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Abstract: Neuropathic pain, a debilitating condition arising from somatosensory system
damage, significantly impacts quality of life, leading to anxiety, self-mutilation, and de-
pression. Oxidative and nitrosative stress, an imbalance between reactive oxygen and
nitrogen species (ROS/RNS) and antioxidant defenses, plays a crucial role in its patho-
physiology. While reactive species are essential for physiological functions, excessive levels
can cause cellular component damage, leading to neuronal dysfunction and pain. This
review highlights the complex interactions between reactive species, antioxidant systems,
cell signaling, and neuropathic pain. We discuss the physiological roles of ROS/RNS and
the detrimental effects of oxidative and nitrosative stress. Furthermore, we explore the
potential of manganese porphyrins, compounds with antioxidant properties, as promising
therapeutic agents to mitigate oxidative stress and alleviate neuropathic pain by targeting
key cellular pathways involved in pain. Further research is needed to fully understand their
therapeutic potential in managing neuropathic pain in human and non-human animals.
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1. Introduction
Chronic pain is a major source of human suffering and disability [1]. Although pain

itself and many diseases associated with chronic pain are not immediately fatal, they signif-
icantly reduce the quality of life of adults and animals worldwide. This impact is especially
severe in patients with neuropathy, in whom sleep disorders, anxiety, and depression are
frequent and intense, constituting a risk factor in suicide attempts [2,3]. Neuropathic pain
is a specific type of chronic pain, described by persistent or intermittent spontaneous pain,
and increased response to mechanical and thermal stimuli, either innocuous or noxious
(allodynia or hyperalgesia, respectively), that arises from lesions to the somatosensory
nervous system of peripheral or central origin [4], ectopic activity in sensorial fibers, and
an imbalance of inhibitory and excitatory neurotransmitters relation, with the involvement
of neuroinflammation and nitroxidative stress playing a pivotal role in its instauration
and maintenance [5,6]. It is associated with the need for more prescription medications to
obtain desired effects, which can lead to adverse effects due to increased doses and frequent
visits to health professionals [7,8].

Although neuropathic pain is a multifaceted condition driven by several cellular
and molecular mechanisms, those considered key to its development and perpetuation
are neuroinflammation, glial cell activation, the release of proinflammatory cytokines,
and oxidative stress [5], contributing to altered signaling pathways, which facilitates the
expression of further inflammatory mediators and enhanced sensitivity to pain, ultimately,
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maintaining the cycle of pain where neuroinflammation and oxidative stress influence each
other [6,9].

Oxidative stress is known as the imbalance between the cellular oxidative and an-
tioxidant systems, and is widely recognized in chronic pain conditions, since excessive
ROS production, exceeding the capacity of cellular antioxidant systems, can result in a
dysfunction of the main cellular mitochondrial and endoplasmic reticulum (ER) systems,
increasing ROS/PRN concentration during stress conditions [10–13].

Free radicals are molecules highly reactive with unpaired electrons in the outer valence,
which makes them inherently chemically unstable and prone to react with surrounding
molecules to achieve stabilization [14]. Free radicals can be produced exogenously from
ionizing radiation, ozone, cigarette smoking, or by-products of environmental metabolisms.
Endogenous sources, such as those derived from oxygen (reactive oxygen species, ROS)
or nitrogen (reactive nitrogen species, RNS), are produced through enzymatical or non-
enzymatical processes, for instance, in the electron transfer chain (ETC), phagocytosis,
cytochrome P-450 system, and prostaglandin (PG) synthesis during normal neuronal
functioning or during neuroinflammation processes associated with neuropathic pain,
either accepting an electron from or donating an electron to other molecules, consequently,
acting also as oxidants [15,16]. Such chemical behavior, when excessive, generates an
environment suitable for damage on molecules such as DNA, carbohydrates, lipids, and
proteins, leading to homeostasis disruption and cellular damage, and ultimately leading to
apoptosis by lowering enzymatic and non-enzymatic antioxidants and compromising cell
viability [17,18].

A great amount of information has been developed around free radical chemistry,
leading to a better understanding of their biological significance, beyond the concept of
harmful uncontrolled molecules. Importantly, it is known that free radicals originate
in normal physiological conditions, and have several physiological functions in cellular
growth, differentiation, migration, apoptosis, and necrosis, as well as defense against
pathogens and species evolution [16,19] Additionally, increasing information sustains
the role of reactive species in normal synaptic plasticity and cognitive functions such as
memory and learning [20,21], and transducing agonistic modulation during neuropathic
pain [22].

Several metalloporphyrins have been identified as potent catalysts for numerous
redox reactions; particularly manganese porphyrins (MnPs), which have been found to
be efficient antioxidant catalysts [23,24]. These substances dismute superoxide ions at
some of the highest rates known for synthetic catalysts and have demonstrated thera-
peutic effects in conditions where increased ROS/PRN production is a key pathological
factor [25], overcoming major conventional monotherapy approaches, usually unsuccessful
and accompanied with cumulative adverse effects.

Research into the therapeutic potential of MnPs with antioxidant properties studied
in disease models involving oxidative stress [26,27] and in models of chronic pain [28]
considering their structural, chemical, pharmacokinetic, and pharmacodynamic properties,
is necessary to elucidate the clinical uses of MnPs, based on understanding the pathways
and mechanisms that underlie chronic pain of neuropathic origin.

This review examines the nature of ROS/RNS, endogenous antioxidant systems,
nitroxidative signaling in neuropathic pain, and the potential of synthetic MnPs in the
restitution of neuronal redox homeostasis, which is crucial for understanding scavengers’
therapeutic strategies, considering that neuropathic pain conditions still face significant
limitation towards effective treatments on human and non-human animals.
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2. Reactive Oxygen and Nitrogen Species
Molecular oxygen and nitrogen are undeniably significant in biology, being essential

for proper metabolism, cellular function, and the physiological state of eustress in living
organisms. While these molecules play critical roles in structural and functional processes,
such as signal transduction, gene transcription and expression, and other cellular activities,
they can also exert harmful effects on biomolecules in the form of reactive oxygen and
nitrogen species, thereby illustrating their dual physiological and pathological nature [29].

Since most of reactive species’ effects rely on their compartmental concentration and
their chemical nature, it is relevant to understand their main subcellular sources, allowing
the compartmentalization of the reactive species gradients, redox-mediated regulation,
and role in cell-signaling from several membrane receptors [19,30,31]. In this section, we
discuss the chemistry and sources of ROS and RNS in the context of neuropathic pain.

2.1. Reactive Oxygen Species: Chemistry and Sources

Oxygen stands by far as the most vital element, for it bears the basis of biological
oxidations, where most of the available energy for aerobic organisms is produced [32]. Yet
in excessive amounts, it rends toxic effects, at both cellular and systemic levels [33]. The
well-known toxic effect of oxygen is attributed to its chemical structure. Molecular oxygen
in its simplest form has a unique electronic configuration, which makes it a radical itself.
When an electron is added to the primary structure, the superoxide anion (O2•−), also
known as the primary ROS, is formed. O2•− will interact with other available molecules to
generate secondary ROS [34]. Given that ROS are electrically charged, they seek chemical
neutralization by reacting with other molecules, causing oxidation, either reversibly or
irreversibly, intrinsically increasing the phosphorylation (activity) of various proteins
kinases and reducing the phosphatase activity of other proteins; the overall effect appears
to enhance neuronal responsivity to sensorial inputs, although, high sustained levels
of ROS might excessively oxidize proteins and membrane lipids, causing an abnormal
responsiveness of neurons to afferent inputs, inducing central sensitization and pain [35,36].
These deleterious effects occur due to the structural alteration of organic biomolecules,
such as protein oxidation, DNA strand breakage through guanine residue oxidation, RNA
oxidation, the oxidation of polyunsaturated fatty acids in bilipid membranes, mitochondrial
depolarization causing, consequently, apoptosis, and oxidative stress [6,19,37]. Among
the most relevant reactive species containing oxygen, exist the hydroxyl radical (HO•),
superoxide radical anion (O2•−), hydroperoxyl radical (HOO•), and peroxyl radicals
(ROO•), and the non-radicals hydrogen peroxide (H2O2) and singlet oxygen (1O2), which
in a series of transformations, involving the gain or loss of electrons, lead to changes in the
charge and reactivity of the molecules (Figure 1) [38,39].
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2.1.1. Singlet Oxygen

O2 is considered a radical molecule due to the possession of two unpaired electrons
with identical spin quantum numbers. The most stable form is triplet oxygen (3∑g−O2),
also written 3O2, as commonly present in the atmosphere (Figure 2). It acts as a potent
oxidant, and its spin arrangement enables it to readily interact with other molecules by
accepting electrons individually, rather than releasing them. This specific characteristic
clarifies why O2 tends to react more outstandingly with radicals than non-radicals [40].
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The induction of an energy input can lead to the restructuration of electrons’ arrange-
ment; once one of the unpaired electrons gains energy, the electron is excited and changes
its spin, resulting in the creation of a more reactive dioxygen molecule, known as sin-
glet oxygen [41,42]. This process eliminates unpaired electron spin restrictions, thereby
enhancing its oxidative capacity, enabling interactions with proteins, DNA, and lipids [38].

2.1.2. Superoxide Radical Anion

When an electron is added to the outer O2 orbital, containing an unpaired electron,
a less radical molecule is formed, the superoxide radical anion (O2•−). This molecule
possesses a single unpaired electron; therefore, it is less reactive than its preceding sin-
glet oxygen [38]. O2•− is considered a “primary” ROS, produced during the ETC in
mitochondria, via electron leakage towards molecular oxygen, in the process of oxidative
phosphorylation which is known to be implicated in the pathophysiology of a myriad of dis-
eases [43]. It can readily continue interacting with other molecules to produce “secondary”
ROS, by means of direct interaction or via enzyme or metal-catalyzed processes [34,44].

In physiological conditions, most of the superoxide radical is present in its anionic
form (O2•−), and only 0.6% is present in its protonated form, the hydroperoxyl radical
(HOO•); nonetheless, the catalyzed reaction with HOO•− is a lot faster (k = 7 × 109

M−1·S−1) than the uncatalyzed reaction involving two O2•− molecules (k < 0.3 M−1·S−1)
to produce the dismutation of both radical forms, to H2O2 and O2, serving as a great source
of H2O2 [45], which is of importance in the context of DNA damage, once O2•− does not
react directly with DNA [44,46]. Much of the nuclear DNA damage is restored by the cell,
yet, mitochondrial DNA (mtDNA) cannot be fixed in the same manner, which leads to
accumulated damage over time, mitochondrial damage, and cell death [44].
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Increased levels of O2•− have been largely observed in neuropathic pain condi-
tions in dorsal horn neurons of rats’ spinal cords after nerve ligation [35,47], capsaicin-
induced hyperalgesia [48,49], phenyl N-tert-butylnitrone (PBN) and 4-hydroxy-2,2,6,6-
tetramethylpiperidine 1-oxyl (TEMPOL) [49–51], and intraplantar injection of O2•− [51],
and have been found to mediate the development and maintenance of central and
peripheral sensitization, either increasing nociceptive neurons’ excitability, activating
calcium/calmodulin-dependent kinase II in glutamatergic spinal neurons, which leads to
the presynaptic inhibition of GABAergic interneurons, causing disinhibition and enhancing
neuroexcitability in pain signaling pathways and possible excitotoxicity [52,53].

2.1.3. Hydrogen Peroxide

H2O2 is a very unstable and slowly decomposing molecule. It comprises an uncharged
oxygen–oxygen (O-O) bond peroxide, with a pKa ± 10.8 at neutral pH, making it able
to cross through cellular membranes. It has a high oxidizing power, yet it holds a rather
slow rate of reaction with surrounding molecules; such characteristics enable it to exert its
radical properties distant from the place it was formed, and confer an elevated capability
to accumulate in cells, in relatively excessive concentrations [54].

The main source of H2O2 is formed by the dismutation of O2•− through the SOD-
catalyzed reaction. Also, the NADPH-oxidase system is responsible for H2O2 produc-
tion, since it performs the catalysis of NAPDH oxidation by O2, which yields NAD+ and
H2O2 [29], as well as other enzymatic sources, such as glucose oxidase, amino acid oxidase,
urate oxidase, and others [46].

Given that H2O2 is a by-product of oxidative stress in cell metabolism, for a long
time it was considered a strictly harmful and undesired molecule, and it was not until a
few decades ago that its role in several biological processes, such as cell differentiation,
proliferation, inflammation, wound healing, and more, proved its value as a key redox
signaling molecule [55,56]. Additionally, H2O2 plays a pivotal role in growth factor-induced
signal transduction, thiol redox homeostasis, and mitochondrial function [46].

The physiological or pathological role of the molecule will drastically depend upon the
cellular type, subcellular compartment, specific metabolic context, rate of production, and
clearance. At micromolar concentrations it appears reactive, whilst at high concentrations
it can trigger serious damage, by inactivating the glycolytic enzyme glyceraldehyde-3-
phosphate dehydrogenase [54,57]. H2O2 is capable of directly oxidizing a significant
number of molecules and inactivating enzymes containing thiol groups (RSH) or methion-
ine (Met) residues in their active sites [58]. Moreover, H2O2 reacts efficiently with many
other radicals, markedly NO, inducing the formation of peroxynitrite (ONOO−) [19].

H2O2 can increase the action potential frequency and amplitude in neurons of the
dorsal root ganglion (DRG) in neuropathic models [59] and in neurons from within the
subnucleus caudalis of the spinal trigeminal nucleus, causing facial pain induced by
formalin injection in the lips of rats [60]. Additionally, H2O2 can trigger cGMP-dependent
kinase Iα (cGKI), causing an increased neurotransmitter release from sensory neurons in
the dorsal horn of the spinal cord of neuropathic rats [61], thus, contributing to glutamate
homeostasis disturbance, which can potentially cause exacerbated synaptic conductance
and amplified Ca+ influx in neuronal terminals, through the phosphorylation of subunit
receptors of N-methyl-D-aspartate (NMDA), inhibition of glutamate transporter (GLT-1),
and glutamine synthetase, instigating an advance of excitotoxicity, key in the development
of neuropathic pain [62].

After the SOD-catalyzed dismutation reaction of H2O2, and under unhinged redox
conditions, unbound metal ions, i.e., Fe3+, can catalyze the heterolytic cleavage of H2O2,
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resulting in the formation of hydroxyl radicals (OH•) and anion hydroxide (OH−), through
a well-known reaction referred to as the Fenton reaction (k = 7.6 × 101 M−1·S−1) [34,63].

2.1.4. Hydroxyl Radical

The hydroxyl radical (OH•) is one of the most reactive radicals in biological systems,
with a lifespan of 10−8–10−9 s. It can be produced by means of redox metal-catalyzed
decomposition of H2O2, in the presence of transition metal ions, especially when these
metal ions are iron or copper [64,65].

