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Abstract: Patients with end-stage renal disease (ESRD) are at increased risk of cardiovas-
cular disease (CVD), such as myocardial infarction (MI). Uremic toxins and endothelial
dysfunction are central to this process. In this exploratory study, we used the Affymetrix
GeneChip microarray to investigate the gene expression profile in uremic serum-induced
human coronary arterial endothelial cells (HCAECs) from ESRD patients with and without
MI (UWI and UWOI groups) as an approach to its underlying mechanism. We also ex-
plored which pathways are involved in this process. We found 100 differentially expressed
genes (DEGs) among the conditions of interest by supervised principal component analysis
and hierarchical cluster analysis. The expressions of four major DEGs were validated
by quantitative RT-PCR. Pathway analysis and molecular network were used to analyze
the interaction and expression patterns. Ten pathways were identified as the main en-
riched metabolic pathways according to the transcriptome profiling analysis, which were,
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among others, positive regulation of inflammatory response, positive regulation of extra-
cellular signal-regulated kinases 1 and 2 (ERK1/2) cascade, cardiac muscle cell develop-
ment, highlighting positive regulation of mitogen-activated protein kinase (MAPK) activity
(p = 0.00016). Up- and down-regulation of genes from HCAECs exposed to uremic serum
could contribute to increased endothelial dysfunction and CVD in ESRD patients. Our
study suggests that inflammation and the ERK-MAPK pathway are highly enriched in
kidney disease patients with MI, suggesting their role in ESRD pathology. Further studies
and approaches based on MAPK pathway interfering strategies are needed to confirm
these data.

Keywords: chronic kidney disease; end-stage renal disease; endothelial cell dysfunction;
gene expression profile; human coronary arterial endothelial cells; uremia; uremic toxins;
myocardial infarction; microarrays

1. Introduction
Chronic kidney disease (CKD) represents a public health problem because of its in-

creased worldwide prevalence, high rates of morbidity, and overwhelmingly high mortality
rate, and it is expected to become the fifth leading cause of death by 2040 [1,2]. This increase
seems to be closely related to different causes, among which it should be emphasized that
approximately 50% of deaths in patients with CKD, who progress to end-stage renal disease
(ESRD) and renal replacement therapy (RRT) is necessary, are related to cardiovascular
disease (CVD) [3]. Traditional risk factors are not sufficient to explain the increased risk,
so various non-traditional risk factors have been studied, such as retention and accumu-
lation of uremic toxins [4], hyperphosphatemia, and inflammation [5]. In addition, early
vascular aging (EVA), defined as a discrepancy between chronological and biological age
in the vasculature [6], occurs in these patients and is characterized by chronic low-grade in-
flammation, muscle atrophy, osteoporosis, frailty, high cardiovascular mortality, increased
vessel stiffness, vascular calcification, and endothelial dysfunction [7], all of which are
included as independent risk factors for CVD in CKD [8–10].

Uremic toxins (UTs) are compounds normally filtered from the blood, excreted by
healthy kidneys, and accumulate in the blood and tissues as renal function declines [11,12].
As bioactive compounds, some of these toxins exert adverse biological effects and disrupt
normal biological processes through cytotoxicity, disrupted cellular signaling, induction
of oxidative stress, and systemic inflammation [13]. UTs are classified by their physico-
chemical characteristics into three categories: Free water-soluble low molecular weight
solutes, protein-bound solutes, and middle molecules [14], and have been implicated in
different pathological pathways that could be responsible for complications contributing
to the mortality in ESRD patients [15]. It has been estimated that large uremic toxins,
which belong to the group of medium molecules and include proinflammatory mediators
and other cytokines, constitute 23% of the retained solutes [16]. Studies have shown that
some of these toxins induce endothelial dysfunction and leukocyte activation, promote
inflammation, thrombosis, and increase vascular oxidative stress in CKD [17]. In addi-
tion, investigations in large cohorts of patients with ESRD have classified uremic metabo-
lites as predictive of adverse clinical outcomes, associating them with an increased risk
of mortality [18].

Endothelial cells serve as the first barrier that plays a crucial role in maintaining vas-
cular integrity. The endothelial damage is the result of sustained toxic and inflammatory
conditions and contributes to the immune dysfunction developing in ESRD patients. The
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activation of monocytes, macrophages, granulocytes, and endothelial cells coexists with
the depletion of natural regulatory T-cells and impaired phagocytic functions of poly-
morphonuclear leukocytes and monocytes. These alterations seem to be aggravated by
dialysis procedures. Endothelial dysfunction can be defined as the shift from physiological
to pathological activity in endothelial cells. It is characterized by prothrombotic activity,
reduced vasodilatation, and a proinflammatory state [19]. It is observed in small and
large caliber arteries in patients with CKD [20,21] and is associated with an increased
risk of cardiovascular mortality in CKD [22]. Also, non-traditional risk factors, such as
accumulation of uremic toxins, oxidative stress, have been associated with endothelial dys-
function. In addition, the structure and function of vascular smooth muscle cells (VSMC)
and the composition of the extracellular matrix play an important role in vessel stiffness
(atherosclerosis), which is a process related to changes in the composition of elastin, col-
lagen, and vascular calcification, especially in the tunica media layer [23]. The important
role of endothelial cell dysfunction in the pathogenesis of atherosclerosis (ASO), has been
demonstrated for several decades and yet should be emphasized. CKD arises from many
heterogeneous disease pathways that irreversibly alter kidney function and structure over
time. As has been mentioned, approximately half of all deaths among patients with CKD
are a direct consequence of CVD, and the severity of CVD and risk of death increase with
a decline in kidney function, which is progressive and irreversible. In addition, it has
been recognized that the nature and spectrum of CVD in CKD are different in people
without kidney disease, including ASO, arteriosclerosis, and calcified arterial and left
ventricular dysfunction, among others [12]. Moreover, in ESRD on RRT, it is estimated that
cardiovascular mortality is greater than 50% of all deaths [24], of which 20% are caused
by myocardial infarction (MI) [25,26]. MI is a serious medical condition produced when
blood flow to a part of the heart is reduced for a prolonged period of time, causing damage
or death of heart muscle tissue [27] The main cause of MI is atherosclerosis, which is the
accumulation of plaques composed of cholesterol, fatty substances, calcium, and fibrin
in the walls of the coronary arteries [28]. Over time, these plaques become unstable and
rupture. After MI, millions of myocytes die, which activates the innate immune response
and triggers leukocyte infiltration into the tissue [29]. Neutrophils and macrophages are
responsible for the destruction of the extracellular matrix (ECM). Transforming growth
factor-beta (TGF-beta), one of the main cytokines present in the damaged myocardium,
promotes the differentiation of BFs into myofibroblasts and, together with macrophages,
initiates cardiac tissue remodeling with excessive collagen deposition and the formation of
fibrosis and scar tissue [30]. Subsequently, a period of approximately 1–2 months elapses,
and the scar matures. The pathological pathways associated with elevated cardiovascular
mortality have not been fully elucidated, but the presence of EVA appears to be one of the
associated pathways [6]. Some investigations, like Serradell, M. et al. [31], have studied
in depth the endothelial damage induced by the uremic environment in an in vitro model
through endothelial cell cultures exposed to growth media containing uremic serum from
hemodialysis patients, which showed morphological alterations, with irregular shape and
heterogeneous size, the abundant presence of vacuoles and an increased number of mitotic
cells [31]. Also, they showed increased proliferation, evidenced by morphological analy-
sis, cell cycle assessment by flow cytometry, and activation of mitogen-activated protein
kinase (MAPK) [31]. In addition, cells cultured under uremic conditions showed signs
of inflammation (evidenced by increased expression of vascular cell adhesion molecule 1
(VCAM-1), intracellular adhesion molecule 1 (ICAM-1), and endothelial-leukocyte adhe-
sion molecule (ELAM-1) on the cell surface), the increased presence of these molecules in
the cells, and in their soluble form evidencing p38MAPK protein activation [32]. No signs
of increased apoptosis were detected despite the accelerated proliferation observed in EC
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cultures in response to the uremic medium [31]. Furthermore, these cells produced an ex-
tracellular matrix with increased tissue factor expression [33], vWF [32], and thrombomod-
ulin [32] while maintaining normal ADAM metallopeptidase with thrombospondin type 1
motif 13 (ADAMTS13) metalloprotease activity [34]. Savira, F. et al. [35] analyzed whether
apoptosis signal-regulated kinase apoptosis kinase 1 (ASK1), a regulator of the cellular
response to stress, is involved in cardiac hypertrophy and cardiorenal fibrosis induced by
indoxyl sulfate (IS) and p-cresol sulfate (PCS) in vitro, and whether inhibition of ASK1
is beneficial in ameliorating these cellular effects. Analyses showed activation of ASK1
and MAPKs (p38MAPK and extracellular signal-regulated kinases 1 and 2 (ERK1/2)), as
well as nuclear factor kappa B (NF-κB) by IS and PCS. In addition, inhibitors of ASK1,
ornithine aminotransferase 1 and 3 (OAT1/3), ERK1/2, and p38MAPK suppressed all these
effects [35]. A very interesting gene expression study was that of Cardinal, H. et al. [36]
(which has largely provided the guidelines for the present experimental study), in which
the gene expression pattern of human coronary arterial endothelial cells by microarrays
showed six genes involved in the regulation of cell cycle progression: (Cyclin dependent
kinase 1 (CDK-1), topoisomerase II, PDZ-binding kinase, CDCA1, SDP35 protein, and
transcription factor 8 E2F) and two cholesterol efflux system genes (ABCA1 and ABCG1)
which were down-regulated in HCAECs exposed to uremic plasma, which have revealed
possible mechanisms underlying endothelial dysfunction in patients with ESRD [36]. Re-
cently, investigations have explored signaling pathway-mediated cell-to-cell interactions
(CCIs) in the injured heart and their biological effects, offering insights into the mechanisms
underlying CVD and potential therapeutic strategies [37]. Its important to mention that
endothelial activation is at the crossroads of alterations in inflammatory and immune
mechanisms developing in patients with CKD. The feedback between inflammation and
immune pathways further potentiates pathologic responses at the endothelial level. A more
precise knowledge of the basic molecular mechanisms involved in the development of
endothelial damage may facilitate the development of more specific therapeutic strategies
that could alleviate the profound alterations in the inflammatory and immunocompetence
mechanisms in CKD [38]. Of note, one of the key molecular pathways involved in endothe-
lial dysfunction and cardiovascular complications in CKD is the MAPK signaling pathway.
This pathway regulates critical cellular processes, including proliferation, differentiation,
apoptosis, and inflammation. Studies have shown that the MAPK pathway is activated
in response to uremic toxins, leading to increased oxidative stress, endothelial injury, and
inflammatory responses [35]. Specifically, activation of extracellular signal-regulated ki-
nases (ERK1/2), c-Jun N-terminal kinases (JNK), and p38 MAPK have been implicated
in vascular inflammation and endothelial dysfunction in CKD patients. Targeting com-
ponents of the MAPK pathway has been proposed as a potential therapeutic strategy to
mitigate the progression of cardiovascular diseases associated with CKD. Understanding
the role of this pathway could provide valuable insights into the molecular mechanisms
driving endothelial dysfunction and help identify novel targets for intervention. In this
work, we hypothesized that by comparing the gene expression profile of human coronary
artery endothelial cells (HCAECs) in RNA samples exposed to uremic serum obtained
from CKD patients with and without MI, we could identify which genes are dysregu-
lated and the signaling pathways that are likely to be associated in this in vitro model of
endothelial dysfunction.

