potential target, notably for blocking the partial-
EMT state. Secondly, COL1A1 was also highly expressed in TN2, TN3, and TME3 and
in the depth of the tumor of ID08 and ID15. Studies suggest that the COL1A1 mediates
tumor progression trough mechanism involving EMT, transforming growth factor (TGF)-β,
extracellular signal-regulated kinase (ERK), and PI3K/AKT signaling pathways, although
further research is needed to unravel the mechanisms by which COL1A1 facilitates cancer
cell invasion and proliferation [27]. Regulating COL1A1 expression directly through miR-
133a-3p in oral squamous cell carcinoma suppressed mitosis, proliferation, and invasion of
cancer cells [28]. Thirdly, ASPN, coding for asporin, is an extracellular matrix proteoglycan
involved in cell development and cellular signaling but also, in the scope of cancer, in
resistance to growth inhibitors, inhibition of apoptosis, and promotion of cancer metastasis.
Indeed, numerous signaling pathways, including TGF-β, Wnt/β-catenin, notch, hedgehog,
EGFR, and HER2 have been found to be regulated by asporin. Zhan et al. demonstrated
that ASPN is co-localized with HER2 leading to its phosphorylation (p-HER2) [37], which,
by regulating the EMT phenotype using the MAPK pathway, promotes thyroid tumor
metastasis. In line with our previous hypothesis that activation of CAFs occurs after
exposure to anti-HER therapy in some patients [11,13], Itoh et al. showed that the growth of
pro-tumorigenic fibroblast from normal fibroblast cells is facilitated by asporin [38]. Finally,
studies have shown that overexpression of MUC4, a membrane-bound mucin, induces
neoplastic transformation of fibroblasts. Indeed, MUC4 activates Src/Focal adhesion kinase
(FAK) and stabilization of HER2 and, thereby, promotes cancer cells survival, invasion,
and metastasis. In addition, MUC4 upregulates N-Cadherin expression, which promotes
EMT in pancreatic cancer cells [39]. Macha et al. [39] have shown that MUC4 knockdown
induces senescence programming pathways, which prevents cell proliferation in vitro and
in vivo.

Our study has limitations. The first is the small number of patients included in these
analyses. Moreover, EMT can also develop during the evolution of untreated tumors.
However, our previous investigations [11] of paired tumor biopsies from control patients
had shown no development of EMT during the two-week pre-operative period. Also,
the quality of RNA from FFPE sections limits the number of analyzed genes compared
with the whole transcriptome data available in case of fresh-frozen samples. Indeed, it
is not possible in our analyses to verify whether the absence of a gene’s expression in a
spot is linked to a biological or technical condition. Finally, the resolution of the spots
(55 µm) in the Visium slides does not allow the study of gene expression at a single-cell
level, making the analysis of heterogeneous and mixed tumors undergoing advanced EMT
with oligoclusters of tumor cells invading the stromal compartment, as in patient ID08 and
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ID15, complicated. Indeed, clustering in these tumors makes it impossible to study the
stromal and tumor compartments separately with the resolution currently available.

4. Material and Methods
4.1. Patients

Patients included in this translational research came from the EORTC-90111-24111
trial (NCT01538381). Recruitment, eligibility criteria and randomization were already
described [10,11]. Samples for spatial transcriptomic were chosen based on their RNA
quality and their cluster classification after afatinib (developing EMT or not), as previously
described [11]. The study was conducted in accordance with the International Conference
on Harmonization Good Clinical Practice standards and the Declaration of Helsinki. Pa-
tients from the CHIRON study (NCT00714649) [12] were also considered as potentially
eligible in this translational study.

4.2. Tissue Samples

Tumor samples were conserved after curative surgery in the Biobank of the Cliniques
universitaires Saint-Luc, Brussels. Paraffin-embedded surgical resection blocks were cut
into 5 µm-thick sections and then stained with haematoxylin and eosin (H&E) to firstly
confirm the presence of viable invasive tumor cells by a dedicated pathologist, and secondly
to select the blocks to be used for spatial transcriptomics analyses. The regions of interest
investigated include the surface epithelium, invasive tumor cells and associated stroma,
and stop at the tumor cell invasion front.

4.3. Assessment of RNA Quantity and Quality

RNA concentration was measured using a Qubit® RNA HS Assay Kit on a Qubit®

4 Fluorometer (Thermo Fisher Scientific Inc., Waltham, MA, USA). RNA quality was
evaluated using Agilent High Sensitivity RNA ScreenTape on a 4150 TapeStation instru-
ment (Agilent Technologies, Santa Clara, CA, USA). The percentage of fragments larger
than 200 nucleotides (DV200) was evaluated on the basis of the electropherograms using
TapeStation Analysis software 5.1.