OH• may interact with other surrounding molecules by the abstraction of H+, transfer
of electrons, or addition reactions, generating other radicals, although less reactive. Due to
this high reactivity, OH• affects molecules’ non-selectively, by extracting carbon-bound H+

on relatively simple molecules, whether abundant or not, by attacking lipidic membranes
which triggers oxidizing radical reactions, and by addition to nitrogenous bases, such as
the deoxyribosyl backbone of DNA, which leads to oxidation, damaged bases, or strand
break [44,66]. A direct link was established between the hydroxyl radical and DNA strand
damage to neurons in the context of neuropathic pain induced by chronic constriction
injury (CCI) in rats, where an increase in cellular dysfunction and apoptosis in neuropathic
animals was observed and promptly reduced in animals treated with an aqueous extract
of Luehea divaricate containing ROS scavengers. DNA strand break causes an activation of
pain pathways that are also directly activated by hydroxyl radicals, and that can further
release proinflammatory cytokines, increasing pain sensitization [67]. The hydroxyl radical
is relevant for the attenuation of long-term potentiation and facilitation of long-term
depression in GABAergic inhibitory interneurons, primarily contributing to pain through
GABAergic disinhibition in the dorsal horn leading to enhanced excitatory transmission,
hence resulting in neuropathic pain [68].

2.2. Reactive Nitrogen Species: Shemistry and Sources
Nitric Oxide and Peroxynitrite

Nitric oxide (NO•) is endogenously synthetized through a five-electron oxidative re-
action involving L-arginine metabolization to L-citrulline, by specific nitric oxide synthases
(NOSs). NO• has a role in a variety of physiological processes related to neurotransmission,
synaptic plasticity in the CNS, smooth muscle relaxation, vascular tone, platelet aggrega-
tion inhibition, leukocyte adhesion inhibition, and antimicrobial immune response [69,70].
Due to its hydrophobicity, NO• can freely migrate through the cytoplasm and cellular
membranes, and react distantly from its site of formation, and has a long lifespan (1–10 s)
compared to other molecules [71].

Four main isoforms of NOSs have been recognized and located: a mitochondrial NOS
(mtNOS) [69]; a neuronal NOS (nNOS), expressed in the postsynaptic terminal of neurons
and Schwann cells; an endothelial NOS (eNOS), highly expressed in DRG consistently with
allodynia, constitutively expressed and regulated by Ca2+/Calmodulin interaction; and an
inducible NOS (iNOS), induced as a response to inflammation, trauma, or infection, which
is not regulated by Ca2+, and highly expressed in the cytosol of glial cells [72–74]. The NO•
produced by each isoform will perform different and specific functions, depending on the
place where they are produced, e.g., the regulation of mitochondrial oxygen consumption
and transmembrane potential via a reversible reaction with cytochrome c oxidase (mtNOS),
communication among neurons (nNOS), the relaxation of blood vessels and maintenance
of blood pressure in endothelium (eNOS), and contribution to defensive mechanisms of
macrophages (iNOS) [73].

In the context of oxidative stress, the cytotoxic potential of NO• is due to the secondary
production of oxidants derived from NO•−, which are by far more reactive, rather than



Int. J. Mol. Sci. 2025, 26, 2050 7 of 58

the oxidative potential itself [75]. NO2• can interact with NO• to yield dinitrogen trioxide
(N2O3), which is even more reactive than the priors, with a high ability to cause protein
nitrosation and deamination reactions [76]. Therefore, NO• oxidizing potential is mainly
related to its ability to interact with O2•− once they react to producing significant amounts
of a much more oxidative molecule, the peroxynitrite anion (ONOO−) [77].

Regarding ONOO−, it is a short-lived (10 ms) one- or two-electron oxidant radical,
produced by the interaction of oxygen and NO•, serving as the main NO•-derived oxidant.
This process occurs in a competitive environment of O2•− against the enzymatic SOD-
catalyzed dismutation to H2O2, NO• migration across the cell, NO• preferential reaction
with guanylate cyclase, and finally, the reaction of O2•− with NO•, to ultimately yield
ONOO− in a potentially faster reaction when NO• concentrations increase (Figure 3) [76].
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The ratio of the competitive environment determines the switch from physiological
functions to pathological pathways signaling, once ONOO− can act either as a cytotoxic
effector molecule against pathogens or as an endogenous cytotoxic molecule towards host
cells, based on the kinetics setting [78].

ONOO− is able to engage with biomolecules like DNA, proteins, and lipids that lead
to structural modifications in biomolecules, resulting in dysfunction such as interference
with signaling pathways through protein amino acid nitration. The two major direct ways
of ONOO− acting on biomolecules are through one-electron (with transition metals) or
two-electron (with thiols and CO2) oxidation reactions in an aqueous milieu [79].

On the other hand, ONOO− can indirectly induce oxidation or nitration in amino
acids including cysteine (Cys), tyrosine (Tyr), and methionine (Met) [76], as well as freely
diffuse though lipidic membranes (ONOOH), and react via its secondary radicals with
proteins and lipids in the hydrophobic milieu, thus, negatively impacting protein structural
and functional roles, or inducing lipid peroxidation [80].

Both ONOO− and NO• play significant roles in the settlement and perpetuation of
neuropathic pain, through several molecular mechanisms, as described above; neverthe-
less, they can specifically contribute to the process through neuroexcitability enhance-
ment of nociceptive neurons, activating Calcium/calmodulin-dependent protein kinase
II (CaMKII) in excitatory glutamatergic neurons, potentiating synaptic transmission, in-
creasing calcium influx, or causing GABAergic interneurons inhibition, leading to neuronal
disinhibition [62,81]. Moreover, both species can cause transient receptor potencial (TRP)
channel activation [82], critical for pain processing, preceding membranal protein and
lipid nitrosative modifications, and Toll-like receptors (TLR) activation (iNOS) [37], conse-
quently inducing nociceptive hypersensitivity. Mitochondrial stress is a major contributor
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to neuropathic pain conditions, and it has been seen that elevated levels of NOS- and
NOX-derived species can cause mitochondrial homeostasis disturbance, and neuronal
degeneration (BENNETT, 2014). As an overall effect, both species contribute to central and
peripheral sensitization following nerve injury.

2.3. Endogenous Sources of Reactive Oxygen and Nitrogen Species (ROS/RNS)

Several sources of ROS and RNS have been identified in neurons during normal and
neuropathic pain processing, giving its fundamental role in signaling pathway modulation,
discussed later in this paper. Although, as previously stated, ROS and RNS are exogenously
and endogenously formed, the focus will be on the endogenous sources. Thus, at the
cellular level, the majority of them come from enzymatic activity (Figure 4) [76].
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2.3.1. Endoplasmic Reticulum

The endoplasmic reticulum (ER) is formed as an intricately linked net with numerous
tubules and sacs tightly interconnected and is thought to occupy around 10% of the cellular
space and has a pivotal role in lipid and protein biosynthesis [83]. More specifically, it is
involved in biosynthesis, folding, transport, and posttranslational modifications of proteins,
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whether of the plasma membrane, Golgi apparatus, or lysosomes, as well as calcium
storage, and drug detoxification, in certain cell types [72,84,85].

In the smooth ER, reactive species are produced by any of two systems in charge
of xenobiotic metabolism and unsaturated fatty acid production. Regarding xenobiotic
metabolism, through a two-phase process, an initial monooxygenase reaction (phase I)
using an NADPH-cytochrome P450 reductase and a complex of cytochrome P450 adds a
polar group (OH−) in a lipophilic substrate, using O2 as a co-substrate, typically replacing
a hydrogen atom, which introduces polarity into the molecule, and increases its water
solubility. Following oxidation, the xenobiotic with added polarity undergoes a conjugation
reaction (phase II) with endogenous molecules (glucuronic acid, sulfate, or glutathione),
increasing further the hydrophilicity of the conjugate, facilitating its elimination [72].

In relation to the unsaturated fatty acid production, reactive species are produced
by two mechanisms of action of cytochrome b5, which acts in electron transfer. First,
cytochrome b5 can function as part of a multienzyme complex consisting of cytochrome b5,
NADH cytochrome b5 reductase, and a specific desaturase. In this process, cytochrome b5
transfers electrons from NADH cytochrome b5 reductase to the desaturase. With the aid of
molecular oxygen (O2), the desaturase inserts carbon-carbon double bonds into fatty acids,
producing two molecules of water (H2O) [86]. Secondly, it can act through a direct electron
transfer from the NADH cytochrome b5 reductase to the catalytic site of a fused cytochrome
b5/desaturase, adding the same carbon-carbon bond, previously mentioned. In both
cases, cytochrome b5 acts positively over the cytochrome P450 monooxygenase reaction,
contributing to the availability of the second of two needed electrons for O2 to activate
cytochrome P450, accelerating the catalytic process and increasing the formation of H2O2

and O•−, via the leakage of electrons to O2 by NADH cytochrome b5 reductase [72,87].
Altogether, and both present in the ER, cytochrome P450 and cytochrome b5 can con-

tribute to reactive species production through diverse mechanisms. Given that cytochrome
P450 enzymes participate in the metabolism of xenobiotics and endogenous molecules,
some of the reactions involved occur with electron transfer to O2, which subsequently
contributes to ROS production. Moreover, cytochrome P450 enzymes suffer redox-cycling
processes; in such processes, electron transfer between heme-iron centers and additional
molecules occurs, which can result in ROS generation, more precisely O•− and H2O2, as
derivatives [88–90].

Into the bargain, it is believed that redox homeostasis in the ER can induce ER-
associated stress, which triggers redox signaling mediators involved in ROS formation [46].
As an example, unfolded or misfolded proteins that accumulate in the ER lumen can elicit
such a response, associated with chronic pain of neuropathic nature [91] As the first of two
possible mechanisms, ROS can be formed during electron transfer from protein thiols to O2

by the Endoplasmic Reticulum Oxidoreductin-1/Protein Disulfide Isomerase (ERO-1/PDI).
Next, during the protein misfolding process due to the depletion of glutathione reductase
(GSH), ROS are formed; when GSH is used, thiols are restored and can readily interact with
ERO-1/PDI, so as to be re-oxidized. In this cyclic and repetitive process, disulfide bond
formation and scission generate ROS as derivatives [91–93].

Since ER stress in increasingly recognized as a relevant component in the development
of neuropathic pain, ROS produced in the process play a significant role in it. Under high
protein traffic in ER stress conditions, great quantities of misfolded proteins and ROS
can be generated, triggering the unfolded protein response (UPR), which might lead to
deviant cellular signaling, neurotoxicity, neuroinflammation, the disruption of cellular
functioning, and apoptosis, particularly relevant in neuropathic conditions, where ROS
levels are boosted [94,95].
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ER stress and pain behavior were normalized in neuropathic animals undergoing nerve
ligation, and BiP and XBP1 expression in the spinal cord were reduced after treatment with
tauroursodeoxycholic acid, an ER chaperone that aids the ER in protein folding, indicating
the participation of ER stress in the development of neuropathic pain [96].

2.3.2. Mitochondria

Among the most important functions of mitochondria are the production of energy
in the form of ATP, either by the tricarboxylic acid cycle or oxidative phosphorylation,
intracellular calcium concentration balance, and β-oxidation [72]. Almost all of these
cellular functions are associated with reactive species production, and the mitochondria
stands as one of the most important sources of reactive species with oxidant potentials. This
amount of reactive species contributes to cellular damage and, at the same time, accounts
for relevant redox signaling pathways [31].

It is widely accepted that oxidative phosphorylation and the ETC promote mitochon-
drial ROS formation in higher concentrations than any other mitochondrial activity; even
so, the relevance of the other sites should not be disregarded, solely based on the percentage
of production, given that there exist at least eleven different sites associated with substrate
oxidation and oxidative phosphorylation electron leakage to O2 that also produce O• and
H2O2 [97]. In general terms, if electrons leak individually or in pairs, they will generate
O•− or H2O2, respectively. If they are transferred four-at-a-time, as expected, they will
form H2O by inflowing to oxidative phosphorylation [97].

The mitochondrial ETC is responsible for ATP formation, through the process of oxida-
tive phosphorylation. The oxidation of metabolites contained in energy sources undergoes a
transfer of electrons to electron carriers, such as nicotinamide adenine dinucleotide (NAD+)
and flavin adenine dinucleotide (FAD); the reduced form of these carriers transfers the
electrons to the respiratory chain, and finally to oxygen [46,98]. During this process, as
electrons pass through the mitochondrial complexes, some may leak out and react with O2,
which then suffers either a reduction mediated by NADPH and xanthine oxidase, yielding
O•− or by ubiquinol, a reduced form of ubiquinone [99].

Yet, it is notable that the production of O•− and H2O2 in the mitochondria will
drastically depend on the protonmotive force, the NADH/NAD+ and the CoQH2/CoQ
ratios, and the local concentration of molecular oxygen, which are unsteady and difficult
to measure in in vivo biological systems. Thus, O•− and H2O2 levels will raise or lower
depending on the redox state and the specific location of the electron donor: if they act
upstream, causing an oxidation of the site, they will lead to reduced electron leak; if they
act downstream, causing a reduction of the site, this will lead to increased electron leak.
Altogether, this makes it troublesome to assume that any mitochondrial dysfunction will
necessarily lead to increased O•− and H2O2 levels, or to oxidative stress; instead, a wider
frame must be taken into consideration [97,100].

ROS levels are found to be increased in neuropathic pain, more specifically in microglia,
astrocytes, and neurons of the dorsal horn in the spinal cord [17,48]. In the event of nerve
injury, mitochondria dysfunction emerges as a consequence of excessive reactive species
production, Exceeded by endogenous antioxidant systems, triggering mitochondrial fission
and an unpaired expression of mitochondrial transcription factor A (TFAM) and mito-
fusin 2 (MFN2) proteins, responsible for mitochondrial biogenesis and fusion, respectively,
and hence, contributing to oxidative stress and increased mitochondrial damage [101].
These events seem to be significantly regulated by the cellular energy sensor (adenosine
5′-monophosphate (AMP)-activated protein kinase) AMPK, which acts upon oxidative
stress conditions, triggering peroxisome proliferator-activated receptor-gamma coactivator-
1alpha (PGC-1α), which promotes mitochondrial gene expression related to biogenesis and
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mDNA replication and transcription, ultimately restoring mitochondrial function [102].
Furthermore, excessive ROS produced by mitochondria can trigger mitochondrial damage
and exacerbate neuropathic pain through TRP channel activation, NMDA receptor upreg-
ulation, and GABAergic gating mechanisms inhibition, inducing NLRP3 inflammasome
proinflammatory responses, and causing oxidative damage to neurons [50,103,104].

2.3.3. Plasma Membrane

Given its direct contact with the extracellular space, a high exposure to oxidizing agents
and reactions are plausible, leading to reactive species production [72]. Several metabolic
processes can be disturbed due to oxidatively damaged lipids of the plasma membranes,
which will precede transmembrane ion gradient alterations and the interruption of secretory
and signaling functions [105].

The main source of reactive species generation is owed to the effect of NOX, which
will indorse O•− production. NOX are a group of enzymes bounded to the plasma
membrane present in a myriad of cell types [44]. NOX are constituted by six subunits: one
Rho-GTPase, either Rac1 or Rac2, and five phagocytic oxidases (phox): gp91phox, p22phox,
p40phox, p47phox, and p67phox. The first two are restricted to the membrane, and the last
three are free in the cytoplasm [20]. Upon stimulation, when proper conditions allow
the cytoplasmic subunit to migrate to the membrane subunits, all the components bound
together, leading to allosteric modification and subsequent NOX activation. Once activated,
NOX will catalyze the oxidation of cytoplasmic NADPH into NAD+, releasing an electron
to O2, to produce O2•− onto the plasma membrane or in its outer side [106,107].

