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Abstract

Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized
by difficulty with social communication, behavior, and sensory integration. With its
prevalence rising worldwide in recent decades, understanding and mitigating the origins
of ASD has become a priority. Though its etiology is multifactorial, the current research
highlights two major contributors, genetic susceptibilities and environmental inflammatory
exposures, leading to oxidative stress during critical developmental periods. We explore
how genetic variations, including those affecting cerebral folate metabolism, and various
inflammatory triggers, including exposure to inflammatory agents during both the fetal
and post-fetal period, intersect to influence the development of ASD, giving rise to specific
symptoms seen in autism.

Keywords: autism; ASD; leucovorin; folate; cerebral folate deficiency; inflammation;
oxidative stress; maternal immune activation

1. Introduction
Autism spectrum disorder (ASD) is a developmental disorder identified in the Amer-

ican Psychiatric Association’s Diagnostic and Statistical Manual, Fifth Edition (DSM-5),
by two categories of symptoms: persistent deficits in social communication and social
interaction, and restricted, repetitive patterns of behavior. The DSM-5 further provides
guidelines as to severity, listing three levels. Level 1 requires support and may struggle
with initiating social interactions. Level 2 requires substantial support and may display
limited communication. Level 3 requires very substantial support and shows significant
challenges in communication and behavior [1].

The diagnosis of ASD has seen a dramatic rise in the 21st century, increasing ap-
proximately five-fold and becoming a public health priority [2]. The Simons Foundation
created the autism research initiative (SFARI), which houses the evolving database of the
genetics of autism [3,4]. There are striking parallels between ASD and other multifactorial
diseases such as cancer. In both conditions, risk is influenced by an interplay of genetic
predispositions and environmental factors, particularly triggers of inflammation, which
lead to oxidative stress. Just as cancer risk can be increased by inherited mutations and
external exposures like toxins or infections, ASD may also arise from a combination of
genetic vulnerability and environmental stressors. In both diseases, these factors modulate
susceptibility rather than determining certainty of onset, effectively raising the probability
of development becoming neurodivergent.

Furthermore, recent findings in both fields suggest an important role of the gut
microbiome in modulating immune and neurological outcomes. Nutritional and dietary
choices appear to influence disease trajectories in both ASD and cancer. For example, diets
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that reduce inflammation or support detoxification pathways are known to reduce the risk
for cancer [5] and depression [6], and may point a path to better outcomes in ASD with
nutritional intervention as well.

Another similarity with cancer is that ASD is presumed to have multiple variants with
differing etiologies. To date, over 70 genes have been correlated with ASD, with hundreds
more believed to be related to ASD susceptibility [7–9]. This wide array of genes may help
explain the diversity of expression of ASD, as well as point to a rationale for some of the
comorbidities commonly diagnosed with ASD [10].

These insights invite a new perspective on ASD not just as a static diagnosis but as a
dynamic condition potentially influenced by modifiable risk factors. This opens the door
to discussing strategies for reducing risk, and even the possibility of partial or complete
remission under certain therapeutic regimens. Understanding the contributing causes of
ASD could lead to more personalized, preventive, and responsive treatments.

2. Genetic Factors in ASD
Many hundreds of genes have been implicated as having a role in autism, with

multiple developmental impact categories involved [11–13]. Comparisons between the
AutDB, AutismKB2.0, and SFARI Gene databases show over 400 genes presumed to be
linked to ASD [14]. Previously, categorizing autism as syndromic or non-syndromic was
useful to obtain a sense of some genes involved, especially for monogenic disorders [15].
The use of such terminology is considered by some to be limiting now [14]. Here, we
focus on non-syndromic autism, take a look at some of the more frequently referenced
ASD-related genes, and consider the categories of developmental impact these may have to
understand which of these categories may be impacted.

We note the substantial positive work in monogenic syndromic autism, where gene
therapies can be developed to target the single genetic cause [16,17]. The benefits of this
work cannot be overestimated. For the purposes of this review, we seek to draw from the
non-syndromic ASD evidence to begin to obtain a sense of the many factors involved in
the majority of autism cases.

The following section will look at factors of oxidative stress to provide a compendium
of the inflammatory agents that may influence gene expression during critical developmen-
tal periods. We hope to provide a sufficient overview of the genes involved to give context
for putative inflammation-induced oxidative stress actions, with the goal of stimulating
further research in the synergism of oxidative stress on gene regulation and expression in
the development of autism.