2. Results
2.1. Microarray Analysis, Overview

We obtained the genome-wide transcription of HCAECs that were exposed to 20%
uremic serum for 48 h. RNA was isolated, transcribed into cDNA, and hybridized on
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an Affymetrix GeneChip® Human Gene 1.0 ST array. A total of six microarrays were
analyzed, identified as experiments 433, 434, and 435, corresponding to uremia without
infarction (UWOI Group), and experiments 436, 437, and 438, corresponding to uremia with
infarction (UWI Group). Microarray data have been deposited in the National Center for
Biotechnology Information (NCBI) and are available in Gene Expression Omnibus (GEO),
accession number GSE125898.

2.2. Quality Control Assurance

Before determining differentially expressed genes (DEGs), we analyzed the microarray
to assess its quality. Microarray quality analysis was performed with Bioconductor’s
arrayQualityMetrics package. The quality was satisfactory, as can be seen in Figure 1.
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Figure 1. Graphical representation of quality control evaluation of microarrays (a) MA plots of six
microarrays corresponding to the samples of the uremia without infarction (UWOI) and uremia with
infarction (UWI) groups. Each dot represents a gene. The M-values are centered at zero, which,
like (b), means that there is no dependence between the intensities and the logarithmic relationship.
(c) Box plots of intensity level and probe density distribution among microarrays. (d) Density plot of
the median intensities of the six microarrays.

2.3. Differential Gene Expression (DGE) Induced by Uremic Serum

Initially, in an unsupervised analysis, we identified 16,186 genes differentially ex-
pressed (DEGs) in HCAEC cells cultured in the presence of uremic serum from the two
study groups (2.0-fold, p < 0.05). According to three independent statistical algorithms
(t-test, Wilcoxon sum rank test, and distinction calculation) and the estimated FDR, we
identified 100 genes involved in CKD disease through a principal component analysis
(PCA) and a comparison of gene expression profiles across hierarchical groups. The cluster
study using the PCA shows the grouping of the samples according to their differences:
UWOI and UWI, which are located in opposite areas in the graph (Figure 2a). However, the
UWOI group showed high intragroup dispersion that differed from that observed in the
UWI group. Differences in the gene expression pattern could be related to abnormalities
specific to each group (Figure 2b). We used two-way, unsupervised hierarchical clusters to
analyze the expression profiles of the different groups. The unsupervised analysis clearly
separates the two experimental groups, UWOI and UWI, demonstrating their dissimilarity.
We used these genes as target genes for gene ontology and annotation analysis based
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on the expression of 50 genes (Figure 2d) and 100 genes (Figure 2c) involved in ESRD
disease and infarction visualized through a hierarchical clustering dendrogram of the
expression profile.
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Figure 2. Principal component analysis (PCA) and comparison of gene expression profiles across
hierarchical groups. (a) PCA describing the associated profile in the groups. In blue is the
UWOI group, and in red is the UWI group. This panel (a) shows the difference in gene expression
between the two study groups. Patients with uremia and infarction (UWI) showed more intergroup-
related gene expression, unlike the uremia without infarction group (UWOI). (b) Plot of differentially
expressed genes between density versus mean expression. All genes (red line), fore (purple line), and
back (green line). (c,d) Dendrograms based on the expression of 100 and 50 genes, respectively. We
used these genes as target genes for gene ontology and annotation analysis based on the expression of
50 genes (d) and 100 genes (c) involved in UWI visualized through a hierarchical clustering dendro-
gram of the expression profile.

An analysis was then performed with the LIMMA package; in this case, a design of
the experiment matrix was created, contrasting the UWI and UWOI cases. A linear model
was developed for the data according to this contrast, and the empirical Bayes statistics
for the differential expression test were applied. In this study, volcano plots were used
to visualize the differentially expressed transcripts in the samples of the UWOI and UWI
groups with the most significant data according to the adjusted p-value (with which the
analysis of networks and ontology was carried out) (Figure 3).