4.4. Spatial Transcriptomics on Surgical Specimens

Visium spatial transcriptomics assays were performed by the lab of Prof. Thierry
Voet (KU Leuven, Leuven, Belgium) of the KU Leuven Institute for Single Cell Omics
(LISCO). Tissue preparation and sectioning was performed according to 10X Genomics
recommendations (Visium Spatial Protocols FFPE—Tissue Preparation Guide, CG000408,
RevD). Prior to sectioning, the FFPE blocks were incubated in an ice bath for 10–30 min
and 5 µm-thick sections were cut using a microtome. Resulting sections were floated for
40 s in a 42 ◦C water bath until flat and immediately placed onto the Visium slides. Slides
containing sections were dried for 3 h at 42 ◦C and placed in a desiccator overnight at
room temperature to ensure proper drying. They were further stored for a maximum of
1 week before use. Deparaffinization, staining, imaging, decrosslinking, and construction of
sequencing libraries were performed according to the manufacturer’s instructions (Visium
Spatial Gene Expression for FFPE—deparaffinization, H&E staining, imaging, and de-
crosslinking, CG000409, RevC; Visium Spatial Gene Expression Reagent Kit for FFPE—User
Guide, CG000407, RevD) using the Visium Spatial for FFPE Gene Expression Kit, Human
Transcriptome (10X Genomics, 1000338). Briefly, slides with tissue sections were incubated
at 60 ◦C for 2 h and allowed to cool down to room temperature, before deparaffinizing by
immersing in xylene for 10 min twice, a 100–70% ethanol series for 3 min each, and finally
water for 20 s. Sections were hematoxylin and eosin (H&E) stained, followed by adding 85%
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glycerol and a coverslip to the slides and imaging on a Nikon NiE microscope with 8-stage
at 10X magnification. After coverslip removal, sections were decrosslinked by incubating
with 0.1 N HCl for 1 min at room temperature three times, with subsequent washing with
TE Buffer (pH 9.0) and incubation with TE Buffer (pH 9.0) at 70 ◦C for 1 h. Immediately
after, overnight Visium probe hybridization was performed, followed by probe ligation,
release, and extension the next day. All on-slide reactions were performed in a thermocy-
cler (Bio-rad, C1000 Touch) with a metal slide adapter plate (10X Genomics). Following
probe elution, samples were transferred to tubes for amplification, clean-up, and library
preparation. Library quality was assessed using an Agilent Technologies Bioanalyzer High
Sensitivity kit (Agilent Technologies, 5067-4626). Visium libraries were sequenced on an
Illumina NextSeq2000. The sequencing depth was determined by the amount of Visium
spots covered by tissue (25,000 reads per spot). Spots corresponding to tumor area were
manually selected in the Loupe-Browser (v6.4.1) [40]. SpaceRanger (v2.0.1) was used to
process 10X data. Reads were aligned to the human reference sequence GRCh38. Seurat
package (v4.3.0) [41] was used to analyze the spatial transcriptomic data. Counts were
normalized with the SCTransform function of Seurat package and integrated into a single
Seurat object.

Epithelial and stromal score using Puram et al. [42] gene lists were calculated with
the function AddModuleScore from the Seurat R package. Differential gene expression
analysis was conducted using DESeq2 v1.30 Bioconductor R package. A gene with an
adjusted p-value (noted as p in the text) below 0.05 was defined as differentially expressed.
Over-representation enrichment analysis (ORA) was performed with the hallmark gene sets
from the Molecular Signatures Database (MSigDB) [43] as hallmark gene sets are known
to avoid noise and redundancy in enrichment analyses [44]. Enrichment analysis of the
genes commonly upregulated in differential expression analyses was performed using the
webtool g:Profiler (https://biit.cs.ut.ee/gprofiler/gost, accessed on 27 September 2023) [45]
with the Gene Ontology Molecular Function (GO:MF) and the Reactome from MsigDB. The
spatial transcriptomic raw data generated in this study are publicly available in the Gene
Expression Omnibus at GSE289908.

5. Conclusions
Our study shows for the first time spatial transcriptomic analysis of three surgical

specimens of primary HNSCC patients treated pre-operatively with two weeks of afatinib.
The results show tumors expressing EMT-related genes, including one tumor with

EMT at an early stage. PDGF and MET pathways, SNAI2, POSTN, COL1A1, ASPN, MUC4,
and others may be targets of choice to prevent the evolution of early stage of EMT in
HNSCC tumors treated with anti-EGFR therapy.
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