2.1. Categorizing ASD Genes

Kereszturi (2024) [18] compiled the most commonly referenced genes listed in three
databases listing autism-related genes: SFARI, AutDB, and ClinVar. These were then
compared for their functional impact and listed in ten areas of developmental differences,
which are summarized in the following table. The categories fall into three developmental
areas, as shown in Table 1: synaptic, social, and neuronal.

One challenge here is that not only are some genes involved in multiple aspects of
development but there are some that are apparently involved in quite different categories
of action. For example, SHANK3 is believed to play a role in morphogenesis, synaptic
organization, and social behavior. Given that the SHANK1, SHANK2, and SHANK3 genes
produce proteins that are differentially expressed in development and affect synaptic
structure and neurotransmission, this is unsurprising [19]. However, the multiplicity of
categories makes the matching of specific genes to specific traits difficult at best, and
potentially misleading.
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Table 1. Commonly referenced genes in SFARI, AutDB, and ClinVar, categorized by area of develop-
mental impact [18].

Category Genes Developmental Impact

Synaptic

ADNP, UBE3A, GABRB3, MECP2,
NRXN1, SHANK3, GRIN2B Cell Junction Organization

ADNP, UBE3A, GABRB3, MECP2,
NRXN1, SHANK3, GRIN2B Synapse Organization

ADNP, STXBP1, GABRB3, MECP2,
NRXN1, SHANK3, GRIN2B

Chemical Synaptic
Transmission

ADNP, GABRB3, MECP2,
NRXN1, SHANK3 Synapse Assembly

Social/
Behavioral

CHD8, MECP2, NRXN1, SHANK3 Biological Processes in
Intraspecies Interaction

CHD8, MECP2, NRXN1, SHANK3 Social Behavior

Neuronal/
Cellular

TRIO, ADNP, UBE3A, STXBP1, AUTS2,
MECP2, NRXN1, TCF4, SHANK3 Neuron Differentiation

TRIO, ADNP, UBE3A, STXBP1,
AUTS2, MECP2, NRXN1, SHANK3

Neuron Projection
Development

TRIO, ADNP, UBE3A, STXBP1,
AUTS2, NRXN1, SHANK3

Cell Morphogenesis in
Differentiation

TRIO, ADNP, UBE3A, STXBP1,
AUTS2, NRXN1, SHANK3 Cell Part Morphogenesis

The gene UBE3A codes for ubiquitin ligase (and its coactivator). The loss of this gene
activity causes Angelman syndrome, with lack of speech, seizures, autistic features, and
intellectual disability. The gain of function mutations of UBE3A, as well as duplication,
also results in autism behaviors [20]. It is the impact of UBE3A on synaptic function and
plasticity that appears to be the causative factor [20]. There are other genes involved in
ubiquitination, and recent work indicates that these also create autism-like symptoms in
an animal model, as with CUL3 [21], or are directly involved in human autism [22]. These
demonstrate the critical role of ubiquitination in neuronal synapses as regards autism.

Other sources have evaluated genes based on pathway participation and functional
clustering in ASD [23–25]. This allowed us to construct Table 2 to compare the list of genes
with the pathways involved.

The genes that have been recognized as ASD-related and act by impairing neural
connectivity include those involved in synapse formation and function, namely SHANK3,
NRXN1, and NGLG3/4 [26–28]. Additionally, the gene SCN2A is tied to an alteration in
neuronal activity due to its role in ion channels [29].

The genes involved in cell growth, TSC1 and TSC2, can lead to abnormal brain struc-
tures by alterations in the mTOR pathway [30,31]. This is a common signaling cascade with
central roles in translation, lipid and nucleotide synthesis, and growth factor signaling [32].

Variations in the genes involved in gene regulation, CHD8 and MECP2, can result in
disrupted brain development, while variants of a gene from RNA translation, FMR1, is
related to learning and memory issues [33–35].

Genes associated with folate transport (Section 2.3) are related to folate delivery to the
brain and are a biomarker for cerebral folate deficiency (CFD). Therapeutic intervention
can overcome CFD, as described in this section. A potentially related genetic risk is for
mitochondrial dysfunction, which may play a role in the autism regression seen in some
children as they grow.
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Table 2. Compilation of references linking specific genes with pathways in ASD.