Two-dimensional hierarchical clustering revealed a significantly different expression
profile of 100 DEGs between the two groups of samples: 51 genes were overexpressed,
and 49 were under-expressed in the UWI group. From these, the most significant upreg-
ulated coding genes were STC1, ADAMTS4, SELE, PTGS2, CXCR4, UBD, and TLR2; the
most significantly downregulated genes were TGFB2, MTIE, RGS4, LYPD1, DKK1, and
SULTIB1. Of the 100 most significant differentially expressed genes, it can be seen that
the Staniocalcina-1 (STC1, stimulates renal phosphate reabsorption and could, therefore,
prevent hypercalcemia, and his protein has been implicated in various biologic processes,
including angiogenesis, bone and muscle development, and cellular metabolism) gene was
the most overexpressed, with a logFC of 2.09, while the TGFB2 gene (leading to recruitment
and activation of SMAD family transcription factors that regulate gene expression, and
including protein homodimerization activity and signaling receptor binding, the multifunc-
tional protein regulates various processes such as angiogenesis and heart development)
was the most under-expressed, with a logFC of −1.8 (Figure 4).
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Figure 4. Hierarchical cluster. DEG heatmap of supervised analysis of 100 differentially expressed
genes between UWOI (orange upper bar) and UWI (dark green upper bar) groups in HCAECs. The
upper left quadrant shows the color key and histogram representing the behavior of DEGs for the
UWOI and UWI groups in the HCAEC model. The samples are in the columns, and the genes are in
the rows. Red color represent up regulated genes, and blue color represent down-regulated genes
with different expression intensity.

We consider significant genes in the framework of p < 0.05 and genes over-expressed
with logFC > 2 and under-expressed with logFC < −2 to define differential gene expression
profiles, as shown in Table 1.
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Table 1. Top-ranked up-and-down-regulated differentially expressed genes identified by microarrays.

Symbol Gene Name LogFC * Adj.p.Value Regulation

STC1 stanniocalcin 1 2.0884 5.37 × 10−6 Up

ADAMTS4
ADAM metallopeptidase with thrombospondin type 1
motif 4 1.7026 5.87 × 10−5 Up

SELE selectin E 1.6895 5.58 × 10−4 Up
PTGS2 b,i prostaglandin-endoperoxide synthase 2 1.6729 2.10 × 10−5 Up
EEIG1 estrogen-induced osteoclastogenesis regulator 1 1.6695 2.10 × 10−5 Up
CXCR4 j C-X-C motif chemokine receptor 4 1.4639 4.11 × 10−4 Up
TLR2 b toll-like receptor 2 1.2530 1.93 × 10−3 Up
OTUB2 OTU deubiquitinase, ubiquitin aldehyde binding 2 1.2478 3.41 × 10−4 Up
VGLL4 vestigial like family member 4 1.2355 3.63 × 10−4 Up
EGR1 early growth response 1 1.2146 5.44 × 10−4 Up
ICAM1 c,j intercellular adhesion molecule 1 1.2124 3.41 × 10−4 Up
IL1Ac j interleukin 1 alpha 1.2121 5.44 × 10−4 Up
CCL5 c C-C motif chemokine ligand 5 1.1912 7.83 × 10−4 Up
CYP1A1 cytochrome P450 family 1 subfamily A member 1 1.1822 3.63 × 10−3 Up
DDIT3 DNA damage-inducible transcript 3 1.1244 3.29 × 10−4 Up
MIR21 b,c,g,j microRNA 21 1.0981 5.19 × 10−2 Up
HMOX1 J heme oxygenase 1 1.0718 3.41 × 10−4 Up
GDF15 growth differentiation factor 15 1.0566 4.72 × 10−4 Up

ADAMTS9 j
ADAM metallopeptidase with thrombospondin type 1
motif 9 1.0539 5.44 × 10−4 Up

PLA2G4C phospholipase A2 group IVC 1.0174 3.63 × 10−4 Up
HSD17B14 hydroxysteroid 17-beta dehydrogenase 14 1.0079 5.58 × 10−4 Up
LIF j LIF interleukin 6 family cytokine 0.9787 2.07 × 10−2 Up
B3GAT3 e beta-1,3-glucuronyltransferase 3 0.9618 1.25 × 10−3 Up
MEF2Cd j myocyte enhancer factor 2C 0.9556 1.23 × 10−3 Up
CYP4A11 cytochrome P450 family 4 subfamily A member 11 0.9356 1.77 × 10−3 Up
VEGFA a,f,h,j vascular endothelial growth factor A 0.8306 1.32 × 10−3 Up
SEMA7A c,j semaphorin 7A (JohnMiltonHagen blood group) 0.8249 3.56 × 10−3 Up
TNFAIP3 j TNF alpha-induced protein 3 0.6544 5.62 × 10−3 Up
LPL b lipoprotein lipase 0.6376 3.97 × 10−3 Up
MAPK13 b mitogen-activated protein kinase 13 0.6326 2.29 × 10−2 Up
IFRD1 j interferon related developmental regulator 1 0.6210 2.71 × 10−2 Up
NEK10 a NIMA-related kinase 10 0.6161 0.04 × 10−2 Up
CEACAM1 g, j CEA cell adhesion molecule 1 0.5707 0.03 × 10−2 Up
TGFB1 a,b,c,d,e,g,j transforming growth factor beta 1 0.5671 1.11 × 10−2 Up
DUSP5 dual specificity phosphatase 5 0.5687 6.67 × 10−3 Up
ETS1 b,j ETS proto-oncogene 1, transcription factor 0.5425 6.76 × 10−3 Up
MMP14 d matrix metallopeptidase 14 0.5033 1.14 × 10−2 Up
PLAUR g plasminogen activator, urokinase receptor 0.5015 2.24 × 10−2 Up
CDK5 j cyclin-dependent kinase 5 0.4981 7.40 × 10−3 Up
ALPK3 f alpha kinase 3 0.4973 8.60 × 10−3 Up
TGFB2 f transforming growth factor beta 2 −1.7897 5.87 × 10−5 Down
MT1E metallothionein 1E −1.3871 5.44 × 10−4 Down
PRICKLE1 f,g,j prickle planar cell polarity protein 1 −1.3330 4.40 × 10−4 Down
RGS4 f regulator of G protein signaling 4 −1.2042 3.29 × 10−4 Down
CCDC190 coiled-coil domain containing 190 −1.2006 5.44 × 10−4 Down
LYPD1 LY6/PLAUR domain containing 1 −1.1449 4.12 × 10−4 Down
DKK1 a,i,j Dickkopf WNT signaling pathway inhibitor 1 −1.1293 3.29 × 10−4 Down
BDNF j brain-derived neurotrophic factor −1.0834 1.30 × 10−3 Down
DHCR24 24-dehydrocholesterol reductase −1.0626 3.63 × 10−4 Down
CCNA1 cyclin A1 −1.0558 3.29 × 10−4 Down
GPRC5A g G protein-coupled receptor class C group 5 member A −0.8999 1.35 × 10−3 Down
CXADR f CXADR Ig-like cell adhesion molecule −0.8661 1.30 × 10−3 Down
PDGFC a,c platelet-derived growth factor C −0.8220 4.27 × 10−3 Down
OSMR b oncostatin M receptor −0.8197 1.03 × 10−2 Down
PTGER4 b prostaglandin E receptor 4 −0.7993 1.47 × 10−3 Down
IGF1 c,d,f insulin-like growth factor 1 −0.7958 1.30 × 10−3 Down
TNIK j TRAF2 and NCK interacting kinase −0.7303 2.35 × 10−3 Down
PHLDB2 j pleckstrin homology like domain family B member 2 −0.7131 4.56 × 10−3 Down
SEMA3C j semaphorin 3C −0.6574 9.43 × 10−3 Down
FGD4 j FYVE, RhoGEF and PH domain containing 4 −0.6463 9.18 × 10−3 Down
FGF2 a,c,h,j fibroblast growth factor 2 −0.6167 4.35 × 10−3 Down
NRG1 c,d neuregulin 1 −0.6111 3.63 × 10−3 Down
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Table 1. Cont.