Out of the NOX family, NOX1, NOX2, and NOX4 have been linked to the neuroin-
flammation process and neuropathic pain development [53,108,109]. NOX1 is expressed
in DRG, spinal cord neurons, and glial cells [110], and its inhibition by ML171 signifi-
cantly reduced pain behavior through TRPA1-mediated ROS production in a model of
neuropathic pain induced by peripheral nerve injury in rats [111]. NOX2 is expressed in
microglia from the spinal cord, and in macrophages and neurons in DRG in neuropathic
pain models induced by nerve injury; thus, its suppression was associated with decreased
ROS production, microglia activation, and TNF-α and IL-1β, therefore, improving thermal
and mechanical hypersensitivity [112,113]. Finally, NOX4 was detected in dorsal horn
neurons and interneurons of the spinal cord, as well as in the injured nerve and DRG in
peripheral nerve injury and diabetic neuropathy [114,115], contributing to ROS production,
peripheral myelin integrity impairment through myelin protein zero (MP) and peripheral
myelin protein 22 (PMP22) degradation, associated with apoptosis, and consequently, the
exacerbation of the manifestations of neuropathic pain, all of which were reduced when
NOX4 activity was inhibited in knock-out mice [116].

2.4. ROS/RNS-Mediated Cell Signaling

RONS play pivotal roles in cell functioning, by eliciting or regulating changes in
signaling cellular messages, enzymatic activity, response to growth factor, the induction of
inflammatory response [117], immune response, cellular adhesion, differentiation, prolifer-
ation, autophagy and apoptosis [118], gene transcription [119], and protein and membrane
integrity [19,120], to name a few.

Given that the cellular activity is modified as a response to stimuli, mainly through
the activation of gene transcription, the two recognized ways by which ROS participate
in such activation, are by (1) the direct modification of transcription factors, which will be
addressed to particular DNA promoters of target genes, or (2) via the activation of mitogen-
activated protein kinase (MAPK) pathways, like extracellular signal-regulated kinases
(ERK), c-Jun N-terminal kinases (JNK), and p38, which will lead to the phosphorylation
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and activation of other transcription factors, such as activator protein 1 (AP-1) and cAMP
response element-binding protein (CREB) [121,122]. The two mechanisms by which cell
signaling happen, by means of ROS, can be explained as (1) modifications of target protein
molecules, once reactive species oxidize main Cys residues, or by (2) changes in intracellular
redox state by the redox-buffering capacity of the cells [72]. The molecular alteration
suffered by the former mechanism acts over enzymes, transporters, receptors, transcription
factor regulatory sites, and allosteric and macromolecular sites [123], and can alter their
localization, activity, and DNA-binding ability of the transcription factors, thus repressing
or enhancing the transcription of target genes [120,124].

Although some reactive species can cause irreversible structural modifications over
molecules, with low specificity (ex.: OH•), permanently damaging them, other moderate
oxidants, such as H2O2, will primarily target Cys residues of proteins, more precisely
thiol groups (-SH) [72]. Thiol groups from Cys residues can undergo several oxidative
modifications, and the process typically occurs as follows: initially, ROS oxidize the -SH
group of Cys to form sulfenic acid (-SOH); sulfenic acid (-SOH) can further react with a
neighbor -SH group, either from the same protein or from another protein, yielding the
formation of a disulfide bond (-S-S-). Under certain conditions, such as excessive reactive
species, sulfenic acid (-SOH) can be further oxidized to sulfinic acid (-SO2H) and then to
sulfonic acid (-SO3H). These two last higher oxidation states are usually irreversible. On
the other hand, even though sulfenic acid formation has been seen as damaging, it has
its own relevance as a redox-sensing signal for cellular functions, due to the reversible
oxidation by ROS [125,126].

Other targets of redox signaling exist, such as the iron–sulfur (Fe–S) cluster or Tyr
residues, but the list could be vastly extensive for the purpose of this paper. Therefore, this
section takes into consideration those redox-signaling targets deemed more sensitive to
nitroxidative effects and/or implicated in the regulation of protein function, associated
with transcription factor control and well-characterized mechanisms, and that contribute
to the regulation of oxidative stress, offering insights to how cells sense and respond to
oxidative stress and neuropathic pain.

2.4.1. NRF2–ARE Pathway

Nuclear factor erythroid 2-related factor 2 (NRF2) is a redox-sensitive leucine zipper
(bZIP) transcription factor [127] that has a significant role in neuropathic pain modulation
through the inflammatory response and oxidative stress management by hyperalgesia and
allodynia regulation, regulating the expression of HO-1 and IL-10 [127,128]. It is expressed
in microglia in the spinal cord, DRG, and sciatic nerve [129]. NRF2 binds to specific DNA
sequences to control transcription from DNA to RNA [130]. It is activated in response to
oxidative and electrophilic stress [131]. Its major function is to initiate the expression of a
wide range of cytoprotective genes once it has a role in maintaining redox homeostasis [56].
In quiescent conditions, in the cytoplasm, NRF2 is bound to the Kelch-like ECH-associated
protein 1 (KEAP1) dimer, which acts as an adaptor protein that links NRF2 to the Cullin
3 (Cul3)-based E3 ubiquitin ligase complex, which causes its ubiquitination, by attaching
to lysine residues on NRF2, through a process involving ubiquitin-activating enzymes
1 (E1), ubiquitin-conjugating enzymes (E2), and E3 [132]; this tags NRF2 for subsequent
degradation by the 26S proteosome into small peptides and this interaction maintains low
NRF2 cellular levels, as expected in normal conditions (Figure 5A) [133].

When an increase in oxidative stress occurs, NRF2 is released from KEAP1, accu-
mulates in the cytoplasm, translocate to the nucleus, and heterodimerizes with specific
regions of DNA encoding antioxidant response elements (ARE), detoxification, and cy-
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toprotective proteins, such as heme-oxygenase 1 (HO-1) [134], CAT, SOD, and others
(Figure 5B) [130,135].
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ubiquitination process in the cytoplasm. (B). Oxidative stress conditions of Nrf2 release by
KEAP1 and translocation to the nucleus towards DNA regions responsible for the ARE encoding.
AOx: antioxidant; Elect: electrolytic stressors; Ubi: ubiquitin.

As previously stated, KEAP1 is found to have a double function, as an oxidative and
electrophilic stress sensor, and negative regulator of NRF2, by degradation via ubiquiti-
nation [132]. Out of 25 cysteine residues of KEAP1, three are among the most critical for
redox sensing, responsible for NRF2 dissociation (Cys151) and degradation (Cys273 and
Cys288) [136]. KEAP1 is highly reactive and able to undergo modifications in response
to alterations in the inner cellular redox state; these Cys can be oxidized or covalently
modified, inducing the formation of disulfide bonds [137].

Thus, conformational variations reduce the affinity for NRF2, ultimately preventing
KEAP1 from enabling the ubiquitination and degradation of NRF2. This allows NRF2
to stabilize, and move forward with its transcriptional inducing capacity, which then
triggers cellular protective antioxidant [138], anti-neurotoxic [139], neuroprotection [140],
and anti-inflammatory responses [141].

Decreased NRF2 and HO-1 levels were observed in neuropathic rats after vincristine
administration, where oxidative stress, DNA damage, neuronal cell damage, and inflam-
mation, evidenced by increased 8OH-dG, diminished glial fibrillary acidic protein (GFAP),
and nuclear factor kappa-B (NF-κB) were present, and promptly reversed after quercetin
administration, showing the role played by the NRF2 pathway, and the protective effect
of quercetin against neuropathic pain caused by vincristine [128]. To evaluate the role of
NRF2 in neuropathic pain, NRF2 siRNA was administered to CCI-induced rats, which
prominently decreased the expression of NRF2 RNA and NRF2 and HO-1 protein and
worsened the hyperalgesia behavior (withdrawal threshold and latency) [127]. Also, a
study investigating the involvement of NRF2 expression in spared nerve injury in rats with
our without an anhedonia phenotype, classified after a hierarchical cluster analysis of a
sucrose preference test, showed that NRF2 expression was significantly decreased in the
medial prefrontal cortex, hippocampus, and spinal cord of anhedonian rats, compared
to non-anhedonian ones. After the NRF2 activator sulforanphane was administered, a
reduction in mechanical withdrawal threshold was observed, while sucrose preference
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remain unchanged, due to NRF2 level normalization in the animals with the anhedonia
phenotype [142].

2.4.2. NF-κB Signaling Pathway

The nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) is a pleiotropic
inducible transcription factor implicated in pro-survival regulatory inflammation and immune
functions, cellular adhesion, differentiation, and cell proliferation. It is activated in a wide
variety of neuroinflammation-associated stimuli via pro-apoptotic pathways [143,144]. It
is composed by homo- and heterodimers of five structural protein members, of which Rel-
A(p65), Rel-B, and c-Rel contain C-terminal transactivation domains (TADs), and p50/p105
and p52/p100, which also serve inhibitory functions [120].

Conversely, in the nervous system, it is composed mainly by p50/Rel-A het-
erodimers [145], but the most widely studied dimers are those of Rel-A and p50, also
referred to as NF-κBcan, once they participate in the canonical activation pathway. On the
other hand, Rel-B and p52 form a dimer referred to as NF-κBnon for they participate in
the non-canonical activation pathway, discussed later [146]. Additionally, NF-κB contains
Rel-1-homology domains (RHD) that bear a nuclear localization signal, accountable for
dimerization, detection, and binding to DNA, as well as communication with the NF-κB
inhibitor (IκB) [147].

As previously stated, the NF-κB pathway is mainly activated by either of two kinase-
dependent pathways, the canonical and the non-canonical. However, in the nervous system,
the most studied and well known is the canonical pathway, which includes a series of
cytokines and Toll-like receptors (TLR) [144]. In normal conditions, NF-κB dimers form
complexes with IκB, to retain them in the cytosol, by masking their nuclear localization
signal (NSL), and also preventing NF-κB from binding to DNA by masking its DNA-
binding sites [147]. There, H2O2, HOCl, 1O2, and peroxynitrite act via the oxidation or
nitration of specific critical Cys residues on the IκB–kinase (IKK) complex, which terminates
the joining of IκB to NF-κB. Once IκB is structurally modified, activated NF-κB is released
and translocated to the nucleus (Figure 6) [19,148].
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PI-Cyt: pro-inflammatory cytokines; CK: chemokines; CAMs: cell adhesion molecules; GF: growth
factors; COX-2: Cyclooxygenase-2; iNOS: Inducible Nitric oOxide Synthase; HO-1: Heme-Oxygenase-1.
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When phosphorylated at a specific regulatory aminoacidic residue by the IKK complex,
IκB is ubiquitinated and marked for 26S proteosome degradation, still in the cytosol [149];
NF-κB is freed for nuclear translocation, to activate the transcription of target genes [46],
where it binds to enhancer regions of specific genes, such as proinflammatory cytokines,
chemokines, adhesion molecules, growing factors (GF), and promoters of COX-2, iNOS, and
heme-oxygenase [149,150]. On the other side, H2O2 can regulate NF-κB by direct interaction
with the Cys of the DNA-binding region (Figure 7) [151]. In that sense, higher than normal
levels of RONS in the nucleus can prevent NF-κB from interacting with DNA, reducing
its transcriptional activity, although increased H2O2 can induce peroxiredoxin 1 activity,
which is a H2O2 scavenger.
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A diverse array of genes with sometimes differing functions respond to NF-κBcan, i.e.,
pro-survival genes such as inhibitors of apoptosis (IAP), Bcl-2, Bcl-x, Bcl-w, Bfl-1, BIRCS,
and MnSod; yet NF-κBcan can also regulate pro-apoptotic genes like p53, TNF-α, Bax, c-myc,
APO-1, and FasL [146]. Given the extremely specialized types and subtypes of neuronal
cells, it is a major challenge to study NF-κB, due to traditional techniques limitations in
their ability to mirror realistic and accurate locations and activities of proteins that are
regulated by specific dimer combinations and several post-translational modifications.

NF-κB is widely implicated in spinal microglial activation to M1 phenotype in the
establishment of neuropathic pain, as seen in the examination of growth and differen-
tiation factor 11 (GDF11), an inhibitor of macrophage activation, and its impact on mi-
croglia polarization, thermal and mechanical hyperalgesia in sciatic nerve injury in mice,
showing a marked reduction of pain behaviors, enhancing the switch from M1 to M2
phenotype through the modulation of the transforming growth factor beta receptor type
1 (TGF-βR1)/SMAD2/NF-κB pathway [152,153]. Another study aimed to investigate the
participation of Pellino 1 (Peli1), a component of the E3 ubiquitin ligase, in the activation
of microglia in neuropathic pain induced by sciatic nerve injury. It was found that higher
levels of Peli1 and NF-κB expression, as well as pain behavior after spared nerve injury
(SNI), induced neuropathic pain. Also, the administration of intrathecal Peli1 shRNA prior
to SNI and siRNA after the establishment of SNI, reduced the expression of Peli1 and
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NF-κB in the spinal dorsal horn of mice, alleviating the thermal and mechanical threshold
through NF-κB pathway modulation, as Peli1 is needed for the ubiquitination of proteins
regulating NF-κB activation [154].

2.4.3. MAPK/AP-1 Signaling Pathway

The activator protein 1 (AP-1) is a heterogenous family constituted by the basic-
region leucine zipper (bZIP) transcription factor, accountable for the regulation of cellular
responses to numerous extracellular stimuli, including ROS [155]. This vast group is
represented by the members of the Jun (c-Jun, JunB, and JunD), Fos (c-Fos, FosB, Fra-1,
and Fra-2), Maf (c-Maf, MafA, MafB, MafG/F/K, and Nrl) and ATF (ATF2, ATF3, B-ATF,
JDP1, and JDP2) protein subfamilies [156,157]. They harbor a C-terminal leucine zipper
domain that allows them to form hetero- and homodimers, which subsequently bind to
specific DNA sequences known as 12-O-tetradecanoylphorbol-13-acetate (TPA)-responsive
elements (TRE) or cAMP response elements (CRE) in the promoter regions of target genes,
where they regulate gene expression, mediated by basic N-acid-rich domains, parallel
to the leucine zipper [157]. The specific arrangement of the dimers composing the AP-1
complex establishes the interaction patterns, molecular affinities, and functional specificity
that represent their tasks in the cell [158,159].

AP-1 transcription factor can be redox activated by ROS, ROS-dependent factors,
cytokines, GF, neurotransmitters, UV light, and ionizing radiation [160]. The increased ex-
posure to H2O2, OH•, and O•− can directly determine the redox state of several conserved
cysteine residues included in the AP-1 pathway [161,162]. Also, AP-1 can be indirectly
regulated by ROS signaling pathways, like NF-κB and interferon-γ. The AP-1 transcription
factor family is a target of the ROS-sensitive MAPK cascade for phosphorylation, this
leads to enhanced transcriptional activation [163,164]. ROS activate ERK1/2, JNK, and p38
MAPKs (Figure 8), which are crucial mediators for signal transduction pathways leading
to AP-1 activation, through the phosphorylation of c-Jun on serine and threonine residues,
enhancing its stabilization and c-Fos transcriptional activity over genes involved in neuron,
microglia, and astrocyte activation, in a sequential manner [165], particularly relevant in
dorsal horn neurons of the spinal cord and DRG, and playing distinct roles in different
cells across the development of neuropathic pain [166]. The accurate redox control of AP-1
expression and activation is essential for homeostasis, and its alteration has been implicated
in altered neurons states, for it is a key molecular switch that controls the expression of
downstream proinflammatory factors [167]. Nevertheless, the regulation of AP-1 activity is
complex as it depends on severa factors such as, changes in Jun and Fos gene transcription
and mRNA expressionthe effects on Jun and Fos protein turnover, post-translational modi-
fications of Jun and Fos proteins that modulate its transactivation capacity, and finally, on
the interaction with other transcription factors that can positively or negatively affect AP-1
activity [168].