Category Gene Pathways and References

Neuronal/
Cellular

MAPK1 MAPK signaling, Calcium signaling [23]
MAPK3 MAPK signaling, Calcium signaling [23]
HRAS MAPK signaling, Calcium signaling [23]
PRKCB Calcium signaling, MAPK signaling [23]
BRAF MAPK signaling, Calcium signaling [23]

CORO1A Neuron function, Immune response [4]

Synaptic

SCN2A Synaptic development (M16 module) [24]
SHANK2 Synaptic development (M16 module) [24]
NRXN1 Synaptic development (M16 module) [24]
GRIN2B Synaptic transmission [4]

Cellular/
Metabolic

CNDP1 mTOR pathway (neurodevelopment) [25]
PDE4D mTOR pathway (neurodevelopment) [25]
ULK2 mTOR pathway (neurodevelopment) [25]
CHD8 Gene expression in development [4]
PTEN Cellular development [4]

2.2. Comorbidities of ASD-Related Genes

Another route is to evaluate the disorders comorbid with ASD and which of the ASD-
associated genes are also implicated in the comorbid disorder. In a compelling analysis of
SFARI data, Khachadourian et al. (2023) [10] identified many comorbidities found with
ASD. Such data may be doubly beneficial. There is the main point of helping to identify the
specific genes involved in certain developmental symptoms. But the second benefit may
come later in providing a means to begin to characterize the spectrum of autism as specific
subtypes, based either on the comorbidities or, hopefully, on a full understanding of the
genetic and environmental mechanisms involved in the development of these symptoms.

In addition to comorbidities with learning disorders and social communication disor-
ders, some of the common comorbidities found were with anxiety disorder, ADHD, depres-
sion, dystonia (motor disorders), and OCD [10,36]. Table 3 compiles the more frequently
referenced SFARI-listed genes that are linked to one of the listed comorbidities [37,38].

Table 3. SFARI-referenced genes that may be involved in commonly identified ASD comorbidities [10,37,38].

Comorbid Condition SFARI ASD Gene

ADHD PPP3CB, PRKG1

Anxiety Disorder ADCYAP1R1, DLGAP4, NPPB, BRP1, VIPR2

Bipolar Disorder ADAM10, ADCY9, ADCYAP1R1, AKT1, DLGAP4,
HSPA1L, MEGF10, NDE1, NPPB, BRP1, VIPR2

Depressive Disorder ADCY9, AKT1, DGCR8, HSPA1L, VIPR2

Epilepsy ADCY9, AKT1, ATN1, KCNH2, MMP2, NDE1,
SLC29A2, SMARCA2, VIPR2

OCD ADCYAP1R1, DLGAP4, NPPB, NRP1, BIPR2

Panic Disorder ADCYAP1R1, DLGAP4, NPPB, NRP1, BIPR2

Schizophrenia
ADCY9, AKT1, ATN1, DGCR8, DLGAP4, HSPA1L,

KCNH2, MEGF10, NDE1, PPP3CB, PRKG1,
SMARCA2, VIPR2

Sleep Disorders
ADAM10, ADCY9, ATN1, DGCR8, DLGAP4,

KCNH2, MEGF10, NPPB, NRP1, PPP3CB, PRKG1,
SLC29A2, SMARCA2
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The psychiatric cell map initiative [39] is an integrated effort to identify genes that are
believed to be involved in multiple disorders and evaluate their relationship [40]. It shows
ASD having comorbidities with certain epileptic genes, GABRB3 and SCN2A, as well as
intellectual disability genes, SCN2A, SLC6A1, SYNGAP1, and WAC [39]. This work was
taken further to make a connected cluster map to the curated pathways of SFARI proteins
and their neurological relevance and reveal the overlap of neurodevelopmental disease
causal networks (in their Figure 6) [41].

Additionally, there is evidence from brain organoids of a form of idiopathic autism in
which some of the genes involved lead to an imbalance in excitatory cortical neurons [42].
Given that it is presumed that there are several autism variants, the associated genes
are ones that are correlated with a greater risk of developing ASD. Some have specific
pathways that are involved, and others are correlated with ASD but in a non-defined
manner. Sections 2.3 and 2.4 provide a brief look at some of the developmental genes that
have traditionally been considered for their role in ASD.

2.3. Cerebral Folate Deficiency
2.3.1. Folate Metabolism and Brain Development

Folate is essential for DNA synthesis, repair, and methylation, all of which are essential
processes during early brain development. The transport of folate into the central nervous
system (CNS) is tightly regulated by specific transport mechanisms, primarily the folate
receptor alpha (FRα) and the reduced folate carrier (RFC).