Symbol Gene Name LogFC * Adj.p.Value Regulation

PTPN22 c protein tyrosine phosphatase non-receptor type 22 −0.6083 2.28 × 10−2 Down
GLCE e glucuronic acid epimerase −0.5920 3.28 × 10−3 Down
CCBE1 h,j collagen and calcium binding EGF domains 1 −0.5731 7.91 × 10−3 Down
BMP4 c,d,f,j bone morphogenetic protein 4 −0.5708 1.82 × 10−2 Down
IL1RL1 b interleukin 1 receptor like 1 −0.5655 8.30 × 10−3 Down
ARHGAP18 j Rho GTPase activating protein 18 −0.5625 3.88 × 10−3 Down
PRKDC j protein kinase, DNA-activated, catalytic subunit −0.5411 6.17 × 10−2 Down
TBX18 f,j T-box transcription factor 18 −0.5347 4.10 × 10−3 Down
NTN4 j netrin 4 −0.5306 5.22 × 10−3 Down
SLIT2 j slit guidance ligand 2 −0.5214 1.64 × 10−2 Down
PRKCAc j protein kinase C alpha −0.5177 3.13 × 10−2 Down

ABCC1 b
ATP binding cassette subfamily C member 1 (ABCC1
blood group) −0.5148 5.60 × 10−2 Down

LDLR b low-density lipoprotein receptor −0.4993 2.04 × 10−2 Down
EFNB2 d,h,j ephrin B2 −0.4972 1.40 × 10−2 Down
ERBB2 a,g,j erb-b2 receptor tyrosine kinase 2 −0.4916 1.82 × 10−2 Down
MAP3K5 a mitogen-activated protein kinase kinase kinase 5 −0.4645 3.80 × 10−2 Down

* FC, fold change; a gene involved in positive regulation of MAP kinase activity; b gene involved in positive
regulation of inflammatory response; c gene involved in positive regulation of ERK1 and ERK2 cascade; d gene
involved in positive regulation of striated muscle cell differentiation; e gene involved in glycosaminoglycan
biosynthetic process; f gene involved in cardiac muscle cell development; g gene involved in epidermal growth
factor receptor signaling pathway; h gene involved in lymph vessel development; i gene involved in Regulation
of synaptic transmission glutamatergic; j gene involved in regulation of anatomical structure morphogenesis
(see Table 2).

Table 2. The top 10 best enriched biological processes.

GO ID Term Description Annotated Significant
Rank in
Fisher
Classic

Fisher
Elimination

Fisher
Classic Significant Genes

GO:0043406 Positive regulation of
MAP kinase activity 27 15 86 0.00016 0.00016

DKK1; ERP29; FLT1;
ERBB2; TGFB1; IL1B;
CD40; DVL3; NEK10;
FGF2; PDGFC; GHR;
EDN1; VEGFA; MAP3K5.

GO:0050729 Positive regulation of
inflammatory response 45 21 101 0.00023 0.00023

TNFSF18; TNFSF4;
PTGS2; ETS1; NFBIA;
ABCC1; GPRC5B; NUPR1;
ADOR2; MIR21; LDLR;
TGFB1; IL1RL1; IL1B;
TLR2; OSMR; PTGER4;
NAIP; TNIP1; MAPK13;
LPL.

GO:0070374
Positive regulation of
ERK1 and ERK2
cascade

61 26 107 0.00027 0.00027

PTPN22; CAVIN3;
DENND2B; IGF1;
FERMT2; BMP4;
SEMA7A; CCL2; MIR21;
PRKCA; CCL5; ABCA7;
ICAM1; MIR23A; TGFB1;
IL1A; FGF2; RAPGEF2;
PDGFC; TPBG; CCN2;
GPNMB; MTURN;
INHBA; NRG1; ABL1.

GO:0051155
Positive regulation of
striated muscle cell
differentiation

15 10 110 0.00028 0.00028

IGF1; EFNB2; MMP14;
BMP4; TGFB1; TBX1;
MEF2C; EDN1; NRG1;
NIBAN2.

GO:0006024 Glycosaminoglycan
biosynthetic process 20 12 112 0.00028 0.00028

CHST3; ST3GAL4;
CHST1; B3GAT3; CHST11;
GLCE; CLTC; TGFB1;
IL1B; ST3GAL6; ABCC5;
CHSY3.
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Table 2. Cont.

GO ID Term Description Annotated Significant
Rank in
Fisher
Classic

Fisher
Elimination

Fisher
Classic Significant Genes

GO:0055013 Cardiac muscle cell
development 37 18 120 0.00034 0.00034

RGS4; NEBL; PRICKLE1;
IGF1; BMP4; ALPK3;
MEF2A; FHOD3;
MIR23A; FHL2; CXADR;
PDLIM5; SORBS2; EDN1;
VEGFA; TBX18; BVES;
PLEC.

GO:0007173
Epidermal growth
factor receptor
signaling pathway

44 20 137 0.0005 0.0005

ERRFI1; PIK3C2A;
GPRC5A; PRICKLE1;
BCAR1; ERBB2; MIR21;
RHBDF2; MVB12A;
TGFB1; CEACAM1;
PLAUR; DGKD;
CCDC88A; TGFA; CBLB;
AREG; GAB1; ERBIN;
ABL1.

GO:0001945 Lymph vessel
development 16 10 147 0.0006 0.0006

TIE1; PTPN14; EFNB2;
CLEC14A; TMEM204;
CCBE1; TBX1; HEG1;
FGF2; VEGFA.

GO:0051966
Regulation of synaptic
transmission
glutamatergic

24 13 150 0.00062 0.00062

PTGS2; DKK1; DGKZ;
SYT1; CLN3; CCL2;
CACNG7; SHANK3;
HOMER1; MEF2C;
HTR1B; CDK5; OPHN1.

GO:0022603
Regulation of
anatomical structure
morphogenesis

352 103 175 0.00084 0.00084

FBLIM1; TIE1; CSF1;
STRIP1; PLEKHO1;
TGFB2; LRP8; CDC42SE1;
AKT3; DKK1; ADAM12;
BDNF; ETS1; FGD4;
SYT1; EPS8; PRICKLE1;
BTG1; NTN4; FLT1;
EFNB2; DAAM1; INF2;
FERMT2; BMP4; PGF;
SEMA6D; SEMA7A;
EEF2K; CCL2; ERBB2;
FMNL1; MIR21; PRKCA;
RAC3; DLG4; SP6; SPAG9;
DCC; NEDD4L; EPB41L3;
CCBE1; EMC10; CACNG7;
TGFB1; CEACAM1;
CDC42EP3; IL1A; IL1B;
CXCR4; STAT1; CD40;
ADAMTS1; RUNX1;
TBX1; NF2; HMOX1;
SHANK3; LIF; PHLDB2;
SKIL; DVL3; ADAMTS9;
TNIK; SLIT2; PDLIM5;
FGF2; GAB1; POU4F2;
RAPGEF2; RASA1;
MYO10; MEF2C; EFNA5;
EDN1; VEGFA; TNFAIP3;
TBX18; BVES;
ARHGAP18; SYNE1; EZR;
LFNG; ITGB8; GPNMB;
IFRD1; NOS3; SEMA3C;
SEMA3D; SMURF1;
PLXNA4; CDK5;
ADGRA2; SDC2; NEFL;
PRKDC; PALM2AKAP2;
ABL1; NIBAN2; NSMF;
FOXO4; SH3KBP1;
ZMYM3.
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2.4. Functional Analysis Through Gene Enrichment

To explore the functional similarities of the 100 DEGs, enrichment analysis on gene
sets was performed using Gene Ontology (GO). The significance of the enrichment was
measured by the p-value according to Fisher’s exact test. For 51 overexpressed genes in
the UWI group, we identified 500 GO terms and a KEGG pathway with p < 0.05. The GO
terms identified include positive regulation of MAP kinase activity (with 15 significant
genes) and positive regulation of ERK1 and ERK2 cascade, regulation of cardiac muscle
cell development (with 37 significant genes), Epidermal growth factor receptor signaling
pathway, Regulation of anatomical structure morphogenesis (with 352 significant genes),
among others (Table 2).