An oxidative shift of the intracellular thiol/disulfide redox state, or ROS, are account-
able for significant activation of the MAPK cascade elements, as seen in neurons [169,170].
They consist in a series of protein kinases that activate each other in specific sequences.
MAPKs are regulated by the phosphorylation and dephosphorylation of threonine and
serine residues, and are triggered by tyrosine kinase receptor activation, protein tyrosine
kinases, cytokine receptors, heterotrimeric G protein-coupled receptors, and GF [39]. The
major MAPK cascades include ERK1/2 (extracellular signal-regulated kinase 1 and 2), JNK
(c Jun N-terminal kinase), the p38 pathway, and ERK5, each of which has specific upstream
activators, downstream targets, and biological actions [171].

Each cascade is composed by three central kinases (MAP3K, MAP2K, and MAPK);
an additional upstream MAP4K and downstream MAPKAPK components are included.
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Respectively, each cascade has its own signal transmitted by the successive phosphorylation
and activation of sequential kinases, that at a given point lead to the phosphorylation of the
target regulatory proteins by the MAPK and MAPKAPK constituents [172]. With the aim
of executing their functions, MAPKS and MAPKAPKs phosphorylate and regulate their
substrates, so as to induce and regulate the de novo gene expression of other transcription
factors and suppressors, and chromatin remodeling proteins, at the nucleus level, after
being physically transported across the nuclear membrane [173].
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The ERK1/2 cascade is activated through various membrane receptors, but mostly
via GTPase Ras, which receives extracellular signals at the plasma membrane, that in
turn conscript the Raf-1 and B-Raf (MAP3K) tier of the cascade to the plasma membrane,
probably through homo- or hetero-dimerization and phosphorylation [174]. Therefore, the
kinases activating the Raf components are considered MAP4Ks. Afterward, the signal is
transmitted to the MEK1/2 (MAP2K), through the phosphorylation of serine residues in
their activation loop. The activated MEK1/2 transmit the signal to ERK1/2 (MAPK) also by
the phosphorylation of the threonine and tyrosine regulatory residues in the Thr-Glu-Tyr
domain, in the activation loop [175]. Ultimately, the signals pass on to the MAPKAPK
elements, RSKs, MNKs, and MSKs, and other substrates located in the cytoplasm or
the nucleus. Both ERK1/2 and MAPKAPK can phosphorylate substrates involved in
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cellular proliferation, differentiation, neuroplasticity, stress response, pro-survival, and
pro-apoptotic processes [176]. As a matter of fact, ERK is phosphorylated in dorsal horn
neurons of the spinal cord, in DRG neurons, and in peripheral nerve terminals after nerve
injury, contributing to peripheral and central sensitization [165,177]. ERK activation occurs
in a sequential manner, starting in the dorsal horn neurons after spinal nerve ligation (SNL)
within 10 min through the transcriptional modulation of NK-1 and prodynorphin [178,179],
followed by microglia for some days, having its most robust expression in 3 days, and
finally, in astrocytes for weeks, supporting the role of ERK in astrocytes in the mainte-
nance of neuropathic pain, whose inhibition reduced behavior associated with neuropathic
pain [165]. Isoliquiritigenin reduced mechanical and thermal hyperalgesia by a CCI in
mice, inhibiting the activation of spinal microglia and neuroinflammation through the ERK
pathway inhibition [180].

The JNK cascade is usually activated by stress signals such as UV radiation and
cytokines [181]. It includes MLK (MAP3K), MKK4/7 (MAP2K), and JNK (MAPK). Once
activated by stimuli dependent and independent of stress and mitogens, it transmits their
signals to GTPases, such as Rac1, that activate the MAP3K-level kinases directly or via
MAP4Ks [182]. The MAP3K tier transmits the signals through the phosphorylation of
the threonine and serine residues in the activation loop, which consequently activates
the MKK4/7; finally, these kinases activate any of the components of the MAPK level
by the direct phosphorylation of tyrosine and threonine residues in the activation loop.
As expected, the JNKs and their respective MAPKAPKs phosphorylate substrates in the
cytoplasm and nucleus that modulate the transcription of genes mediating apoptosis,
immunological responses, and neuronal activity [183]. JNK-1 is activated in early stages
(three days) and late stages (21 days) in GFAP- expressing astrocytes in neuropathic pain
caused by SNL, and transiently (12 h) in DRG neurons after SNL, specifically in small
C-fibers; therefore, this supports the idea that spinal astrocytes contribute to the continuance
of neuropathic pain [166]. The neuroprotective effect of Orexin B was evaluated in a model
of neuropathic pain induced by CCI in rats. Orexin was found to be effective in improving
mechanical and thermal hyperalgesia, preventing microglia activation reducing Iba1 levels
and preventing JNK/NF-κB signaling pathway activation [184].

As for the p38 cascade, it is activated by stress signals and environmental stressors, but
it also responds to normal cellular processes, like inflammatory cytokines [185]. It involves
MKK3/4/6 (MAPKK) and p38 (MAPK) [172]. After activation by stress conditions or recep-
tors, the signals are transmitted via GTPases, MAP4K, and MAP3K, in a similar manner to
the JNK cascade. The MAP3K level of the cascade phosphorylates and activates MKK3/6,
and under certain conditions, MKK4 (MAP2K) components of the p38 cascade [186]. At
this point, the p38 isoforms and functional unconventional spliced forms at the MAPK
level are activated via the phosphorylation of the threonine and tyrosine residues in the
regulatory domain in their activation loop. Lastly, the signals are transmitted by the p38,
or MAPKAPKs to target motifs accountable for regulatory processes [172]. p38 MAPKs
are particularly expressed in the superficial laminae of dorsal horn neurons in the spinal
cord, whose increase correlates with lower mechanical withdrawal and thermal latency
thresholds in SNL-induced neuropathic pain [166]. Increasing evidence points to the role
of p38 MAPK in the activation of spinal microglia after nerve injury and its contribution to
neuropathic pain, via downstream mechanisms of proinflammatory mediators after nuclear
translocation, where it influences the gene expression of TNF-α, IL-1β, and IL-6, critical
mediators of neuroinflammation and pain that also exacerbate other pain signaling path-
ways [187]. p38 MAPK involvement in the pathophysiology of neuropathic pain mediating
microglial activation was evaluated in SNL rat models treated with electroacupuncture to
assess the analgesic effect of such treatment; it was found that a significant decrease in p38
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MAPK activation and enhanced mechanical withdrawal threshold, both in the ipsilateral
and contralateral dorsal horn of the spinal cord, not only demonstrated the beneficial
effect of electroacupuncture, but the potential of targeting the p38 MAPK pathway to treat
neuropathic pain [188].

2.4.4. Phosphoinositide 3-Kinase (PI3K)/Akt Pathway

The PI3K pathway constitutes a conserved family of kinases present in the inner side of
the plasma membrane, capable of acting specifically on the D-3 position of the inositol ring
of inositol phospholipids [189]. Such phosphorylation produces phosphatidylinositol-3,4,5-
triphosphate (PIP3), phosphatidylinositol-3,4-biphosphate (PIP2), and phosphatidylinositol-
3-phosphate (PIP) [190]. The PI3K enzymes, when activated, transmit intracellular sig-
naling cascades concerning signal transduction, protein synthesis, vesicular traffic, cy-
toskeletal reorganization, cell growth, proliferation, survival, metabolism, apoptosis, au-
tophagy [189,191], drug resistance in response to GF, such as epidermal growth factor (EGF),
platelet-derived growth factor (PDGF), nerve growth factor, (NGF), vascular endothelial
growth factor (VEGF), and brain-derived neurotrophic factor (BDNF) [122,192]. PI3K has
also been found to be essential in the initiation and maintenance of neuropathic pain [193].

Although in mammalians cells, the PI3Ks exists in three classes (I, II, and III), and
each of these have different structural characteristics, functional homologies, and sub-
strate specificity, the most prevalent and significant in the nervous systems is the class I
PI3Ks, where they play a crucial role in neuronal development, synaptic plasticity, and
neuroprotection [194]. Class I PI3K are further divided into class IA and class IB sub-
groups [191,195,196]. The heterodimeric class IA PI3Ks are composed of a regulatory
subunit p85, including five polypeptides p85α, p85β, p55α, p50α, and p55γ, and a catalytic
subunit p110 (p110α, p110β, or p110δ), which are activated by receptor tyrosine kinase
(RTK) and G-protein-coupled receptors (GPCRs), small G protein Ras, and cytokines [197].
The p110α and p110β are ubiquitously expressed in all cell types, while p110δ expression
is more restricted to leukocytes [198]. The catalytic p110 subunit contains a C-2 region
for membrane anchoring; a Ras-binding region (RBD); an adaptor-binding region (ABD),
which holds an N-terminal region for interaction with the regulatory p85 subunit; a helical
region; and a catalytic region. The p85 regulatory subunits have in common a p110 binding
region (inter-Src-homology-2 region, iSH2) and two SH2 regions for p110 ABD binding,
constitutively [189,199]. On the other hand, class IB PI3Ks enzymes are formed by the
p110γ polypeptide, associated with an adaptor subunit p101 or p84 and p87, to form
heterodimers, p101/p110γ, or p84/p110γ, which are primarily activated by GPCRs, due to
the interaction of its regulatory subunit with the subunit of trimeric G protein [200]; this
isoform is present in the nervous system.

Either of these PI3Ks catalyzes the phosphorylation of PIP2 to produce PIP3 [201–203].
Typically, its activation starts with the union of a ligand to RTKs or GPCRs, through its
regulatory p85 subunit. In non-activated states, the p85 subunit remains bonded to the cat-
alytic subunit p110 ABD region, through its iSH2 region, which stabilizes the p110 catalytic
subunit. Once properly activated through cytokines, GF, insulin, and LPS, the SH2 regions
bind to their respective receptors or adapter proteins, leading to the allosteric activation
of the p110 catalytic subunit of the PI3K [194,204]. When activated, PI3K transforms the
PIP2 to PIP3, which serves as a membrane-embedded second messenger, inducing the
repositioning and activity of pleckstrin-homology (PH) region-containing proteins, in the
inner side of the plasma membrane [192]. Among these proteins, can be included Akt
(protein serine/threonine kinase), also knowns as PKB, and phosphoinositide dependent
kinase 1 (PDK1) [202]. Akt activation permits the transportation on protein kinase to the
cytoplasm and nucleus, where it downstream modulates pro-apoptotic proteins, such as
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Bcl-2, caspase 9, fork head transcription factors (FOXOs), NF-κB, mTOR, and glycogen
synthase kinase 3 (GSK3) (Figure 9) [192,197,205].
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Figure 9. Phosphoinositide 3-kinase (PI3K)/Akt pathway. PI3K is activated by RTKs or GPCRs, GF,
CR, and ROS. Once activated, PI3K transforms the PIP2 to PIP3. This serves as a second messenger for
Akt (protein serine/threonine kinase) and phosphoinositide dependent kinase 1 (PDK1) activation.
Akt activation allows downstream modulation of pro-apoptotic proteins such as Bcl-2, caspase 9,
fork head transcription factors (FOXOs), NF-κB, and mTOR. ROS can inhibit phosphatase and tensin
homolog (PTEN), which negatively regulates PIP3 synthesis and inhibits Akt activation, leading to
further activation of the PI3K/Akt signaling pathway. Phosphatase 2A (PP2A), a Akt/PKB inhibitor,
can be deactivated by ROS.

ROS and RNS interact with specific amino acids residues on tyrosine phosphatases,
protein tyrosine kinase, and protein kinase C, that can trigger kinase cascades, MAPKs,
and PI3Ks [206]. ROS can directly activate PI3K, increasing its downstream signaling
pathway [207]. At the same time, H2O2 can oxidize and inhibit phosphatase and tensin
homolog (PTEN), which negatively regulates PIP3 synthesis and inhibits Akt activation,
hence, leading to a further activation of PI3K/Akt signaling pathway [208]. Additionally,
ROS enhance the phosphorylation of PTEN through casein kinase II, allowing PTEN to
undergo proteolytic degradation [209]. Moreover, phosphatase 2A (PP2A), an Akt/PKB
inhibitor, can be deactivated by ROS [209,210]. Nevertheless, low ROS levels cause the oxi-
dation of Akt/PKB -S-S- bridges, promoting PP2A association with the Akt/PKB complex,
promoting the short-term activation of the Akt/PKB pathway [211,212].

The dysregulation of this pathway has major implications in neuropathic pain [193].
PI3K/Akt inhibition or alteration leads to elevated states of ROS production, membrane
depolarization, mitochondrial membrane stability impairment, the diminishment of ox-
idative phosphorylation, and ATP production [213,214]. The class I PI3K catalytic subunit
p110α has a role in controlling ROS levels at a physiologic rate through the NRF2/ARE-
dependent pathway [215], which, if not regulated, could lead to activation of the autophagy
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machinery [206]. The dysregulation of the PI3K/Akt pathway has a relevant role in the
establishment of chronic pain conditions derived from traumatic lesions [192,193,216,217].
PI3K has also been linked to TRK systems NGF/TrkA and BDNF/TrkB activation, dis-
playing central sensitization and hyperalgesia mediation induced by G-CSF [218], and
mediating pain induced by plantar incision in mice [216]. Additionally, PI3K mediates
peripheral and central sensitization and hyperalgesia caused by the intraplantar injection
of EphrinB1-Fc, triggering the EphrinBs (ligand) and EphBs (receptor) pathway activa-
tion [219], affecting neuronal excitability, leading to an increased firing of pain signals,
contributing to pain hypersensitivity [220]. PI3K was proved to be crucial for the DRG and
dorsal horn neurons’ upregulation of the kinesis family member 1a (Kif1a), following a
positive correlation between increased levels of PI3K/Akt/CREB, and Kif1a protein and
mRNA expression in a chronic pain model induced by chronic constriction injury. The
process starts with CREB phosphorylation by PI3K, which recruits the DNA demethyla-
tion TET1 towards the Kif1a promoter region, inducing an upregulation of its expression,
which then leads to pain sensation. Such insight offers a novel target for managing neuro-
pathic pain, since the inhibition of PI3K led to decreased Kif1a expression, and alleviating
pain-associated behaviors [221].