2.3.2. Genetic Variants Impairing Folate Transport

Mutations in the FOLR1 gene can impair FRα function, leading to CFD. Similarly,
polymorphisms such as the SLC19A1 variant rs1051266 can reduce RFC efficiency. Both
impair the brain’s ability to maintain adequate folate levels, resulting in developmental
impairments and ASD features, such as decreased social communication and decreased
emotional recognition [43,44].

2.3.3. Folate Receptor Alpha Autoantibodies and Treatments

Folate receptor autoantibodies (FRAAs), which block or bind to FRα, are much more
prevalent in ASD children (about 70% of ASD children, compared with 5–10% in the general
population). These autoantibodies suppress folate transport across the blood–brain barrier,
contributing to CFD. FRAAs are believed to result from environmental exposure [45],
further linking genetic and inflammatory pathways.

Folinic acid supplementation has shown promise in reversing CFD symptoms in chil-
dren with ASD in multiple clinical trials (based in the USA, France, and India) published
between 2018 and 2025 [46–49]. Dietary modifications, such as avoiding cow’s milk prod-
ucts (which may trigger FRAAs) [45], have also demonstrated potential benefits. These
findings support the clinical importance of identifying and treating CFD in ASD patients.

2.4. Mitochondrial Dysfunction

There is growing evidence that mitochondrial dysfunction may contribute to neu-
rodevelopmental regression in children [50–54]. This condition is seen when an ASD child
shows strong learning, language, and memory capabilities initially, only to regress later
in childhood [55]. Of note, while non-regressed children showed that inflammation and
immune dysregulation occurs first, in regressed children, mitochondrial dysfunction was
first observed, with an impact on immune activity possibly occurring later [52].
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3. Inflammation During Critical Developmental Periods and ASD Risk
3.1. The Developing Brain and Vulnerability to Inflammation

Neurodevelopment is highly sensitive to environmental insults during the prenatal
and early postnatal periods. Inflammation during these times can disrupt neuronal migra-
tion, synaptogenesis, synaptic pruning, and brain connectivity, all of which are critical to
neurotypical brain function [56]. Many causes of inflammation have been documented,
some of which are acute, such as viral infection and fever, and others chronic, such as
microplastics and malnutrition. When inflammation occurs during critical periods in brain
development, neurotypical development can be delayed or arrested, resulting in a child
reaching milestones later, aberrantly, or possibly not at all if the inflammation exceeds
the duration of the critical period [43,56–58]. Summary schematics of the categories of
inflammation and their presumed action are outlined in Figures 1 and 2.

Figure 1. Schematic of maternal inflammatory categories and their impact on fetal developments that
can lead to conditions conducive for the development of autism spectrum disorder. Genetic propensity
and agents causing oxidative stress are presumed to be the preconditions for neurodivergent fetal
development. A similar schematic is seen in Figure 2 for the child.
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Figure 2. Schematic of inflammatory categories in childhood and their impact on early childhood
developments that can lead to autism spectrum disorder symptoms. Genetic propensity and agents
causing oxidative stress are presumed to be the preconditions for neurodivergent development.

3.2. Categories of Inflammation
3.2.1. Viral Infections

Maternal infections such as influenza, rubella, and COVID-19 have been linked to
increased ASD risk due to maternal immune activation (MIA). Postnatal viral infections
can also contribute to neuroinflammatory states [43,57,59–61].

An evaluation of studies in a meta-analysis shows there is an association between
maternal infection and subsequent autism diagnosis in the child, with little variation based
on when the infection occurred during pregnancy or what type of infection it was [62,63].
A genetic analysis showed that the increased risk for ASD with maternal infections may
be correlated with a genetically distinct subtype of autism, a subtype that come from the
interaction between genetic susceptibility and the exposure to infections in pregnancy [64].
Thus, since the maternal infections may not be causal in the development of ASD, it is
unclear if the prevention of infection may reduce autism incidence [65].
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3.2.2. Air Pollution and Maternal Asthma

Environmental pollutants are associated with ASD incidence [66]. Exposure to par-
ticulate matter (e.g., PM2.5) during pregnancy has been associated with neuroinflamma-
tion [67] and developmental disorders, and particularly an increased risk of development
of ASD [56,67–72]. Airborne toxins can activate microglia and oxidative stress pathways in
the fetal brain [73].