Further analysis showed that the metabolic pathway most significantly represented
(p = 0.00016) by Fisher’s test was the mitogen-activated protein kinase (MAPK) pathway
(Figure 5).
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Figure 5. A map of the best enriched GO hierarchies according to the criterion of the classic Fisher
test, defining the ten most significant enriched DEG term nodes (represented in red squares). In this
figure, some categories are very general and do not mention the genes they include, but it can be seen
that the MAPK category is the most enriched. The interpretation of Table 2 is greatly complemented
by Figure 5.
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2.5. Construction of a Network of Molecular Interactions

Molecular networks were algorithmically generated by the STRING platform (STRING;
https://string-db.org/cgi/input.pl (accessed on 5 April 2025)) using significant GO terms
and pathway analysis as instructive tools to comprehensively explore the molecular mech-
anisms involved in our study. As a result, some positively regulated genes and protein-
encoded genes were obtained in the transduction network. Five genes—CCL5, IL1A, PTGS2,
BDNF, ICAM1, and ADAMTS4—were observed among others as core genes, which are
related to inflammation and mitogenesis, regulation of the stress response, cell adhesion,
degradation of proteoglycan of cartilage, signal transduction, and transcriptional regulation
in HCAEC cells stimulated with uremic serum (Figure 6).
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Figure 6. Molecular networks of HCAECs exposed to uremic serum. Associated genes derived
from String were based on correlations in order to characterize cellular and molecular functions and
identify enriched canonical pathways/networks for the list of selected candidate genes, according to
Gen Ontology data. The solid lines represent the interactions between genes, and the nodes (spheres)
represent the proteins that are associated with the respective genes. Each color of the nodes represents
evidence of protein–protein interaction. Pink indicates experimentally determined/post-translational
modifications; blue indicates gene co-occurrence; green indicates gene neighborhood; black indicates
co-expression; red indicates gene fusion. Nodes with ribbon-like structures represent the availability
of 3D structural information of the protein being predicted.
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2.6. Validation of DEGs Through Quantitative RT-qPCR

Based on the analysis of the uremic serum pathway and molecular networks in
HCAECs, we randomly selected four candidate genes—PTGS2, DDIT3, PLA2G4C, and
EEIG1—for the validation of gene expression through RT-qPCR analysis. We prioritize the
validation of these genes according to the following characteristics: STC1 was prioritized by
the magnitude of its fold change (FC) obtained (the gene was the most overexpressed, with
a logFC of 2.09). Also, despite its overexpression in the molecular networks of HCAECs
exposed to uremic serum that we performed with STRING, this gene is observed to be
isolated, probably with a function not yet defined in this in vitro model. In addition,
it has been implicated in various biological processes, such as angiogenesis, bone and
muscle development, and cellular metabolism. In addition, in animal models, it pro-
duces elevated serum phosphate levels and an increased metabolic rate. DDIT3: also
prioritized by its logFC = 1.124, and because it is a multifunctional transcription factor
that plays an essential role in the response to a wide variety of cell stresses and induces
cell cycle arrest and apoptosis in response to endoplasmic reticulum stress. Additionally,
play a regulatory role in the inflammatory response through the induction of caspase-11
(CASP4/CASP11), which induces the activation of caspase-1 (CASP1), and both these cas-
pases increase the activation of pro-IL1B to mature IL1B which is involved in the inflamma-
tory response. In addition, it also participates as a major regulator of postnatal neovascular-
ization through the regulation of endothelial nitric oxide synthase (NOS3)-related signaling.
EEIG1: also known as FAM102A, it is also overexpressed in the uremia group with infarction
(logFC = 1.6695) and is involved in the positive regulation of osteoclast differentiation.
The key component of TNFSF11/RANKL- and TNF-induced osteoclastogenesis pathways
thereby mediate bone resorption in pathological bone loss conditions. Also, despite its
overexpression in the molecular networks of HCAECs exposed to uremic serum that we
performed with STRING, this gene is observed as isolated, probably with a function not
yet defined in this in vitro model. PLA2G4C: this gene was prioritized because it has a
fold change of 1.017 and is involved in phospholipid remodeling with implications in
endoplasmic reticulum membrane homeostasis and lipid droplet biogenesis to produce
free fatty acids and lysophospholipids, both of which serve as precursors in the production
of signaling molecules and are predominantly expressed in cardiac and skeletal muscle. In
the Molecular Networks of HCAECs exposed to the uremic serum that we performed with
STRING, this gene is observed to be associated with the central node of PTGS2.

The results showed that the expressions of the four genes increased in the UWI group
and were underexpressed in the UWOI group in HCAEC cells treated with uremic serum.
These results were in line with those obtained through microarray analysis.

3. Discussion
Cardiovascular disease is a major cause of death in ESRD patients. It is widely

recognized that patients on dialysis have substantially higher cardiovascular and non-
cardiovascular mortality rates compared with the general population, accounting for
approximately 50% of total mortality [24–26], and little is known about the molecular
mechanism involved in these events. In this study, we used a microarray approach to
identify HCAEC gene expression signatures after the exposition of serum samples with and
without MI. We also identified the MAPK signaling pathway as the most enriched pathway
in this study, with statistical significance, and found that it may be linked to genes involved
in important physiological processes in ESRD and CVD. According to the GO classification,
we found that genes differentially express a variety of transcription factors that are involved
in the immune response. Several studies have discussed the role of inflammation as a first
step in promoting endothelial dysfunction and the progression of atherosclerotic processes.
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Additionally, some studies suggest that atherosclerosis could be caused by an immune
reaction against autoantigens such as oxidized low-density lipoproteins and heat shock
proteins [39].

Interestingly, our microarray profile highlights several genes that could sustain com-
mon molecular alterations in ESRD and CVD, some of which were validated by RT-qPCR
analysis. The cardiovascular system is the main target of uremic toxins and chronic in-
flammation in ESRD patients. To our knowledge, genetic studies focused on endothelial
dysfunction associated with cardiovascular development in ESRD patients are scarce. One
notable study is that reported by Cardinal et al., the results of which suggest a possi-
ble mechanism involved in patients with ESRD and endothelial dysfunction, apparently
through six genes associated with the regulation of cell cycle progression (CDK-1, topoiso-
merase II, PDZ-binding kinase, CDCA1, protein SDP35, and transcription factor E2F) and
two cholesterol exit system genes (ABCA1 and ABCG1), which are deregulated in HCAECs
exposed to uremic plasma [36]. Other studies have shown that permanent Endothelial
cell aggression as a result of chronic exposure to uremic toxins induces cellular phenotype
abnormalities, which may result in high serum levels of inflammatory biomarkers such as
IL-8 and MCP-1, cytokines, and the adhesion molecules VCAM-1 and ICAM-1 [40]. The
main finding of this work was the identification of key genes involved in the activation of
the MAPK signaling pathway. The MAPK signaling pathway is involved in a repertoire of
biological events, including proliferation, differentiation, metabolism, motility, survival,
and apoptosis. This pathway encompasses a large number of serine/threonine kinases and
is divided into four MAPK subfamilies, including ERK1/2, c-Jun NH2-terminal kinases
(JNK1, -2, and -3), p38 kinase (α, β, γ, and δ) and big MAPK (BMK or ERK5) [41]. Studies
have shown that MAPK subfamilies are involved in the pathogenesis of numerous renal
diseases, including CKD and ESRD [42], and produce important signaling molecules in-
volved in the inflammatory process in the kidney. Likewise, previous studies have focused
on TGF-β and epithelial or endothelial cells for mesenchymal transition in myofibrob-
last transformation, which leads to fibrosis [43]. One important gene found among the
15 significant genes of the MAP pathway was MAP3K5 (Serine/threonine kinase, which
acts as an essential component of the MAP kinase signal transduction pathway). Plays a
crucial role in the apoptosis signal transduction pathway through mitochondria-dependent
caspase activation and mediates signal transduction of various stressors like oxidative
stress as well as by receptor-mediated inflammatory signals. Moreover, together with
ASK1, it is a serine/threonine kinase, MAP3K family member, which induces apoptosis
through the activation of JNK and p38. ASK1 has been implicated in the pathology of
neurodegenerative and oxidative stress-related diseases [43].