2.4.5. Calcium Signaling

Divalent calcium ions (Ca2+) are widely implicated in a plethora of pro-survival and
pro-apoptotic cell processes, considering that it is one of the most relevant second mes-
sengers for intracellular signaling in most cells, but particularly in neurons and astrocytes,
where it serves intricate and integrated functions like dendritic response to neurotrans-
mitters, gene expression through nucleus signaling, and neurotransmitter release from
presynaptic terminals [222]. Ca2+ aids in communicating depolarization status and synaptic
activity to neurons [223]. The biochemically elegant mechanism through which it exerts
signaling properties relies on the calcium concentration gradient relation of the extracellular
space and the cytosolic space, as well as the relation of the cytosolic space and intracellular
compartments, such as the endoplasmic reticulum and mitochondria [223]. In this context,
given that Ca2+ is a main element for maintaining and controlling neuronal excitability, it is
not absurd to consider the high energetic demand that this implies for neurons, as all of the
Ca2+ that enters the cytosolic space must be removed from within, through plasma mem-
brane calcium ATPase (PMCA), sodium-calcium exchanger (NCX), mitochondrial calcium
uniporter (MCU), mitochondrial efflux systems, endoplasmic reticulum calcium ATPase
(SERCA), calcium release channels, and cation-dependent calcium pumps (Figure 10) [224].

In the mitochondria, Ca2+ is transported through the MCU, against the concentration
gradient, by means of electrochemical gradient–mitochondrial membrane potential; once
in the mitochondria, Ca2+ forms inactive precipitates bound to inorganic phosphates [225].
When Ca2+ is not bound, it is transported back to the cytosol by the NCX. Nevertheless,
when mitochondrial levels of Ca2+ are excessively high, this will force its way out through
the mitochondrial permeability transition pores (mPTP); this marks the initial steps towards
the release of pro-apoptotic proteins and the beginning of cell death through necrosis
or apoptosis [226,227]. Cytosolic Ca2+ level increases mediated by ROS induce the AP-1
proteins c-Fos and c-Jun [39,228], as well as PKC-α activation through oxidative stress [229].

As formerly stated, the mitochondria is a paramount producer of reactive species,
through the ETC as by-products, mainly O•− and H2O2, as well as through the TCA cycle,
α-ketoglutarate dehydrogenase, or pyruvate dehydrogenase complexes, which mainly
produce O•− and H2O2, or through enzymes not related to the ATP production, yet resi-
dents of the mitochondrial membrane, such as monoamine oxidase (MAO), cytochrome b5
reductase (Cb5R), and glycerol–3–phosphate dehydrogenase [230]. Altogether, the mito-
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chondria can be considered a producer and a target itself of ROS actions, due to its intricate
interaction, mutual regulation, and complementary functions, either in physiological or
pathological conditions [231].
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ROS can stimulate calcium signaling in cells of the nervous system, as seen in cases
where astrocytic MAO produced H2O2, initiating lipid peroxidation and the activation
of phospholipase C and inositol 1,4,5—triphosphate (IP3) receptor (IP3R)-mediated cal-
cium signaling [232]. Astrocytes in hypoxia conditions have been shown to trigger Ca2+

signaling as a response to ROS; also, RONS can directly oxidize or nitrosylate cysteine
residues in Ca2+ channels, specifically in the pore-forming α-1-subunit [233], altering its
conformational structure and function, modifying neurotransmitter release and synaptic
plasticity, essential for learning, memory, and chronic pain [234]. Additionally, RONS
can influence Ca2+ channels’ gene expression, affecting their quantity and proportion in
the cellular membrane, open-time probability, and trafficking [235]. Two major types of
channel proteins seem to be involved in receptor-induced Ca2+ signals, the store-operated
Ca2+ channels (SOC) and transient receptor potential channels (TRP). Both are of major
importance for cell functions and thus have been accounted for in the entrance and release
of Ca2+ through plasma membrane channels, and from its sites of storage, respectively. TRP,
which are known to transport mainly Ca2+ ions, have six non-voltage sensitive transmem-
brane channels, divided based on their activation mechanism and N-termini or C-termini
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regulatory domain, the canonical (TRC1–TRC7), melastatin-related TRP (TRPM1–TRPM8),
and vanilloid receptor-related TRP (TRPV1–TRPV4) [233].

All of the TRP family members are redox sensitive and participate in redox regulation
and oxidative stress, either through activation by H2O2 mediated by ADP-ribose or cyclic
ADP-ribose reacting in the binding cleft of the C-terminal [236], by other oxidizing agents
that sensitize TRP to pH alterations [237], or by the modulation of SOC, which is regulated
by the translocation of the ER Ca2+ sensors stromal interaction molecule 1/2 (STIM1/2)
to the plasma membrane, where they activate Orai channels to ignite calcium entry and
storage [238]. The TRP channels are of paramount relevance in the processing and discrimi-
nation of heat, cold, pain, and stress components and in the establishment of neuropathic
pain derived from chemotherapy treatment. Paclitaxel can cause severe peripheral neuro-
pathic pain, demonstrated by a mechanical withdrawal threshold decrease in rats, which
was inhibited after intrathecal and intraperitoneal administration of the TRPV1 antagonist,
capsazepine; TRPM8 protein expression was also reduced in DRG neurons. The topical
application of menthol increased TRPM8 activity and reduced TRPV1 activity. In that sense,
TRPV1 upregulation and TRPM8 inhibited activity are related to neuropathic pain induced
by paclitaxel [239]. Following nerve injury or neuron dysfunction, TRP channel expression
is altered affecting neuronal excitability, neuroplasticity, and neuroinflammation, leading to
neuropathic pain, as evidenced by TRPC1, TRPC4, TRPC5 and TRPC6 increased expression
associated to mechanical hypersensitivity in SNI [240–242].

In this sense, both mitochondrial ROS production and Ca2+ have physiologic roles in
normal cell functioning. Nevertheless, dysfunction in mitochondrial ROS production and
Ca2+ equilibriums also play a major role in the pathogenesis of chronic pain states and cell
death, once neurons are vulnerable to redox and energetic disturbances [243].

2.4.6. Unfolded Protein Response (UPR) Pathway

As formerly mentioned, when the ER undergoes stressing conditions, such as alter-
ations in redox homeostasis, hypoxia, altered Ca2+ regulations, sustained hyperglycemia,
and the accumulation of unfolded/misfolded proteins in the ER lumen [244,245], a series
of adaptative/protective or maladaptive responses initiates, named the unfolded-protein
response (UPR), which directly or indirectly affects the ER itself, or other organelles [92].
The primary objective of this elicited response is to reestablish normal ER function and
homeostasis; nevertheless, when stress conditions are indeed critical and chronic, the
cell is driven towards dysfunctionality, oxidative stress, ER stress, and ultimately, cell
death [246]. ER stress is widely implicated in neuronal injury [247,248]. SNL induces an
increased expression of ER stress markers such as sXBP1 and BiP, as well as inducing
the activation of the ATF6 and PERK/eiF2 pathway in dorsal horn neurons of the spinal
cord [249]. The use of chaperones such as tauroursodeoxycholic acid has been effective
in reversing ER stress, elicited by the UPR in neuropathic conditions like CCI, diabetic
peripheral neuropathy, and that induced by formalin [248–250]. The influence of the UPR
towards neuropathic pain involves central and peripheral sensitization, either by increased
ER stress markers, or impairing calcium signaling, for the trigger of nociceptive pathways,
leading to hyperalgesia.

The initiation and development of the UPR involves three proximal ER stress-sensor
transmembrane kinases/transcription factor, namely inositol-requiring kinase 1 (IRE-1α),
activating transcription factor 6 (ATF-6), and double stranded RNA-activated protein kinase
(PKR)-like endoplasmic reticulum kinase (PERK), each of which has its own ER branch, but
also works complementarily to restore normal ER functions, which are, under non-stressed
conditions, attached to the immunoglobulin heavy chain binding protein (GRP78/BIP)
through their amino terminals at their ER luminal ends (Figure 11) [92,251]. The ER
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embodies a highly oxidizing-folding environment to enable disulfide bond formation as
one of the fundamental steps in normal protein structural formation; thus, 25% of the ROS
produced by cells comes from ER activity [245].
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Figure 11. Unfolded protein response (UPR) pathway. Under non-stressed conditions, GRP78 at-
taches to unfolded protein response (UPS) sensors, IRE-1α, ATF-6, and PERK. In the presence of
unfolded/misfolded proteins, GRP78 is detached from the UPR sensors; once activated, GRP78
induces complex pro-survival autophagy pathways, the antioxidant ERAD pathway, and ER regen-
eration, or pro-apoptotic and ferroptosis mechanisms. Also, ROS produced serves as a signal for
activation or modification of the cellular stress response, once ROS-oxidated cysteine residues in
the UPR sensors can mediate UPR signals. IRE-1α: Inositol-Requiring Kinase 1; ATF-6: Activating
Transcription Factor 6; PERK: RNA-activated protein kinase (PKR)-like Endoplasmic Reticulum
Kinase; eiF2a: Eukaryotic Initiation Factor 2 Alpha; XBP1: X-box Binding Protein 1; CHOP: C/EBP
Homologous Protein; ASK1: Apoptosis Signal-regulating Kinase 1; TRAF2: Tumor Necrosis Factor
Receptor-Associated Factor 2.

This oxidative process of intramolecular disulfide bond formation, known as oxidative
protein folding (OPF) is one of the most usual posttranslational protein modifications [252].
The catalyzation of the disulfide bond formation is primarily carried out by the thioredoxin
protein disulfide isomerase (PDI), through thiol-disulfide oxidation. PDI are formed by
four thioredoxin (Trx) domains, namely a, a’, b, and b’, and a KDEL ER retention group of
c-domain [253]. The redox state of the catalytic a-domains in the PDI enzyme establishes the
oxidase or isomerase activity, depending on the CGHC (cysteine-glycine-histidine-cysteine)
active site motifs; thus, PDI in its reduced state, due to the active site cysteines within
the CGHC motif present as thiols (-SH), allows PDI to disrupt incorrect disulfide bonds,
acting as disulfide reductase, as well as rearrange incorrect disulfide bonds into correct
ones, acting as isomerase, while in the oxidized form, the active site cysteines within the
CGHC are present as disulfide (-S-S-) bonds, allowing PDI to oxidize substrates, and to
form new disulfide bonds between cystine residues, working as an electron acceptor [254].

On the other hand, b’ domains are responsible for the determination of misfolded
or unfolded protein, through the identification of hydrophobic exposed terminals of the
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proteins [255]. H2O2, in addition to being the main source for oxidation, produced by
O2, is also used by peroxidases to shape disulfide bonds to re-oxidize PDI. The cyclic
reoxidation of PDI in the active sites help maintain the redox balance within the ER, which
is more oxidative than the cytosolic environment. Yet, under highly oxidizing conditions,
the CGHC motif can be hyperoxidized to its cysteine sulfinic acid or sulfonic acid form,
turning it inactive, and unable to catalyze further reactions, leading to an accumulation of
unfolded or misfolded proteins [254].

Successively, the ER membrane-associated oxidoreductin (ERO-1), that possesses two
cysteine pairs on a flexible loop and on the CXXC motif, transfers sulfhydryl electrons
from the reduced PDI to O2, yielding H2O2, which adds to maintaining the oxidizing
environment [246,256]. In this sense, the ER redox state is tightly related to ER homeostasis,
which depends on ROS production during disulfide bond formation in protein folding,
to participate in the pro-oxidizing environment in the ER [257]. Additionally, quiescin
sulfhydryl oxidase (QSOX), an FAD domain- and Trx domain-containing enzyme, catalyzes
the formation of disulfide bonds, via free thiol group oxidation on cysteine residues of
substrate proteins, transferring electrons from the cysteines of substrates to the cysteines in
the Trx domain of QSOX, which are then shifted to its FAD domain. The reduced FADH2

domain acts as an electron acceptor, ready to be re-oxidized, conveying the electrons to O2,
yielding H2O2, allowing QSOX to reenter a new cycle of disulfide bonds formation [258].

Further increase in ROS formation is triggered by Nox4 activity after UPR [259]. Addi-
tionally, another source of ER-stress is attributed to ROS-dependent Ca2+ depletion from
the ER, which restrains the ability of Ca2+ to activate ER chaperones, such as calreticulin
and calnexin. This can be explained due to the fact that IP3R, the ryanodine receptor (RyR),
and Ca2+ pumps are redox regulated. For example, SERCA activity is inhibited when the
Cys674 residue undergoes sulfoxidation and is solely activated after the same cysteine
residue undergoes glutathionylation by NO; IP3R’s sensitivity to IP3 and RyR activity is
enhanced by ROS, leading to augmented Ca2+ release from the ER [260].

However, excessive RONS can lead to the dysregulation of these receptors, contribut-
ing to ER and cellular stress and death through disrupted calcium homeostasis. As another
source of ER oxidizing environment, when misfolded proteins appear, disulfide bonds are
corrected by reduction through GSH, resulting in higher oxidized glutathione (GSSH) rates;
this also participates in redox ER homeostasis [92].

In this process, paradoxically, the UPR induces increased ROS levels, while at the same
time, ROS-mediated ER stress is expected to be restored by UPR. In this context, ROS ER
levels increase due to higher ERO-1-PDI activity, but the ROS produced also serve as a
signal for the activation or modification of the cellular stress response, once ROS-oxidated
cysteine residues in the UPR sensors, IRE-1α, ATF-6, and PERK can mediate UPR signals,
being activated to induce complex pro-survival autophagy, the antioxidant ERAD pathway,
and ER regeneration, or pro-apoptotic and ferroptosis mechanisms [94]. Similar to ROS,
RNS induce nitrosative stress, being linked to UPR-mediated cytotoxicity via cysteine
residue inactivation in the active sites of PDI [261].

3. Antioxidant Enzymes
The nervous system exhibits a high oxidative metabolic activity rate with a conse-

quent preeminent amount of reactive species production via enzymatic and non-enzymatic
reactions as by-products of normal neuronal functioning [20], being particularly elevated
during neuron and glia activation by glutamate and ATP [262]. Moreover, the relatively
low levels of antioxidants [263], the high membrane surface to cytoplasm rate, and the high
lipid content make neurons particularly vulnerable targets to oxidative damage over macro-
molecules and lipid peroxidation [264]. Although, as mentioned above, redox signaling
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works as an intrinsic sensor for oxidative stress, serving several physiological functions, and
when the cellular antioxidant systems fail to prevent the overproduction of such reactive
species, detrimental pathways can be activated, inducing cellular and tissue damage.

The cellular antioxidant systems, that is, those compounds present at a lower concen-
tration in relation to oxidizable substrates that are able to hinder or preclude the oxidation
of the substrate [265], are composed by enzymatic and non-enzymatic molecules and are
chemically structured for and capable of reducing other compounds with an oxidizing
potential of different chemical natures [65]. The first line of endogenous defense is con-
stituted by an enzymatic antioxidant system that includes (superoxide dismutase) SOD,
(catalase) CAT, and (glutathione peroxidase) GPx, whereas the second line of defense is
formed by non-enzymatic antioxidants, such as antioxidant enzyme cofactors, reactive
species scavengers, oxidative enzyme inhibitors, and Cu, Fe, Zn, and Mn transition metals,
by participating in reactions that neutralize ROS directly or catalyzing the formation of less
reactive species (Figure 12) [263,266]. Further processes of the restoration of damage by a
repair system can be activated, eliminating oxidized nucleic acids by proteolytic enzymes,
and lipids, either by phospholipases or peroxidases [16,267].
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For the purpose of this review, the focus will be on preventative enzymatic antiox-
idants, as these are considered the most important among the endogenous antioxidant
systems for their compelling contribution to the normal redox state, and for their role
in promoting the synthesis or regeneration of further antioxidant or pro-survival mech-
anisms [46,268]. In addition to SOD, CAT, and GPx, which are considered to be the first
front line of the endogenous antioxidant defense system, the Trx enzyme and thioredoxin
reductase (TrxR) will also be included for their enzymatic nature, as opposed to those
considered by other authors [269].