Additional studies have examined air pollution from roadways as being particularly
problematic, pointing to a potential link to plasticizers used in the manufacture of tires and
tailpipe exhausts, as risk was related to distance from roadways [74,75]. Given that immune
dysregulation is a common comorbid feature with ASD, the link to maternal exposure to air
pollution may be indicating a mechanism of action in the development of autism. In this
regard, multiple studies have found an elevated risk of autism in infants born to asthmatic
mothers, and that this risk was related to an increase in inflammatory biomarkers [76–78].

Of concern, in a study of air pollution pre-conception, women exposed to particulate
matter and nitric oxide in the three months prior to conception had children with greater
growth in their body weight in their first two years of life [79]. The authors report that the
critical period of exposure is the three months prior to conception.

3.2.3. Maternal Immune Activation

Maternal inflammation during pregnancy is associated with an increased risk of ASD,
with maternal immune activation (MIA) being evaluated in animal models, where it leads
to behavioral changes resembling ASD [80]. This immune activation raises the levels of
cytokines, especially interleukin-6 (IL-6) and interleukin 17a (IL-17a), which are implicated
in disrupting fetal brain development, in what may lead to some ASD behaviors. The
effect of MIA on the developing fetus may be impacted by the fetus’s genetic makeup, with
certain genetic profiles making the fetal brain more impacted by maternal inflammation,
implicating a gene–environment interaction in the etiology of ASD [80–83].

3.2.4. Microplastics

Emerging studies in animal models suggest that prenatal and early postnatal exposure
to microplastics, especially bisphenol A and phthalates, may lead to inflammation-driven
behavioral changes reminiscent of ASD [84–88]. This action may be through immune and
epigenetic mechanisms, or as endocrine disrupters. In this regard, plastic food containers
and films were tested and found to contain thousands of chemicals, with many being
endocrine disruptors (including an estrogen receptor alpha activator and an androgen
receptor inhibitor) and metabolism disruptors [89]. Samples tested that were made with
fewer chemicals also had fewer toxic chemicals that entered the food. Additionally, expo-
sure to polystyrene nanoplastics caused depression and anxiety in a mouse model [90],
and it decreased oligodendrocyte activity and enhanced hyperactivity and aggression in
zebrafish [91], while exposure to polyethylene led to repetitive behaviors and diminished
social interaction [92].

3.2.5. Malnutrition

Deficiencies in nutrients with anti-inflammatory properties, such as omega-3 fatty
acids, zinc, and vitamins B12, B9, A, D, and K, may increase susceptibility to inflammation
and neurodevelopmental disorders [93–98]. The vitamin A deficiency may have its effect in
an impact on the gut microbiome [99,100]. Other micronutrients appear to play important
roles in neurotypical development [101]. There is also evidence that autistic children,
who frequently eat the same food each day, are lacking in certain nutrients [102,103], or
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are receiving an abundance of one macronutrient to the exclusion of others, which may
contribute to symptoms [104].

3.2.6. Emotional Stress

Maternal stress during pregnancy can result in elevated cortisol and pro-inflammatory
cytokines, potentially disrupting fetal brain development. Chronic stress in the early life of
the child may also affect immune and neurological outcomes [57,62,105–108]. One measure
of such stress on the child can be quantified by evaluating adverse childhood experiences
(ACEs), as ASD children, who are at increased risk of bullying, parental divorce, income,
and food insecurity, have an increased risk of comorbid health disorders [109].

3.2.7. Pharmaceuticals

Certain medications, particularly selective serotonin reuptake inhibitors (SSRIs), have
been implicated in altering fetal brain development when used during pregnancy [110].
SSRIs cross the placental barrier and can influence serotonin signaling pathways criti-
cal to neurodevelopment. Research suggests that prenatal SSRI exposure may disrupt
synaptogenesis and increase neuroinflammation, particularly in genetically susceptible
offspring [111]. These effects may contribute to ASD-like phenotypes in animal models and
warrant a careful consideration of risk–benefit ratios in clinical practice [110,112–114].

3.2.8. Maternal Disorders and Diabetes

A recent study in California found a higher ASD incidence in children born to mothers
with asthma or obesity, and a much higher incidence for mothers with both conditions [115].
The authors speculate that this incidence increase may be due to the increased inflammatory
conditions during pregnancy, and that the earlier screening of children born to mothers
with asthma and obesity during pregnancy may be warranted.