On the other hand, while searching for a set of genes associated with the MAPK
signaling pathway, we found a group of four DEG members of this pathway: PLA2G4A,
IL1A, RASGRP3, and DDIT3, which are molecules related to inflammation, apoptosis,
signal transduction, and atherosclerosis. PLA2G4A was one of the two most significantly
overexpressed genes. Phospholipases A2 (PLA2s), a family of enzymes that hydrolyze
the fatty acid at the sn-2 position of phospholipids, play pivotal roles in cell signaling
and inflammation [44]. Recently, these enzymes have also been reported to function as
key regulators of lipid droplet homeostasis [45]. Although various cellular PLA2s may
contribute to the generation of free fatty acids from membrane phospholipids initially
required for lipid droplet synthesis, there is strong evidence to support that the PLA2 form,
such as PLA2G4A, is also involved in endothelial reticulum phospholipid remodeling and
lipid droplet expansion processes [41,43]. IL1A was also significantly overexpressed in this
analysis. This gene encodes for Interleukin-1 (IL-1), a proinflammatory cytokine that plays a
crucial role in ischemic stroke [46]. Given that intracranial atherosclerosis is a risk factor for



Int. J. Mol. Sci. 2025, 26, 3732 15 of 23

ischemic stroke [47], this finding strongly suggests that IL-1 is implicated in the pathophys-
iology of ischemic stroke. In our study, the guanylyl-nucleotide-releasing protein RAS-3
(RASGRP3) was one of the main overexpressed genes associated with the MAPK pathway.
Members of the RAS subfamily of GTPases function as signal transducers, as GTP/GDP-
regulated switches that cycle between GDP-bound inactive states and GTP-bound active
states, serve as activators of RAS by promoting GTP acquisition to maintain the GTP-bound
active state, and are the key link between cell surface receptors and RAS activation [46].
DNA-damage-inducible transcript 3 (DDIT3) was also significantly overexpressed in this
analysis. This gene encodes a member of the CCAAT/enhancer-binding protein (C/EBP)
family of transcription factors. The protein functions as a dominant-negative inhibitor by
forming heterodimers with other C/EBP members, such as C/EBP and LAP (liver activator
protein), and preventing their DNA-binding activity. During endoplasmic reticulum stress
(such as in pancreatic beta cells or in atherosclerosis-associated macrophages), CHOP can
induce Ero1 activation, leading to calcium release from the endoplasmic reticulum into the
cytoplasm, resulting in the activation of apoptosis [47,48]. A study showed a significant
increase in the expression of the ddit3 protein, which is a transcription factor that could
regulate a number of inflammatory cytokines, such as IL-6 [33]. Interestingly, the biological
network generated by the String software platform showed an important functional role in
all processes described above. Finally, our results revealed a certain genetic profile with a
small set of genes that, in the future, could provide additional information on the biological
basis of CVD in CKD.

Limitations of the Study

We consider the main limitation of this study to be the small number of samples and
microarrays analyzed. However, the in vitro studies were performed with technical repli-
cates to minimize variations and were confirmed using different statistical approaches. It is
worth noting that our small sample size is characteristic of a comparative, non-predictive
experimental study conducted in an in vitro model. We believe this sample size is adequate
for exploring the genes involved in the uremia condition, both with and without myocar-
dial infarction, given the type of microarray used in our research. We have undertaken a
formal analysis of the sample’s power, aimed at identifying some potential biomarkers for
myocardial infarction in patients with ESRD. This allows us to attribute the differences in
gene expression mainly to infarction. This design is aligned with the goal of understanding
the effects of infarction within the context of ESRD. We acknowledge our results cannot be
applied to patients without ESRD. Although the sample size per group is small, the inclu-
sion of individuals of both genders reduces bias due to possible gender-related differences
in expression. This approach also increases the likelihood of reproducibility by keeping the
demographic composition constant.

Another limitation of this study is that we did not include serum samples from patients
without ESRD. We know that in the design of this comparative in vitro experimental study,
serum samples from two groups of patients on KDIGO stage G4–G5 in renal replacement
therapy treatment were compared: (1) uremic group with infarction: patients with advanced
chronic kidney disease and history of infarction and (2) Uremic group without infarction
(control): Patients with ESRD but without a history of infarction. The uremic group without
infarction was used as a control to evaluate changes in gene expression attributable to
infarction in the context of uremia. The rationale for including this control group is mainly
due to two situations: (1) For the similarity of the clinical conditions of the two groups,
since we consider that the choice of patients with uremia stage KDIGO G4–G5 as a control
group is appropriate because they share metabolic and inflammation alterations that are
characteristic of ESRD, which allows us to attribute the differences in gene expression
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mainly due to infarction, and (2) For comparative relevance, as this design is aligned with
the goal of understanding the effects of infarction within the context of ESRD. Moreover, the
nature and spectrum of cardiovascular disease in CKD are recognized to be different from
that in people without kidney disease, including atherosclerosis, arteriosclerosis, calcific
arterial and valve disease, left ventricular remodeling and dysfunction, arrhythmia, and
sudden cardiac death.

We acknowledge that part of the limitations of choosing this Control Group may
be mainly due to: (1) reduced biological variability (although while confounders can be
minimized, uremia-specific gene alterations could mask differences related exclusively to
infarction), and (2) generalizability (the results cannot be applied to patients without ESRD).
It should be noted that additional recommendations for further (non-experimental) studies
should be: (1) Include a healthy reference group: Incorporating an additional group of
patients without renal disease could provide a benchmark for understanding how uremia
and infarction interact. (2) Confirmation of the results: Validate the findings by quantitative
PCR or other techniques in a larger sample size. While the inclusion of a healthy control
group could have added value to our study, our primary focus is on understanding why
certain patients with the disease experience infarction. Consequently, comparing uremic
patients who do not have infarction with those who do allows for a more straightforward
investigation of the biological processes involved, minimizing variation and enhancing our
understanding of the gene expression changes induced by uremic serum, which is present
in both patient groups. In many diseases, sourcing samples from healthy individuals
without the disease of interest can pose challenges. Although this may not be a significant
concern in our study, it can introduce additional variability in the “healthy” samples that
may not be helpful in precisely identifying the genes implicated in the development of
infarction. Nonetheless, these samples could provide valuable insights into the genes
affected by uremic toxins.

Another limitation of the study is that plasma levels of inflammatory markers such as
IL-6, TNF-alpha, and C-reactive protein, among others, were not determined. However,
the role of these cytokines in the pathophysiological mechanisms of cardiovascular disease
in patients with ESRD is known [49,50].

4. Materials and Methods
4.1. Origin and Collection of Human Uremic Serum

After an initial screening, only six patients undergoing conservative renal replacement
therapy (RRT) for chronic kidney disease (CKD) at the dialysis outpatient clinic of the
UMAE-Specialty Hospital, the National Medical Center Siglo XXI (CMNS-XXI), and the
Mexican Social Security Institute (IMSS), Mexico City, were included in this study. They
were divided into two groups: Group 1 (“uremia without infarction”, UWOI): Three
patients with ESRD on continuous ambulatory peritoneal dialysis (CAPD) with no history
of myocardial infarction (MI). MI was ruled out based on clinical signs, color Doppler
echocardiography, and biochemical parameters. Group 2 (“uremia with infarction”, UWI):
Three patients with ESRD undergoing hemodialysis (three sessions per week) who had
experienced an MI within the past year. Infarction was confirmed through clinical signs,
electrocardiography, color Doppler echocardiography, and biochemical parameters. None
had received thrombolysis due to late hospital arrival, and at the time of the study, none
exhibited precordial pain. All had been diagnosed with anterolateral wall MI. All subjects
had normal kidney function and no history of vascular disease, diabetes, dyslipidemia, or
smoking. They used no medication. Inclusion criteria were: age ≥ 18 years, CKD diagnosis
(defined by proteinuria or persistently decreased glomerular filtration rate [GFR] in three
consecutive evaluations), and informed consent; exclusion criteria were the presence of
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active inflammatory/infectious disease (determined by the absence of clinical signs of acute
inflammation), malignant neoplasia, immunosuppressive drug use, or other conditions,
and elimination criteria were: refusal to participate in the study. One patient in group 1
whose medical record had a diagnosis of ischemic heart disease could not be confirmed at
the time of inclusion in the study. GFR was calculated as the average of two measurements
of mean urea and creatinine clearance. Primary renal disease was diagnosed through a
thorough clinical assessment.