3.1. Superoxide Dismutase

The superoxide dismutase family (SODs) includes transition metal-containing en-
zymes present in all living organisms existing in the presence of oxygen. SODs are con-
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sidered one of the most powerful antioxidant enzymes against biological oxidants and
possess the ability to transform two O•− molecules into H2O2 and O2 in a pH-independent
medium [268]. In mammals, three forms of SOD are acknowledged. The Cu, Zn-containing
SOD-1 is a homodimer constituted by eight beta strands, with one Cu atom serving for
catalytic function and one Zn atom relevant for structural stability, in each of the two sub-
units, respectively; it is ubiquitously expressed, and found predominantly in the cytoplasm,
but also expressed in the mitochondrial intermembrane space and the nucleus [270,271].
SOD-2 is a homotetrameric enzyme that contains Mn in its active site. It is found in the
mitochondrial matrix where the pH is considerably higher (pH approx. 7.8), compared
to that of the intermembrane space (approx. 7.0–7.4); it is expressed at different amounts
depending on the type of cell, being significantly higher in those cells that encompass
elevated proportions of mitochondria [268].

They perform their dismutation power over the O•− molecules produced in the ETC,
providing electrons from the metal core directly to the negatively charged O•− molecules
and a protonation to yield H2O2 [271]. Finally, the Cu- and Zn-containing enzyme SOD-
3, produced intracellularly and found predominantly in the extracellular space [272], is
homotetrameric in humans and mice, but dimeric in rats (Figure 13) [273]. As opposed to
SOD-1 and SOD-2, which are ubiquitously expressed, SOD-3 is diversely expressed across
different types of cells, and found to be highly expressed in heart, lungs, and pancreas, but
low in the brain [273]. Additionally, SOD-3 is generally less responsive to direct induction
by O•− molecules or other oxidants, due to its presence and role in the extracellular matrix,
where exposure to regulatory signals other than those encountered in the intracellular
space are found. SOD3 is regulated in conjunction with signaling molecules and cytokines,
such as interleukin-1 (IL-1β) and TNF-α, as part of a coordinated response to inflammation,
contributing to modulate oxidative stress in the extracellular environment [274].
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The dismutation reaction catalyzed by SOD is considered to be highly efficient given
that it happens at a diffusion-limited rate of ~2 × 109 M−1·s−1, that is ~104 the rate
constant during spontaneous dismutation [275]. In the process, an electron reduction and
protonation of the O•− radical results in the formation of H2O2, by means of an initial
step of O•− radical binding to the core Cu(II) ion, resulting in the oxidative transfer of
an electron to O•− and the production of reduced Cu(I); then, a second O•− radical is
bound to a partly protonated Arg143 in the anion-binding site of the SOD that oxidizes
the O•− radical. Moreover, His63 donates a proton and an electron from reduced Cu(I)
to O•− radical, producing H2O2, and the oxidation of Cu(I) to Cu(II), to pursue further
dismutation [276].

Changes in SOD expression or function are linked to chronic pain. Maropitant treat-
ment increases SOD expression, reducing pain threshold in peripheral nerve injury, often
marked by neuronal loss [248,271]. The enhanced expression of SOD-1 was observed
to reduce lipopolysaccharide-mediated superoxide production, suppress cyclooxygenase
(COX)-2 and iNOS expression, and confer protection against microglia-mediated inflam-
matory responses [277]. Compromised SOD-2 function is a common characteristic of
pathogenesis associated with oxidative stress in brain injury [278]. Moreover, an increase
in SOD-2 expression avoided neuronal death from oxidative stress [279].

3.2. Catalase

Catalase (CAT) is a tetrameric heme-containing enzyme, formed by four tetrahedrally
arranged subunits of 60 kDa each, containing an active heme group and NADPH bound
to each subunit [280]. It is part of the front-line defense antioxidant system, commonly
found in mammalian cells as part of the peroxisome [263]. CAT is produced due to oxygen
exposure and is characterized by the ability to catabolize the rupture of two H2O2 molecules
to form two molecules of H2O and one of O2, through a two-step reaction, using Fe as
a cofactor (Figure 14) [281]. It is expressed ubiquitously in central nervous system cells,
including neurons and glia, where it protects cells by the detoxification of H2O2, allowing
the body to tolerate and adapt to oxidative stress, as an adaptative response [282]. In
addition to its protective effects against ROS, CAT offers influence over several pathways
and metabolic processes such as growth, proliferation, and apoptosis [283] and influence
over redox-sensitive signaling molecules, like protein kinases and transcription factors,
through the modulation of H2O2 levels, impacting cellular responses to environmental or
endogenous stressors [284].

The reaction is described as a two-step reaction, as follows: initially, a compound I,
the covalent oxyferryl species Fe(IV) possessing a porphyrin π cation radical, is formed
from Fe(III), via the reduction of one H2O2 molecule; following this, the Fe(IV) compound
is decomposed through redox reactions via two-electron transfer from the second H2O2

molecule, which works as an electron donor to the reaction, therefore, producing O2

and H2O, and restoring the compound I to its resting state Fe(III) [285]. After this the
final products, O2 and H2O, are released from the catalase, and the latter returns back
to its original state, to pursue further reactions, binding and decomposing another H2O2

molecule. CAT is maintained chemically and structurally available after repeated cycles of
chemical reductions of H2O2, contributing to steady O2 concentrations states, and redox
balance [285].

Also, it is considered one of the most powerful antioxidant molecules in biological
systems, as it has the highest turnover of all enzymes, degrading millions of H2O2 per
second [268]. The inhibition of CAT activity induced increased cytotoxicity and higher ROS
rates, denoting a pivotal role in oxidative balance [263].
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Therefore, CAT dysfunction or deficiency is thought to cause impaired glucose
metabolism and lipid accumulation [286], as well to contribute to oxidative stress and
neuronal damage in paclitaxel-induced neuropathic pain, where it is decreased together
with NRF2, SOD2, and HO-1, and can be reversed by cannabidiol (CBD) and tetrahydro-
cannabivarin (THCV) by the upregulation of catalase, but also other protective proteins
such as p-AMPK [287], contributing to pain relief and neuronal protection.

CAT is increasingly recognized as a therapeutic target for diseases, founded on CAT-
based therapeutic strategies providing neuroprotective effects through integrity and func-
tion neuronal preservation, for treating or averting neuroinflammatory events, using
viral-cultured CAT or gene therapy, delivering CAT genes, and enhancing endogenous
CAT gene expression. Ongoing innovative studies are utilizing protein engineering to
enhance CAT-based therapies, aiming for improved stability, activity, and specificity, and
demonstrating promising potential to expand therapeutic applications [288].

3.3. Glutathione Peroxidase

The family of antioxidant enzymes glutathione peroxidase (GPx) consist of a group
of eight isoforms (GPx1–GPx8) identified to date and present in all living organisms.
Among them, GPx1 is the most abundantly found in almost all tissues and is highly
expressed in the cytoplasm and mitochondria; GPx2 is found mostly in the gastrointestinal
tract and human liver; GPx3 is found in the plasma and in the extracellular space; GPx4
is expressed ubiquitously, but especially in the brain, testis, and sperm cells where cell
membranes need to be protected from lipid peroxidation; GPx5 is specific to the epididymis;
GPx6 is expressed in the olfactory epithelium and embryonic tissues; and GPx7-8 are
expressed predominantly in the ER, where they play a role in protection from oxidative
stress and maintaining the oxidative balance for oxidative protein folding and the secretory
pathway (Figure 15) [289]. Chemically, GPx are oligomeric enzymes, formed by subunits
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arranged with either a selenocysteine or cysteine amino acid redox-sensitive active site,
both playing main functions in the catalytic reduction of hydroperoxides and H2O2, which
are transformed to alcohols (ROHs) or H2O, respectively [290].
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The GPx family has a vast number of physiological functions, although the most
important role played is related to the enzymatic reduction of H2O2 and hydroperoxides
via the oxidation of reduced glutathione (GSH) to its oxidized form (GSSH) in a ping-pong
mechanism involving the oxidation of the GPx followed by a two-step reduction [291]. As
a first phase, the catalytic site of GPx consisting of a selenocysteine or a cysteine amino
acid is oxidized to selenenic acid or sulfenic acid, respectively, by hydroperoxides or H2O2

which successively are transformed to their corresponding reduced forms, alcohols (ROHs)
or H2O [292]; thereafter, the second phase involves the return of GPx to its initial reduced
state, through a series of reduction reactions by the GSH and NADPH as a cofactor. Here,
the two-step reduction process starts with selenenic acid and sulfenic acid return to their
oxidized states, selenocysteine and cysteine, with the help of two GSH molecules, which
become oxidized (GSSG) in the process [289]. The return of the oxidized GSSG form to the
reduced GSH form involves the enzyme glutathione reductase (GR); for such, NADPH
binds to the active site of the GR that has an FAD cofactor. Here, the NADPH donates
electrons to FAD, reducing it to FADH2, which in turn transfers these electrons to the
disulfide bond in GSSG, disrupting the bond and yielding two molecules of GSH. As FAD
is reduced, NADPH is oxidized to NADP+, which is released from the enzyme, finishing
the cycle [289].

The intracellular depletion of GSH and decreased GPx4 activity caused by ferropto-
sis, an iron-dependent cell death pathway seen in pathological processes, results in the
accumulation of lipid peroxides, the Fe(II)-catalyzed oxidation of lipids, and an increased
production of reactive species [293]. In a spinal cord injury model in rats, GPx was upreg-
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ulated following treatment with L-carnitine and atorvastatin, as opposed to non-treated
animals, improving neuronal function [294]. Gpx is also upregulated in SNL- induced
neuropathic pain [295]. Gpx4 was downregulated in a model of spared nerve injury in rats;
after methyl ferulic acid administration, Gpx4 levels were increased, accompanied by a
significant NOX4, ferroptosis- related protein ACSL4 decrease, and consequent mechani-
cal withdrawal threshold and thermal withdrawal latency improvement [296]. Another
study assessing whether sirtuin 2 (SIRT2) attains a neuroprotective effect in spared nerve
injury-induced neuropathic pain, found enhanced levels of Gpx4 and ferroportin 1 (FPN1)
after SIRT2 recombinant adenovirus intrathecal administration, reducing intracellular iron
accumulation and oxidative stress, hence, attenuating mechanical hypersensitivity [297].
It has also been demonstrated that Gpx4 upregulation can reverse and inhibit ferroptosis-
induced stress, blocking neurons and glia activation from the dorsal horn of spinal cord in
neuropathic pain induced by chronic constriction injury in rats [298,299]. Altogether, GPx
is a relevant target for therapeutic approach towards neuropathic pain [300].

3.4. Thioredoxin

The thioredoxin (Trx) system is formed by two oxidoreductase enzymes, Trx and
TrxR, with NADPH as an electron donor. Trx are highly conserved across living cells,
including mammals. The Trx system has greatly important functions protecting cells
against oxidative stress and damage, being particularly important in the CNS cells, where
it assists correct protein synthesis and the modulation of apoptosis [301]. Trx serves as a
redox homeostasis regulator through the modulation of signaling pathways, induction of
transcription factors, and pro-survival mechanisms [302]. Trx is depicted with a Cys-Gly-
Pro-Cys active site vital for protein disulfide reductase of enzymes like peroxidredoxins
(Prxs), ribonucleotide reductase (RNRs), and methionine sulfoxide reductase (MSRs), as it
serves as an oxidoreductase and an electron donor [303]. Trx has the ability to catalyze the
reductive conversion of disulfide (S-S) bonds into dithiol (-SH) bonds on substrates, due
to its reductase power, acting through disulfide–dithiol bonds exchange [263]. The whole
process happens as follows: Trx binds to the protein substrate that contains a disulfide
bond (S-S); then, one thiol (-SH) group of the N-terminal cysteine in the active site (Cys-
Gly-Pro-Cys) of the Trx performs a nucleophilic attack on the disulfide (S-S) bond of the
substrate by electron donation, yielding an intermolecular mixed S-S between the Trx and
the substrate. Afterwards, the second thiol (-SH) group in the C-terminal cysteine in the
active site (Cys-Gly-Pro-Cys) of the Trx attacks the intermolecular mixed S-S bond, releasing
the reduced substrate and leading to the creation of a disulfide (S-S) bond in the Trx itself.
Finally, the disulfide (S-S) bond in the oxidized Trx is reduced back to its original free thiol
(-SH) groups state, through the enzyme TrxR, using NADPH as an electron donor, ready to
engage in the next catalytic cycle (Figure 16) [304].

In mammals, there are two primaries strict Trx proteins: Trx1 and Trx2. Trx1 is the
most widely studied and present mainly in the cytosol but can be found in the nucleus upon
oxidative/nitrosative stress [305] or released through the cellular membrane [306]; Trx1 is
coupled to Prx1 and Prx2, and MSR, being critical for cellular growth and apoptosis, and is
expressed in neuronal cells (Figure 17). Thus, neurons with dysfunctional mitochondria
induced by complex IV inhibition show increased H2O2 vulnerability due to low Trx
expression [307]. The Trx2 isoform is localized in the mitochondria and is exceptionally
relevant for maintaining mitochondrial redox balance, as well as for the protection of
mitochondrial DNA and proteins from oxidative damage [308]. Similarly to Trx1, Trx2
is expressed in neurons, and shows lower expression levels after complex IV inhibition,
making the cells more susceptible to H2O2 attack [307]. Both Trx1 and Trx2 are primarily
expressed in sensitive neurons in the DRG and in the spinal cord and sciatic nerve and are
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particularly altered in nociceptive signaling sites after sciatic nerve injury, participating in
the regulation of oxidative stress and redox homeostasis, relevant in the pathophysiology
of neuropathic pain [309].
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using NADPH as an electron donor, ready to engage in the next catalytic cycle. GPx catalyzes the
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The above-mentioned antioxidant enzymatic proteins play critical roles as regulators
of various redox signaling pathways, which profoundly depend on reversible tissue- and
target-specific modifications of main thiols in proteins. The CNS, a highly oxidizing
environment, is acknowledged as very vulnerable to reactive species effects carried out by
nitrosative or oxidative damages. While each enzyme has a specific role, they work together
through synergistic interactions, redundancy, and compartmentalization to ensure a robust,
correct defense against reactive species and to guarantee cellular redox equilibrium.

4. Nitroxidative Stress in Neuronal Cells
Pain can be considered, in a wide sense, as a protective mechanism to alert to actual

and imminent danger to tissue integrity, or as a warning to potential lesions, eliciting a
myriad of responses across emotional, sensory, social, cellular, and molecular domains.
When the sensory process that provides triggering signals for pain occurs, nociception
initiates, comprising the detection of harmful or potentially harmful stimuli by nocicep-
tors, as a normal response to such stimuli. That is, after nerve injury, the activation of
macrophages, circulating neutrophils, and T cell recruitment to the site of the lesion, along
with cytokines, chemokines, neurotransmitters, and ROS production, prompts peripheral
and central sensitization [310]. In some cases of injury, it often leads to abnormal sensory
phenotype expression in the nervous system, causing hypersensitivity due to peripheral
nerves, dorsal root ganglia (DRG), or central nervous system damage, ultimately leading to
neuropathic pain [311], which is defined as a pain caused by a lesion or a disease of the
somatosensory system [312] estimated to affect approximately 7–10% of the global popula-
tion [313], characterized by paresthesia, dysesthesia (tingling, numbness, pins, and needles
sensation), associated with non- painful sensory neurological deficits in the disturbed area,
together with motor and cognitive deficits, depending on the affected region [314].