A meta-analysis of over 200 studies, and including over 50 million pregnancies, re-
vealed that children born to mothers with diabetes have an increased risk of neurodevel-
opmental disorders. This was especially true for mothers with pre-gestational diabetes,
and less so for gestational diabetes. There was a 25–30% increased risk for ASD, ADHD,
and intellectual disability, with a 15–20% increased risk for communication learning disor-
ders [116].

3.2.9. Synthetic Vitamins

Folic acid supplementation has been used in prenatal vitamins for decades and reduces
spina bifida in newborns. Folic acid is used rather than natural folate due to its stability; it
cannot be further oxidized. However, excessive or poorly metabolized synthetic folic acid
may provoke immune responses, especially in individuals with impaired folate pathways.
This imbalance can exacerbate inflammation and contribute to FRAA development, which
may lead to CFD. Additionally, the intake of folic acid in excess of a few hundred micro-
grams per day (the typical level of folic acid that can be converted to usable folate in the
gut) has been shown to result in unmetabolized folic acid in the blood, which interferes
with the absorption of folate across the blood–brain barrier or across the placenta [117–120].

3.2.10. Vaccines

While the scientific consensus supports vaccine safety, there is speculation that vac-
cines trigger inflammatory responses in genetically susceptible individuals, as detailed in a
recent comprehensive report [121]. If such inflammation occurs during critical periods, it
can elevate the risk of altering brain development. This was a larger concern in previous
decades, for example, when the earlier pertussis vaccine (in the 1980s) triggered fever in
some children, or when the thiomersal (thimerosal) preservative in the measles vaccine
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was used (until 2001), which could be inflammatory in some children. The fact that diag-
nosed autism cases have increased five-fold from 2000 to 2025 [2,122] while inflammation
from vaccines has diminished indicates that this is likely not a significant factor in this
neurodevelopmental disorder.

3.2.11. Microbiome and Metabolic Disorders

This topic may merit a separate category, as processing by the microbiome seems
to be essential for the absorption of key nutrients as well as the inactivation of inflam-
matory agents, and digestive disorders are frequently comorbid with ASD [122–125]. In
this regard, restoring microbiome function with probiotics may alleviate some ASD symp-
toms [126], and the use of fecal transfer has shown some effectiveness in treating autism
symptoms [127].

Several studies have shown a link between the gut microbiome and neurological dis-
orders [128]. Propionic acid, a microbial byproduct, is known to cause neuroinflammation
and the over-proliferation of glia in mice offspring born to mothers exposed to propionic
acid throughout pregnancy and weaning [129]. This provides direction as to a mechanism
of action by which inflammation may be caused, as well as neural correlates of its action.

A screening of the gut microbiome of autistic children and their non-autistic siblings
revealed categories of bacteria and fungi that were at different levels in the ASD individu-
als [130]. When these bacteria and fungi were fed to mice, there was a concomitant change
in their behavioral patterns, indicating that the use of certain probiotics may provide some
benefit in autism. A similar study found differences in ASD and non-ASD microbiomes,
and observed that regressed ASD children had higher levels of Proteobacteria [131]. This
link to ASD regression may provide another avenue to explore.

An additional evaluation of mitochondrial metabolism found changes in the energy
pathways in ASD children [132]. When a metabolic analysis was made of cord blood to
look at such parameters at birth, as well as in maternal mid-gestational blood, a machine-
learning analysis found that cord blood was more predictive of ASD and that this was true
for girls and boys [133]. A later study showed that the elevation of a specific cord blood
component, acylcarnitine, was predictive of both ASD and ADHD outcomes [134].

3.3. Mechanistic Insights

Inflammation can alter neural circuitry by affecting synaptic pruning, neuronal con-
nectivity, and neurotransmitter systems, and this may occur due to alterations in the neural
immune system. Genetic predispositions, such as those affecting folate metabolism, may
intensify the brain’s vulnerability to these inflammatory insults. Microglial priming and
sustained cytokine exposure during development may create a neuroimmune environment
conducive to ASD [60,135–139].

3.4. Therapeutic Interventions

Therapeutic intervention to reduce neuroinflammation typically involves reducing
exposure to its causative agents. Given the great diversity of such potential sources, and
the rampant exposure in daily living to most of these agents, such action is likely to
be futile. Some actions can be clearly taken, such as reducing exposure to the agents
that one has control over and seeking medical attention to reduce the risk from illnesses
during pregnancy.