4.2. Sample Collection and Processing

Management, collection and provenance of human serum blood samples were col-
lected from volunteers and ESRD patients on thrice-weekly chronic hemodialysis or CAPD.
All participants provided informed consent. Blood was collected in 10 mL tubes dry,
sent on ice to the laboratory, and centrifuged (1300× g for 10 min). The serum was then
aliquoted and stored at −80 ◦C. The serum was not pooled. Each serum was used for
an individual experiment. Two different subsets of ESRD patients provided serum for
the experiments conducted in this study. The characteristics of patients providing serum
in the two uremic groups are provided in Table 3. Their mean age was 40.0 ± 5.0 years,
and 66% were of female gender. They were matched for gender and age (5-year caliper)
with each uremic subject. For the ribonucleic acid (RNA) extraction and measurement of
biochemical parameters, a 10 mL venous blood sample was drawn from the antecubital
vein of the left arm using a 10 mL syringe and collected in tubes without anticoagulant
(BD-Vacutainer, Plymouth, UK). Samples were transported on ice to the laboratory and
centrifuged at 1300× g at 4 ◦C for 10 min to obtain serum, which was aliquoted and stored
at −80 ◦C until further use.

The study protocol was approved by the Research Ethics Committee of CMNS-XXI,
IMSS (Approval Number: R-2008-3601-113/FIS/IMSS/PROT/551). All participants pro-
vided written informed consent before enrollment. Initially, for the design, we have
undertaken a formal analysis of the sample’s power. Due to that, this is a compara-
tive, non-predictive experimental study aimed at identifying a potential biomarker for
acute myocardial infarction in patients with end-stage renal disease (ESRD). Following
our theoretical analysis, we created a notebook with R code and provided justifications
through the analysis of microarray data. Sample size estimation methods and ideas were
taken from Lin, W.J., et al. [51]. This process closely resembled the one proposed in
this portal: https://bioinformatics.mdanderson.org/MicroarraySampleSize/ (accessed on
8 February 2021), with the selected options reflecting those outlined in this analysis [52,53].

Recognizing that the primary objective of this study is to establish an initial framework
for identifying relevant genes rather than offering a highly discriminatory and statistically
significant description, we opted to reduce the sensitivity value. Our intention is to include
a broader range of genes for further examination.

It is worth noting that our small sample size was characteristic of a pilot study con-
ducted in an in vitro model. We believe this sample size was adequate for exploring the
genes involved in the uremia condition, both with and without infarction, given the type of
microarray used in our research. To ensure statistical power, for the design, we used the
online software from the M.D. Anderson Bioinformatics with the data as follows: number of
genes, 28,869; acceptable number of false positive, 10%; desired fold differences, 2; desired
power, 0.7; standard deviation of 0.5, which compute a sample size per group of 3 with a
per-gene value alpha of 0.09997.

The characteristics of the selected patients who provided a peripheral blood sample in
the two uremic groups are shown in Table 3.

https://bioinformatics.mdanderson.org/MicroarraySampleSize/
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Table 3. Characteristics of the selected patients who provided blood samples.

Characteristic Description UWOI Group (n = 3) UWI Group (n = 3)

Demographic Age (years) 66 ± 21 66 ± 11
Female/male 1/2 1/2

Cause of end-stage renal
disease (%)

Diabetic nephropathy 1 (33) 3 (100)
Arterial hypertension 1 (33) 3 (100)
Coronary heart disease 0 (0) 3 (100)
Other or unknown 1 (33) 1 (33)

Comorbidity (%)

Ischemic heart disease 0 (0) 3 (100)
Myocardial infarction 0 (0) 3 (100)
History of hypertension 3 (100) 3 (100)
Mellitus diabetes 3 (100) 3 (100)
Smoking 2 (67) 0 (0)
Familial hyperlipidemia 1 (33) 1 (33)
Familial hypercholesterolemia 1 (33) 1 (33)

Treatment (%)

Insulin 0 (0) 2 (67)
Folic acid 0 (0) 1 (33)
Complex B 0 (0) 2 (67)
Calcitriol 0 (0) 1 (33)
Enalapril 1 (33) 0 (0)
Losartan 1 (33) 1 (33)
Amlodipine 1 (33) 0 (0)
Clopidogrel 0 (0) 1 (33)
Acetylsalicylic acid 0 (0) 1 (33)
Isosorbide 2 (67) 1 (33)
Statins 0 (0) 1 (33)

Renal replacement therapy
Peritoneal dialysis (%) 3 (100) 0 (0)
Hemodialysis (2–3
sessions/week) 0 (0) 3 (100)

Biochemical parameters
(mg/dl)

Glucose 125 (89–167) 124 (86–189)
Urea 81 (32–108) 122 (104–134)
Creatinine 10.5 (1.1–18) 10.6 (5.8–16.1)
Cholesterol 170 (147–192) 166 (149–192)
Triglycerides 115 (100–138) 180 (115–223)
HDL-cholesterol 43 (28–64) 29 (27–32)
LDL-cholesterol 110 (99–126) 105 (100–112)

UWOI, uremia without infarction; UWI, uremia with infarction; values express n (%), mean (range).

4.3. Primary Culture of Human Endothelial Cells, RNA Isolation, Purification and Quality

Human coronary arterial endothelial cells (HCAECs) (PCS-100-020) and Endothelial
Cell Enrichment Kit-VEGF medium (PCS-100-041) were purchased from the American
Type Culture Collection (ATCC, Manassas, VA, USA). HCAEC culture was performed ac-
cording to the manufacturer’s instructions. Briefly, HCAECs proliferated in the enrichment
medium with final medium concentrations as follows: basic rhFGF, 5 ng/mL; rhIGF-1,
15 ng/mL; L-glutamine, 10 mM; heparin sulfate, 0.75 U/mL; hydrocortisone hemisucci-
nate, 1 µg/mL; fetal bovine serum, 2%; ascorbic acid, 50 µg/mL; penicillin–streptomycin,
10 U/m-10 µg/mL. Cell cultures were maintained in a humidified atmosphere containing
5% (v/v) CO2 incubator at 37 ◦C, and the culture medium was renewed every 2 days, with
a 1:3 split at each passage, and only cells from 3 to 6 passages were used. When monolayers
were 80 to 90% confluence in culture plates, they were exposed to DMSO (as sample internal
control). After, the serum sample obtained from each patient included in the UWOI and
UWI groups was inactivated for 30 min at 56 ◦C, adjusted to a concentration of 20% with
endothelial enrichment-VEGF medium, and then exposed to cell cultures and incubated for
48 h. To exclude that serum exerted direct toxic effects on HCAECs, trypan blue exclusion
assays [54] were performed at the conclusion of the incubation and demonstrated > 95%
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viability with no differences between our experimental groups. At the end of exposure,
the cells and supernatants were collected and stored at −80 ◦C until use. After exposure,
total RNA was isolated using a RNeasy kit, Qiagen (QIAGEN, Valencia, CA, USA), follow-
ing the manufacturer’s protocol and stored at −80 ◦C until use. The RNAs used in this
study were selected and referred to as Experiments 433, 434, and 435, corresponding to
the UWOI group, and Experiments 436, 437, and 438, corresponding to the UWI group,
respectively. First, the chemical purity of the RNA quality was checked with a Nanodrop
ND-1000 spectrophotometer at 260 nm (NanoDrop Technologies, Wilmington, DE, USA).
RNA integrity was assessed with RNA integrity number (RIN) scoring using an Agilent
2100 Bioanalyzer, RNA 6000 Nano LabChip kit, and Agilent 2100 Expert Software (Agilent
Technologies, Santa Clara, CA, USA). Only samples with RIN ≥ 9.5 were included in the
microarray assay.