Glial cells are important for homeostasis maintenance in the CNS, providing structural
and nutritional assistance for neurons through hydro-electrolyte balance and neuronal
synapsis (astrocytes), or surveying and protecting the neuronal milieu against potential
disruptions of homeostasis and astrocyte activation (microglia) [315]. Immune cells of the
CNS play a critical role in the development and continuance of neuropathic pain, as nerve
insult leads to the neuroinflammation response, characterized by increased local vascular
permeability, the activation of glial cells and inflammatory mediator release, enhancing
pain sensitization [316]. Once microglia are activated, phenotypical and functional modifi-
cations occur, leading to proinflammatory cytokine release, such as TNF-α, IL-1β, and IL-6,
cluster differentiation molecule 11b (CD11b), CD68, and ionizing calcium binder adapter
molecule (Iba1) [9,317], all of which contribute in the early phase of neuropathic pain
stablishment, and also causing astrocyte activation, supported by an increased expression
of glial fibrillary acidic protein (GFAP) and CD11b, indicating a shift in astrocyte function,
which in turn activates microglia, thus, creating cross-talk for neuropathic pain pathophys-
iology [194,318]. While microglia contribute initially to the establishment of neuropathic
pain via the inflammatory response initiation, astrocytes are accountable for the long-term
maintenance of such state [319,320].

Activated glia release chemokines, RONS, and neurotransmitters that modulate in-
hibitory and excitatory synaptic transmission, relevant for pain amplification [5]. Gluta-
mate, the primary excitatory neurotransmitter is upregulated in astrocytes in response to
inflammatory signals, contributing to central sensitization and pain amplification; aspartate,
similarly to glutamate can be influenced by glial activation, contributing to excitatory sig-
naling in neuropathic pain; and (Gamma-amynobutyric acid) GABA, the primary inhibitory
neurotransmitter, responsible for reducing neuronal excitability and neuronal firing, can be
downregulated in neuropathic pain, causing diminished inhibitory signaling, and conse-



Int. J. Mol. Sci. 2025, 26, 2050 34 of 58

quently, increasing pain sensitization [316]. Additionally, purinergic receptors (P2X and
P2Y), TLRs, Src kinase, and MAPK (JNK, ERK, and P38) pathways can be upregulated
in conditions of nerve injury. This leads to increased expression of transcription factors
in activated glia through various mechanisms, including further GF, proinflammatory
cytokine and chemokine, and RONS production, contributing to pain sensitization, as
described above [321]. In this sense, RONS act as redox sensors for signal transduction
pathways modulating the neuroinflammatory process in neuropathic pain [37]. In case
the prompting offense to glial cells is not resolved, chronic activation arises, reflecting in a
continuum of glial activation states [322].

The molecular mechanisms underlying the neuropathic pain shift the microglial
phenotype from a resting, small, highly branched, compact cell body and surveillance
state to an activated bigger cell body, with a less branched, and ameboid state, causing an
altered expression of cell surface proteins, growth factors, intracellular signaling molecules,
and redox state consistent with inflammatory mediators release, such as cytokines and
proteases contributing to the development of the neuroinflammation and neuropathic pain
sensitization [311].

Morphologically, three states are described in the microglial cells, similar to that used in
peripheral macrophages: M0 phenotype for the resting state, M1 phenotype for the classical
activation state, and M2 phenotype for the alternative activation state [323]. The first state
is characterized by the expression of genes related to neuronal function and development,
whereas M1 and M2 phenotypes are induced by CNS insults and chronic pain, portrayed
as mixed temporally changing and lacking equilibrium in the activation continuum. Thus,
the M1 state is thought to lead to excessive RONS production and neuroinflammation, and
M2 hampers an adequate immune response [323]. Also, astrocytes express antioxidant
proteins to maintain overall redox homeostasis in the CNS under normal or pathological
conditions [324,325]. In this sense, microglia and astrocytes can influence direct structural
and molecular modifications in neuronal synapses, neuron differentiation, and the axon
growth of mature neuronal cells, both physiologically, as part of normal CNS functioning,
and pathologically to cause oxidative and nitrosative damage and an imbalance of redox
signaling [308].

Microglial cells are of prominent relevance regarding the inflammatory process typical
of neuropathic pain [326], as they release a large number of neuroactive substances, which
in turn contribute to the RONS production. Among these RONS, it can be pointed out that
Nox- and iNOS-derived radicals in neurons, such as O•− and NO, contribute to the cell
death of dopaminergic neurons in neuropathic pain [17,114]. Microglia under oxidative
stress produce increased inflammatory mediators that can move through the cell membrane,
working as signaling molecules to other cells or inducing peroxynitrite formation causing
DNA fragmentation, lipid oxidation, and neuronal death in a faster manner than that
perceived in astrocytes [327]. In microglia cells producing O•− catalyzed by nitrate and
nitrites, O2 and H2O2 levels are rapidly imbalanced, disturbing microglial functions, which
in turn facilitates adjacent neuronal cell damage induced by ROS [328]. Elevated levels of
RONS have been proved to increase proinflammatory cytokines in microglial cells, whereas
lower RONS levels are associated with anti-inflammatory cytokine upregulation [114].
ROS generated by Nox2 contributes to neuropathic pain inducing the activated microglia
phenotype, further enhancing the development of the chronic glial activation state in the spinal
cord, and assisting the interaction of neurons and macrophages in the DRG [112,329,330],
pointing the central and peripheral role in neuropathic pain, whereas Nox4’s role is primarily
related to peripheral demyelination, causing peripheral nerve sensitization, and therefore
adding up to the overall effect of neuropathic pain [114,116].
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In addition to microglial cells, other CNS cells can produce O•− and NO wher-
ever NOS and Nox are expressed, contributing to radical-mediated damage, as seen in
β-amyloid-induced neurotoxicity in astrocytes [331]. Astrocytes serve key functions in
neuronal recovery but can, under certain circumstances, be neurotoxic. When activated,
they also release NO, TNF, and ROS to the extracellular space, which can negatively affect
axon regeneration and nerve development, and lead to neuronal injury and death through
mitochondrial stress, DNA strand breaks, and lipid peroxidation [332]. Moreover, when
astrocytes suffers sustained oxidative stress, glutamate transporters, astrocyte–neuron
communicating enzymes [333], and connexins undergo substantial modifications, which
are implicated in the establishment of neuropathic pain [334]. Mitochondria dysfunction,
NADPH-derived ROS, and RNS in astrocytes are the main factors accountable for oxidative
and nitrosative stress, which is distributed across the long and thin processes and cell bod-
ies, thus leading to astrocyte degeneration, SOD1 aggregation, and ischemic/reperfusion
injuries [335,336].

In a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of cell death of
dopaminergic neurons, researchers aimed to document whether chronic exposure to small
doses of MPTP were capable of affecting neurons from the dorsal horn of the spinal cord, re-
sponsible for the sensory component of pain. Considering that MPTP inhibits mitochondrial
complex I, this leads to an augmented production of ROS, oxidative stress, lipoperoxida-
tion, and mitochondrial membrane rupture, leading to apoptosis pathways and neuronal
damage, evidenced by decreased calbindin D28K, calretinin, and parvabulmin-positive
neurons in the laminae II; a reduction of SP interneurons and Met—enkephalin-positive
fibers in laminae I and II; and finally, increased alpha-synuclein in spared neurons and
fibers, establishing a clear connection between mitochondrial dysfunction, increased ROS
production, and neuronal damage [337]. Also, Nox-deficient animals in an inflammatory
model of dopaminergic cells death were found to be less affected than the wild type of
animals, suggesting a direct role of Nox-derived O•−in the mechanisms of microglial cell
activation and neurotoxicity [338].

Furthermore, TRPA1, TRPM2, and TRPV1 are activated by nitroxidative species, me-
diating the integration of endogenous and exogenous sensory stimuli, at the peripheral
and central terminals and somas of afferent neurons [37]. TRPA1 and TRPV1 are expressed
by peptidergic C fibers, activated directly by peroxidized and nitrated phospholipids and
carbonylated proteins, as well as aldehyde formation, due to oxidative stress [82,339];
TRPA1 is primarily related to nociceptive hypersensitivity development, while TRPV1 is
crucial for nociceptive hypersensitivity and thermal hyperalgesia [82]. TRPM2 is expressed
in neurons and microglia, activated directly via H2O2 and cytosolic ADP—ribose [340,341],
which are by-products of mitochondrial damage and are associated with spinal cord mi-
croglia activation, the local migration of macrophages after nerve injury, proinflammatory
response, and promoting nociceptive hypersensitivity and are also crucial in the activation
process of the MAPK pathway, causing NF-κB nuclear translocation, consequently increas-
ing the proinflammatory cytokine and chemokine production [340,342]. In this context,
TRP plays a critical role in the development and maintenance of neuropathic pain through
polymodal activation, including chemical, thermal, and mechanical signals, inducing ionic
changes across neuronal membranes, and initiating downstream signaling pathways com-
prising: AMPK, MAPK, NF-κB, and TGF- β. TRP also enhance hyperexcitability via the
increased expression and activity of TRP, leading to spontaneous pain and disturbed sensi-
tivity [343]. Additionally, such a state of increased expression and activity of TRP leads to
the hyperexcitability, apoptosis, hyperactivation, and infiltration of immune cells, amplified
levels of proinflammatory cytokines, mitochondria dysfunction, and autophagia as seen
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in models of diabetic neuropathy in peripheral nerves [344], cancer-induced pain [345],
chemotherapy-induced peripheral pain [346], and trigeminal neuropathic pain [22]

It is widely known that proteins can undergo reversible modifications through oxida-
tive actions in amino acids. Amongst the most redox-sensitive amino acids it can be cited
that the -SH group cysteine, and the aromatic ring of tyrosine [21], displaying different
predispositions to endure RONS alterations depending on the specific oxidants in the redox
reaction, the proportion and distribution of thiol groups, transition metal ion presence as
prosthetic groups, and motifs and amino acid residue exposure on the molecular surface of
the proteins, as well as different levels of chemical modifications ranging from reversible
to irreversible, and specific or non-specific union, which depends on the selective attach-
ment to residues and their location, or multiple sidechain and backbone sites affected,
respectively [347].

From a redox perspective, the reversible and specific oxidation of a few or at least one
single redox-sensitive residue in a protein by an electrophile molecule can be enough to
induce chemical modification in a switch manner for modulating the protein activity [348].
Some of the plausible amino acid residue modifications bearing redox switch capacities can
be elicited through cysteine residue S-sulfenylation, S-glutathionylation, S-nitrosylation,
and S-persulfidation, given that cysteine residues are key redox-sensitive molecules due
to the presence of -SH groups, bestowing structural and functional flexibility to proteins
(Figure 18) [349,350].
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Figure 18. Reversible and irreversible proteins change under ROS/RNS. Reactive species serve as 
redox-sensitive switch molecules due to amino acid -SH group cysteine, or to aromatic rings of 
tyrosine, for modulating protein activity. Nevertheless, when RS• interact with NO to form S-
nitrosylated cysteine residues in proteins, or undergo hyper-oxidation, to produce sulfinic and 

Figure 18. Reversible and irreversible proteins change under ROS/RNS. Reactive species serve
as redox-sensitive switch molecules due to amino acid -SH group cysteine, or to aromatic rings
of tyrosine, for modulating protein activity. Nevertheless, when RS• interact with NO to form
S-nitrosylated cysteine residues in proteins, or undergo hyper-oxidation, to produce sulfinic and
sulfonic cysteine after interaction with H2O2, ONOO−, and HOCl, changes can become irreversible,
impairing antioxidant defense and leading to neuronal damage.

Cysteine residues are usually found in catalytic and regulatory sites of enzymes,
signaling pathway effectors, and transcription factors, and they can initially undergo the
ionization to thiolate (R-S−) which is the deprotonated form of -SH, and further undergo
one- or two-electron oxidations, to yield thiyl radicals (RS•), or cysteine sulfenic acid (-SOH),
respectively, both reversible. Then, RS• can interact with NO to form S-nitrosylated cysteine
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residues in proteins, or undergo hyper-oxidation, to produce sulfinic and sulfonic cysteine
after interaction with H2O2, ONOO−, and HOCl, which are irreversible (Figure 18) [351], as
seen in the irreversible oxidation of SOD1 Cys111 to its sulfinic and sulfonic states, present
in ALS mice models that presented signs of peripheral pain [352–354]. Accordingly, in spite
of ALS being a neurodegenerative disease characterized by upper and lower motor neuron
degeneration, it has been recently found to have a sensory neuropathy component observed
in up to 20% of ALS human patients, pain among them, affecting unmyelinated small and
myelinated large fibers as part of the process of primary neurodegeneration [355,356],
potentially leading to neuropathic pain, and relevant to understand the full spectrum of
ALS, associated with SOD1 mutation. Furthermore, cysteine residues of proteins and
peptides exposed to NO and ONOO− can suffer S-nitrosylation (-SNO groups formation)
and S-glutathionylation (SS and GSH mixed groups formation); such reactions are relevant
to cell signaling, protein stability and activity, and redox homeostasis through GST, Grx,
and Trx [357].

Tyrosine residues oxidation leading to 3–hydroxytyrosine, 3-nitrotyrosine, halogenated
tyrosine, and intramolecular tyrosine cross-links are deeply associated with interference
with cellular functions, as seen in endogenous ROS exposure, yielding inter- and intramolec-
ular cross-links in proteins, accompanied by spontaneous fragmentation of the polypeptide
chains involved; some of these cross-links, like 3,3′-dityrosine, are biomarkers of oxidative
stress, as seen in a study using a neuropathic pain model of chronic constriction injury,
where they found dityrosine-containing protein cross-links exposition to activate satellite
glial cells (SGCs) in the DRG, and a subsequent increase in proinflammatory mediators
and ROS, mediated by the NF-κB pathway and the receptors for advanced glycation end
products, exacerbating hyperalgesia [358]. As for tyrosine and tryptophane nitration, once
they react with OH•, and subsequently form tyrosyl and tryptophanyl radicals, both
can further react with NO2• after covalent attachment to produce 3-nitrotyrosine and
6-nitrotryptophan, respectively [359].

Proteotoxic stress has been linked to neuropathic pain through nitration reactions,
which profoundly trigger chemical and structural changes in proteins, leading to function
alterations and cell signaling modulation [36,99]; as such, peroxynitrite, a cytotoxic pro-
inflammatory and pronociceptive agent is portrayed as a main factor in the development
of peripheral and central sensitization associated with neuropathic pain [360,361]. The
mitochondrial MnSOD can be negatively affected by nitration, rendering it inactive, and
thus contributing to the perpetuation of a vicious cycle of free radical formation. This,
in turn, leads to further nitrosative damage to relevant enzymes unable to fight back
against the development and maintenance of hyperalgesia and central sensitization [36].
The accumulation of ROS and RNS, increased during oxidative and nitrosative stress
conditions, can induce the activation of transcription factors such as AP-1, NF-κB, and
MAPKs, which can activate and increase the expression and production of COX enzymes
and PGs [362,363].