Additionally, where mechanisms are posited for inflammatory action, and when the
impact of such action can be ameliorated, then the use of specific products may provide
benefits. In this regard, with maternal infection, there is a concomitant reduction in N-acetyl
cysteine and taurine, associated with neuroinflammation, due to a decrease in microglial
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cells. Each of these compounds can be supplemented into one’s diet to reduce their impact
on the brain’s immune function to deter fetal injury.

There was a recent report in a mouse model of autism that an extract of basil, Ocimum
basilicum, reduced damage in the pups that were induced by maternal separation and
reduced autism behaviors via the antioxidant and anti-inflammatory properties of the
extract [140]. This opens an avenue to considering other proven antioxidants in an ASD
model. In this regard, the comparison with cancer may be apt, as there are decades of
research identifying the mechanisms of action of antioxidant nutritive extracts on can-
cer cell cultures [5,141]. Some of these may also prove to have an impact in deferring
ASD development.

4. Integrative Perspective: Gene–Environment Interactions in ASD
4.1. Synergistic Effects

Genetic susceptibilities, such as impaired folate transport (described above), may
amplify the effects of environmental insults. For example, exposure to synthetic folic acid
or infections in a child with FOLR1 or RFC polymorphisms may result in a greater risk of
ASD due to insufficient levels of natural folate reaching the brain or the uterus [97,120,139].

4.2. Epigenetic Modifications

Disruptions in folate metabolism may lead to altered DNA methylation and gene
expression, affecting neurodevelopmental outcomes. These epigenetic changes may bridge
the gap between genetic and environmental risk factors.

4.3. Implications for Prevention and Treatment

Screening for CFD in the fetus by testing for parental FRAAs, nutritional support
(including prenatal vitamins with natural folate instead of folic acid), and inflammation-
reducing strategies during pregnancy could reduce ASD risk [43].

The use of machine learning systems to successfully identify ASD in children could
provide much earlier diagnosis [142,143]. Such machine learning provides hope that a
similar system may be devised that can identify future ASD risk during pregnancy.

Personalized approaches considering both genetic background and environmental
exposures hold promise for future interventions. Follow-up on care in early childhood may
successfully identify developing ASD risks and reduce autism severity by treating CFD
and nutritional deficits at earlier ages, as well as by reducing inflammatory stimuli and
reducing widespread neural inflammation.

We project that ASD treatment may parallel other multifactorial disorders, such as
cancer, with a targeted approach to lessen risk and improve neurotypical outcomes, with a
similar goal of extended remission to provide an outcome of raised qualify of life. Given that
such treatment has a lower societal and health maintenance cost and has been demonstrated
to have no deleterious effects, we propose engaging such a model of treatment now.

Figure 3 provides a review of some of the oxidative stress and genetic factors that may
give rise to specific symptoms observed in ASD [43].
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Figure 3. The development of autism spectrum disorder is multifactorial, with factors related to oxida-
tive stress presumably triggering the various symptoms observed. Adapted from Ayoub (2024) [43].

5. Conclusions
ASD arises from a complex interplay between genetic and environmental factors. The

genetic variants impairing folate metabolism and inflammatory exposures during critical
periods each play significant roles in disrupting brain development. Understanding and
addressing these risk factors through early detection, targeted interventions, and public
health strategies may help reduce the incidence and severity of ASD in future generations.

Identifying the genetic causes and treating their ramifications, such as treating CFD
with levo-leucovorin (the prescribable, pharmacological name of L-folinic acid, which
is a natural, reduced, form of folate), has been shown in multiple clinical trials to make
a substantial difference in resolving the communication difficulties of a young autistic
child [46–48]. It is time to have this become the standard of practice for all ASD children at
the earliest ages.

Addressing inflammation causes can also be accomplished now, focusing on the most
readily addressable ones first. In this way, reducing infections in pregnancy, eliminating
the malnutrition of mothers and children, and finding ways to alleviate stress may have a
lasting impact in reducing the severity of autism. In addition, providing support during
inflammation to help retain immune functioning, such as has been reported by using
N-acetyl cysteine and taurine to replenish their levels when depleted by inflammation,
may be an appropriate next step. It is most important to address the readily resolvable
inflammation causes, specifically stress, malnutrition, and health protection from disease,
now, and to extend efforts to work as a society to reduce the impact of inflammatory agents
such as microplastics and pollution in order to provide the healthiest environment for the
neurotypical brain development in all children, thus building a better and more productive
future for all.
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