4.4. Microarray Assay

The microarray used for our analysis was Affymetrix GeneChip® Human Gene 1.0
ST array (Affymetrix, Santa Clara, CA, USA), which interrogates 28,869 well-annotated
genes with 764,885 distinct probes. RNA sample transcription, microarray hybridiza-
tion, washing, staining and scanning of microarrays were performed according to the
manufacturer’s guidelines (Affymetrix, GeneChip® Whole-Transcript (WT) Sense Target
Labeling Assay User Manual, P/N 701,880 Rev.5). Briefly, 100 ng of total RNA was am-
plified and labeled using the Affymetrix GeneChip® WT Terminal Labeling Kit (P/N
900671). Then, the final labeled target DNA was hybridized to the arrays in a GeneChip®

hybridization oven 640 (Affymetrix, Santa Clara, CA, USA) at 60 rpm and 45 ◦C for
17 h. Subsequently, the microarrays were washed and stained using the GeneChip® Flu-
idics Station 450 (Affymetrix, Santa Clara, CA, USA) and scanned using a GeneChip®

Scanner 3000 7 G (Affymetrix, Santa Clara, CA, USA). A total of 6 microarrays were ana-
lyzed. The named experiments 433, 434, and 435 correspond to the ESRD-UWOI Group,
and Experiments 436, 437, and 438 correspond to the ESRD-UWI Group. GeneChip®

(http://www.affymetrix.com/support/technical/datasheets/human_datasheet.pdf (ac-
cessed on 5 April 2025)) operating software (GCOS, Affymetrix) was used to obtain and
analyze the images. Scanning and data extraction of the microarray were followed by the
transformation of fluorescence data into CEL files (probe CEL intensity data) employing
Affymetrix GeneChip® Command Console (AGCC) software (Affymetrix Inc. Santa Clara,
CA, USA).

4.5. Data Preprocessing

The raw data from the CEL files were converted into expression values, background
corrected, and quantile normalized through a custom pipeline implemented using the Affy-
parser, Affyoi, and Oligo packages of R/Bioconductor [55]. The robust multiarray average
(RMA) algorithm was implemented through the execution of background correction and
subsequent filtering to remove transcripts with very low expression levels, followed by
quantile normalization and finished with probe summarization, for which a cutoff value
of 4.2 was used for the median of intensities. Subsequently, annotation of the transcripts
was carried out using the annotation data of Affymetrix hugene10sttranscriptcluster.db
(R package version 8.7.0.).

4.6. Differentially Expressed Genes (DEGs) in UWOI and UWI Groups

A linear model was implemented to evaluate statistically significant changes in the
expression of genes between ESRD groups. The LIMMA (Linear Models for Microarray
Data) package of R/Bioconductor [56] was performed to assess the differential gene expres-
sion (DGE) values between uremia without infarction (UWOI) and uremia with infarction

http://www.affymetrix.com/support/technical/datasheets/human_datasheet.pdf
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(UWI) using the Bayesian empirical method. First of all, a contrast matrix was generated
between the UWOI and UWI groups, and then model fitting was performed. Statistical
relevance was determined with the Bayes variance moderation method using a moderate
Student t-test (which is recommended for variance estimation in microarray experiments
with few replicates). A false discovery rate (FDR) > 0.1 was taken into account as a criterion
to obtain only significant adjusted p-values. The threshold of DEGs was set according to a
log2FC (fold change) value > 1, a log2FC value < −1, and a p-value ≤ 0.01. Volcano plots
were used to visualize the analysis.

4.7. Pathway Enrichment Analysis of DEGs

The screened DEGs were loaded into the Database for Annotation, Visualization, and
Integrated Discovery (DAVID) (available at https://davidbioinformatics.nih.gov (accessed
on 4 May 2021)) for Gene Ontology (GO) annotation and pathway enrichment analysis from
the Kyoto Encyclopedia of Genes and Genomes database (KEGG, http://www.genome.
jp/kegg/). Enrichment analysis was performed using Bioconductor’s topGO package to
investigate the functional categories of DEGs, and the number of DEGs included in each
GO term was counted. The relevance of the enriched categories was determined using a
classical Fisher test, and the top 500 categories were selected. The map of enriched GO
relationships was elaborated considering the first 10 significant nodes.

4.8. Construction of Gene Functional Interaction Network

Gene set enrichment analysis (GSEA) was performed from the ranked list of each
approach to construct a gene network (based on GO annotation terms extracted from
the Gene Ontology Consortium (http://www.geneontology.org)) in order to reveal the
interaction of selected genes for which the Search Tool for the Retrieval of Interacting Genes
(STRING; https://string-db.org) was used.

4.9. Validation Assay Through Real-Time qPCR

Among the differentially expressed genes identified through microarray and molec-
ular network analysis, four of them were selected as candidates for validation assay by
RT-qPCR analysis. A frozen aliquot of HCAEC cultures from each experiment was used for
microarray analysis to validate the differential expression results. Briefly, the total RNA
from each sample was reverse transcribed into cDNA using reverse transcriptase, and
the resulting cDNA was then used as a template for quantitative PCR amplification. The
amount of cDNA was homogenized at a concentration of 50 ng/µL to facilitate method-
ology and analysis. The expression levels of candidate genes were measured using the
appropriate design, and all tests were performed on the StepOne ™ Real-time PCR system
(Applied Biosystems, Fosters City, CA, USA). Quantitative fluorescence data were analyzed
using sequence detection software (SDS version 2.2, PE Applied Biosystems). The cycle
number at which the amplification plot crossed the threshold was calculated, and the cycle
threshold (Ct) values were recorded. The relative expression level of target genes was
calculated with the 2−∆∆Ct method [57]. GAPDH was used as a housekeeping gene to
normalize RNA amounts. The primer sequences used in this study were as follows: STC1
(F: 5′-GTGACACAGATGGGATGTATGA-3′, R: 5′-TTTAAGCTCTCTTTGACGAATGC-3′);
DDIT3 (F: 5′-AGCTGAGTCATTGCCTTTCTC-3′, R: 5′-ACCTCTTGCAGGTCCTCATA-3′);
EEIG1 (F:5′-CTGCAGCTGACGTGTAAGG-3′, R: 5′-AGCCCTGAGCTGAGAATAGT-3′);
PLA2G4C (F: 5′-AAGGAAAGGCTCACTCAGTAAC-3′, R:5′-CCACCGTGTTTGTACAGG
AA-3′); GAPDH (F: 5′-GTGCTGAGTATGTCGTGGAG-3′, R: 5′-GTCTTCTGAGTGGCAGT
GAT-3′). The PCR cycling conditions were as follows: 40 cycles of 30 s at 96 ◦C, 30 s at
60 ◦C (all primers had the same melting temperature), and 30 s at 72 ◦C.

https://davidbioinformatics.nih.gov
http://www.genome.jp/kegg/
http://www.genome.jp/kegg/
http://www.geneontology.org
https://string-db.org
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5. Conclusions
In this experimental study, we observed that mediators present in the serum of patients

uremic with MI might be able to affect endothelial function by modifying their gene
expression profile, which can contribute to CVD in ESRD patients. We believe that with
these preliminary data, subsequent studies could be carried out (safeguarding all the
limitations inherent in this in vitro study) that could help to clarify the participation of
some identified DEGs.
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