Whenever antioxidant systems are exceeded by the production of ROS or RNS, the
outcome is likely to cause an oxidative or nitrosative stress state, in which subsequent
damage to biomolecules like proteins, membrane lipids, and nucleic acids leads to cellular
and tissue dysfunction and cell death via necrosis, apoptosis, and autophagy, implicated in
chronic pain of neuropathic origin [364]. Nevertheless, the final outcome or the biological
impact of the cross-links between antioxidants and pro-oxidants will depend on the specific
type interacting, physicochemical properties, cellular and subcellular location and gradient,
the rate of formation and degradation, and quantity. Thus, in recent years, not only
antioxidants, but also RONS have gained more attention from the scientific community, as
the regulatory roles of RONS have emerged as adaptive mechanisms involved in cellular
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homeostasis, in low steady concentrations, for reversible redox-sensitive modifications in
functional motifs of several proteins related to cell signaling.

5. MnPs: Mechanisms of Action and Potential Therapy for
Neuropathic Pain

The role of oxidative and nitrosative stress has been stablished for chronic pain of
neuropathic origin, through the effects of hyper-physiological levels of reactive species on
neuronal and glial cells [365]. Antioxidant therapies from diverse origins, aiming for the
restoration of normal cell functioning, have been applied for various chronic pain disorders,
with different, sometimes conflicting, and specific pain type-dependent outcomes, either
positive, negative, or not clear [366,367]. Among the most studied synthetic therapeutic
antioxidant compounds, there is a group of proteins named SOD mimics. By designation,
SOD mimics are compounds with the ability to catalyze the oxidation and reduction of O•−.
Yet, it has been proved that in addition to reaction with O•−, SOD mimics can also catalyze
redox reactions with H2O2, ONOO−, thiols, and others under specific conditions [368],
working as oxidants and reductants.

More specifically, there is a class of metalloproteins of low molecular weights with a
central metal ion of manganese contained in the porphyrin ring of synthetic origin, exhibit-
ing different oxidation states of manganese Mn(II), Mn(III), and Mn(IV), which contributes
to their redox applications, and these are named manganese porphyrins (MnPs) [369].
MnPs were initially, in a very narrow way, seen as simply scavengers of O•−, but the
new knowledge about redox chemistry applied to cellular physiology proved its worth
based on evidence of their potential role as therapeutics, due to their physicochemical
properties, longer half-life, lower cost of production compared to SOD enzymes, and lack
of immunogenic reactions in biological systems, hence, affecting signaling pathways and
cellular functions such as proliferation, differentiation, and cell death [26], through the
modulation of the redoxome [370].

In addition to the specific reactive species scavenged by MnPs, even more importantly,
there are other aspects intrinsic to their structure that must be taken into consideration
when applying MnSOD mimic therapeutic strategies for neuropathic pain. First, the half-
wave redox potential (E1/2(O•−)), which determines whether a compound can be readily
oxidized and/or reduced by the substrate within the redox active molecular targets in
the cell. E1/2(O•−) is a reliable measure of physiological relevance, as it compares the
electrochemical potency at half of the wave of the compound to that of the SOD enzyme
(+300 mV vs. normal hydrogen electrode—NHE) in relation to O•−; the closer it is, the
more biologically compatible the compound is for electron interchange among reactive
species and signaling proteins in the cellular context. Potentials that are too high or too
low can be toxic or inefficient, respectively [368]. A MnP within a compatible range will
also allow a more specific action of the compound over the target molecules, without
interfering with other biological processes, and more stability, avoiding fast degradation or
inactivation [371].

Secondly, the intrinsic catalytic activity of the SOD mimic protein (Kcat) for the
catalysis of O•− is another reliable measure of the therapeutic potential of the compound,
as it quantifies the efficiency to catalyze the redox reaction, expressing the number of
substrate molecules converted into the reaction product for each molecule of the compound
by the unit of time, when the compound is fully saturated with the substrate (i.e., SOD
Kcat(O•−) ~2 × 109 M−1·s−1) [372]. Such factors establish not only the catalytic efficiency,
but the rate of the reaction, which is relevant for reaching the therapeutic outcomes in a
reasonable time, and the compatibility with the cellular redox conditions, that is the pH,
temperature of the reaction, and substrate concentrations [373]. Notwithstanding these
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factors, the in vivo efficacy of metalloporphyrin-based SOD mimics is not only associated
with their SOD-like activity, but with other factors like the shape, size, and bulkiness of
the molecule [374], bioavailability, biodistribution in different cell kinds and subcellular
spaces, and reactivity toward other cellular biomolecules [375], which will dictate the
overall therapeutic effect of the treatment. Assuming the rich environment of redox-
based signaling processes occurring in the cellular metabolism through cellular respiration,
glycolysis, cyt P450 detoxifying system, ETC, NO synthesis, and others, an approach
targeting these redox-signaling pathways for therapeutic purpose would make more sense
when assessing the effects of MnP on redoxome alterations, than on separate scavenging
activity toward specific reactive species [23].

The main consideration is that, under impaired conditions of neurons’ ability to
bear peroxides elimination, the excessive accumulation of H2O2 as a byproduct of the
O•− dismutation through MnP might reach toxic levels. That is, the overall antioxidant
power of the synthetic enzyme will only be efficient if H2O2 is also removed [368]. Cationic
MnPs are not potent scavengers of H2O2, but once reduced in vivo, may bind O2 to O2•−
and H2O2 [376]. Yet, cationic MnPs have higher Kcat(O•−) in comparison to neutral or
anionic MnP, since O•− is negatively charged; therefore, they are prone to be attracted to the
positively charged cationic MnPs, facilitating a more efficient interaction and better catalytic
activity. This translates into a more effective MnP in the detoxification and utilization of
the O•− radical for antioxidant mechanisms [377,378]. In addition, when MnP holds a
highly positive reduction potential, it is very likely that they will tend to accept electrons
by cellular reductants, rather than give electrons away; in this process, Mn will be reduced
to Mn(II), which will reduce O•− to H2O2, working as superoxide reductase, rather than
superoxide dismutase [379].

The electrophilic nature of MnP, especially Mn(III) explains its tendency to react with or
bind to anionic substrates, normally electron-rich, such as HOO−, RS−, ClO−, ONOO−, etc.
When MnP enters the cell, it can straightaway suffer reduction while inducing the oxidation
of thiols, thus, working as an oxidant and antioxidant [368]. As proved by previous research,
MnPs can work as suppressors of glycolysis and mitochondrial respiration [379], exhibit
significant antihyperglycemic activity, and enhance neuronal death [380]; additionally, MnP
can induce NF-κB inactivation [381] and protective responses against oxidative damage to
neuronal and glial cells [248,365], as well as reduced NF-κB expression, thus, resulting in a
significative decrease in proinflammatory cytokines such as IL-1β and TNF-α [382].

MnPs with potent log Kcat(O•−) are also potent ONOO− scavengers. As previously
stated, electron-deficient MnPs react or bind to electron-rich anionic substrates, such as
ONOO−. When Mn(III) is oxidized to Mn(IV), either through an O•− or ONOO− reaction,
reducing itself back to Mn(III) with cellular reductants present in the electron pool, yielding
the highly oxidizing radical nitrogen dioxide (NO•2), or through a two-electron approach
to Mn(II) yielding nitrite (NO2

−), this latter reaction being the most likely to occur in cells,
as MnPs are maintained in the Mn(II) state by cellular reductants [383]. In addition, MnPs
can interact with deprotonated reductants like GSH, cysteine, and protein thiols [26]; in
this sense, the MnP works as an oxidant, accepting electrons from the substrates, and being
reduced to either the Mn(III) or Mn(II) lower oxidation states as a result, while oxidizing
the reductants.

A significant degree of interaction between MnP and thiols has been reported, specifi-
cally towards cysteine residues present in the p50 subunit of the NF-κB protein, resulting
in disulfide formation [384]. The S-glutathionylation of the p65 NF-κB subunit, which
is responsible for the κB attachment to certain DNA regions, thereby initiating the tran-
scription of target genes, has been demonstrated in hyaluronan degradation-induced
inflammation in mice [385]. In such cases, the MnP functioned as an oxidant, yielding a



Int. J. Mol. Sci. 2025, 26, 2050 40 of 58

GS radical, which combined with additional GS to produce GSSG radicals; GSSG, when
oxidized by O2, produces O•−. However, glutathionylation will only be significant if GSH
and H2O2 are present, and GSSG can be safely removed if glutathione reductase (GR) is
present in sufficient levels [381]. The antioxidative effect of MnP, as previously mentioned
is only effective when physiological levels of peroxide enzymes are present to remove
H2O2. Hence, the cycling of MnP with GSH or cysteine would lead to an accumulation
of H2O2, contributing to the further oxidation of biomolecules of significant importance
in the homeostasis complex process [368]. In a chemotherapy-induced neuropathic pain
model in rats, mitotoxicity influenced by reduced ATP production in mitochondria due to
respiratory complex I and II inhibition in primary nerve sensory axons was thwarted by the
administration of Mn(III) 5,10,15,20-tetrakis(N-n-hexylpyridinium-2-yl)porphyrin (MnTE-
2-PyP(5+)), without compromising anti-tumor effect, and mechanical hypersensitivity was
reversed [386].

Although evidence for manganese-based porphyrins’ therapeutic effects over neu-
ropathic pain is scarce, acknowledged evidence of iron-based porphyrins exists [387,388].
Manganese and iron porphyrins can both dismutate superoxide anion, although their
efficiency and pathway might differ in favor of manganese porphyrins, which have an
overall mechanism more promising regarding interaction with cellular reductants and
flavoenzymes, and the production of •OH after interacting with H2O2, as MnPs have
a very limited capacity to interact with H2O2, contrary to iron porphyrins, which can
produce •OH in a Fenton-like reaction, contributing to reactive species production in the
cell [28,374]. Yet, it is important to acknowledge that iron porphyrin complexes perform
remarkable peroxynitrite decomposition catalyst activity, highlighting the potential of
porphyrin-based research for therapies in the context of neuropathic pain.

Structural and functional neuropathic alterations in diabetic type 2 rats were evaluated
and the therapeutic potential of peroxynitrite decomposition catalysts Fe(III) tetrakis-
2-(N-triethylene glycol monomethyl ether)-pyridyl porphyrin (FP15) and Fe(III) tetra-
mesitylporphyrin octasulfonate (FeTMPS) were assessed. Mechanical and sensorial deficits
and thermal allodynia, as well as nitrotyrosine and poly(ADP-ribose) levels were re-
stored with both treatments, compared to untreated animals [389]. Ischemia/reperfusion-
induced neuropathic pain has also been evaluated regarding the peroxynitrite decom-
position catalyst effect of intraperitoneal FeTMPyP [5,10,15,20-tetrakis (N-methyl-4′-
pyridyl)porphyrinato iron (III)]. A significant enhancement of mechanical withdrawal
threshold and phosphorylated NMDA subunit 1 were observed in treated animals, conse-
quently reducing mechanical allodynia and central sensitization [390]. The anti-nociceptive
and antioxidant effect of peroxynitrite decomposition catalyst FeTMPyP was tested in
chronic constriction of the sciatic nerve-induced neuropathic pain in rats. High iNOS, NF-
κB, IL-6, and TNF-α expression levels in sciatic nerves, together with increased poly (ADP)
ribose DRG levels were completely reversed after treatment, reducing PARP overactivation,
oxidative stress, and normalizing behavioral and functional pain parameters [391].

6. Final Considerations
This review evaluated the role of reactive species in cell signaling, focusing on their

redox-sensitive characteristics and their link to neuropathic pain. Reactive oxygen and
nitrogen species, significant for cellular signaling pathways, act as both mediators of cel-
lular damage and modulators of physiological processes. Their dysregulation, especially
under oxidative stress, has been increasingly linked to the sensitization of pain pathways,
highlighting the potential of targeting redox-sensitive mechanisms for novel therapeutic
strategies. Enzymatic antioxidant systems play a crucial role in maintaining redox home-
ostasis. Enhancing these defenses offers a promising strategy to reduce oxidative and
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nitrosative damage associated with neuropathic pain. Among emerging therapeutic agents,
manganese porphyrins (MnPs) stand out due to their mimetic antioxidant properties, offer-
ing significant potential for addressing redox imbalances and neuropathic pain. This review
underscores the significance of understanding the intricate dynamics of reactive species,
subcellular compartment gradients, and MnP-mediated redox chemistry in the context
of neuronal dysfunction. Further research is essential to optimize the design of biocom-
patible, target-specific MnP molecules and to elucidate their safety and efficacy in clinical
settings. Advancing knowledge in this field may pave the way for innovative treatments
for neuropathic pain, ultimately improving the quality of life for affected individuals.
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AP-1 Activator Protein 1
ATF6 Activator Transcription Factor
BDNF brain-derived neurotrophic factor
CAT catalase
CHOP C/EBP Homologous Protein
Cys cysteine
EGF epidermal growth factor
eNOS Endothelial Nitric Oxide Synthase
ER endoplasmic reticulum
ERK Extracellular Signal-Regulated Kinase
ERO-1 Endoplasmic Reticulum Oxidoreductin-1
ETC electron transfer chain
FAD flavin adenine dinucleotide
GH glutathione
GLUT1 Glucose Transporter 1
GPx glutathione peroxidase
GR glutathione reductase
GRP78 Glucose-Regulated Protein 78
GSH reduced glutathione
GSSG oxidized glutathione
H2O2 hydrogen peroxide
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HIF-1α Hypoxia-Inducible Factor 1α
HO• hydroxyl radical
HOCL hypochlorous acid
HOO• hydroperoxyl radical
IL interleukin
iNOS Inducible Nitric Oxide Synthase
IRE-1α Inositol-Requiring Kinase 1α
IRI ischemic reperfusion injury
JNK c-Jun NH2 quinase terminal
KEAP1 Kelch-like ECH-associated protein 1
LOOH lipidic peroxides
M Molar
MAPK Mitogen-Activated Protein Kinase
MCU Mitochondrial Calcium Uniporter
MDA malondialdehyde
Met methionine
MnP manganese porphyrin
mtNOS Mitochondrial Nitric Oxide Synthase
NAD nicotinamide adenine dinucleotide
NCX Na+/Ca2+ exchangers
NF-κB Nuclear Factor kB
NGF nerve growth Factor
nNOS Neuronal Nitric Oxide Synthase
NO nitric oxide
NOX NADPH oxidase
NRF2 Nuclear factor (erythroid-derived 2)-like 2
O2•− superoxide radical anion
ONOO− peroxynitrite
PDI Protein Disulfide Isomerase
PERK Protein Kinase (PKR)-Like Endoplasmic Reticulum Kinase
PG prostaglandin
PI3K phosphatidylinositol 3 kinase
PIP phosphatidylinositol phosphate
PIP2 phosphatidylinositol biphosphate
PIP3 phosphatidylinositol triphosphate
PMCA the plasma membrane calcium ATPase
PPP pentose phosphate pathway
RNS reactive nitrogen species
ROO• peroxyl radical
ROS reactive oxygen species
RS• thiyl radical
SERCA Endoplasmic Reticulum Calcium ATPase
SOD superoxide dismutase
Tyr tyrosine
VGF vascular growth factor
XO xanthine oxidase
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