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Abstract: The huge advancement in Internet web facilities as well as the progress in computing and
algorithm development, along with current innovations regarding high-throughput techniques, en-
able the scientific community to gain access to biological datasets, clinical data and several databases
containing billions of pieces of information concerning scientific knowledge. Consequently, during
the last decade the system for managing, analyzing, processing and extrapolating information from
scientific data has been considerably modified in several fields, including the medical one. As a
consequence of the mentioned scenario, scientific vocabulary was enriched by novel lexicons such as
machine learning (ML)/deep learning (DL) and overall artificial intelligence (AI). Beyond the termi-
nology, these computational techniques are revolutionizing the scientific research in drug discovery
pitch, from the preclinical studies to clinical investigation. Interestingly, between preclinical and
clinical research, translational research is benefitting from computer-based approaches, transforming
the design and execution of translational research, resulting in breakthroughs for advancing human
health. Accordingly, in this review article, we analyze the most advanced applications of AI in
translational medicine, providing an up-to-date outlook regarding this emerging field.
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1. Introduction

Nowadays, artificial intelligence (AI), as well as the related specialties of machine
learning (ML) and deep learning (DL), are rapidly gaining traction in many sectors, includ-
ing the scientific (e.g., healthcare), with the potential to transform lives and improve patient
outcomes in various fields of medicine. Accordingly, AI companies attracted approxi-
mately USD 40 billion worldwide in unveiled investment in 2019 alone [1], reaching USD
232 billion by 2025 [2]. Regarding the scientific areas, these revolutionary computer-based
approaches have the potential to revolutionize how clinicians assist patients in clinical prac-
tice (precision medicine, virtual diagnosis, and patient monitoring) as well as how scientists
discover and deliver new drugs and diagnostic tools [3–5]. These pieces of evidence are
also supported by the papers that have been published over the years. In fact, by searching
in PubMed the term “artificial intelligence”, we obtained over 140,000 published papers in
the fields, with a significant increment starting from 2018, testifying that the discipline is of
particular interest worldwide (Figure 1, panel A). Furthermore, by adding the term “trans-
lational medicine” to “artificial intelligence”, we obtained about 2000 publications, with a
marked increase from 2019 (Figure 1, panel B). This basic research highlighted the growing
interest in AI-based techniques in scientific fields, particularly in translational medicine.

Currently, high-throughput procedures such as parallelized sequencing, microscope
imaging, and compound screening are now widely used by academic and biotech/
pharmaceutical researchers, and the number and quality of laboratory data collected
have increased dramatically. These “big data” are used for producing biological insights,
applying ML techniques, granting a better understanding of disease causes, uncovering
new therapy options, and improving diagnostic tools for clinical use [6].
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Figure 1. (A) Output of searching the term “artificial intelligence” on PubMed; (B) Output of search-
ing the term “artificial intelligence” and “translational medicine on PubMed. The search was per-
formed on 14 October 2021 (source PubMed https://pubmed.ncbi.nlm.nih.gov/; accessed on 14 Oc-
tober 2021). 

Currently, high-throughput procedures such as parallelized sequencing, microscope 
imaging, and compound screening are now widely used by academic and biotech/phar-
maceutical researchers, and the number and quality of laboratory data collected have in-
creased dramatically. These “big data” are used for producing biological insights, apply-
ing ML techniques, granting a better understanding of disease causes, uncovering new 
therapy options, and improving diagnostic tools for clinical use [6]. 

In fact, the term AI is defined by US Food and Drug Administration (FDA) as “the 
science and engineering of making intelligent machines”, whereas ML means “an AI tech-
nique that can be used to design and train software algorithms to learn from and act on 
data” [7]. 

Accordingly, the main goal of these advanced technologies is to analyze the big data 
employing computer-based algorithms for extracting valuable information to support de-
cision making [8]. Hence, the application of AI methods enables scientists to manage and 
conduct a broad assortment of tasks, including diagnosis generation and appropriate ther-
apy selection, risk prediction and illness stratification, medical mistake reduction, and 
productivity improvement, among other things [5,9]. In particular, regarding translational 
research, a number of high-throughput assays generate data from many patient samples 
and are acquired into datasets that are in machine-readable format, and hypothetically 
critical variables are discovered by employing an ML-based algorithm. The algorithm 
learns relationships between the variables and may perform intelligent tasks, including 
grouping patients or predicting their outcomes [6]. The role of AI in medicine is summa-
rized in Figure 2. The aspects illustrated in Figure are discussed in Section 2. 

 
Figure 2. Schematic representation of the application of AI/ML in translational medicine. 
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In fact, the term AI is defined by US Food and Drug Administration (FDA) as “the
science and engineering of making intelligent machines”, whereas ML means “an AI
technique that can be used to design and train software algorithms to learn from and act
on data” [7].

Accordingly, the main goal of these advanced technologies is to analyze the big data
employing computer-based algorithms for extracting valuable information to support
decision making [8]. Hence, the application of AI methods enables scientists to manage
and conduct a broad assortment of tasks, including diagnosis generation and appropriate
therapy selection, risk prediction and illness stratification, medical mistake reduction, and
productivity improvement, among other things [5,9]. In particular, regarding translational
research, a number of high-throughput assays generate data from many patient samples
and are acquired into datasets that are in machine-readable format, and hypothetically crit-
ical variables are discovered by employing an ML-based algorithm. The algorithm learns
relationships between the variables and may perform intelligent tasks, including grouping
patients or predicting their outcomes [6]. The role of AI in medicine is summarized in
Figure 2. The aspects illustrated in Figure are discussed in Section 2.
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According to one description, ML is “the fundamental technology required to mean-
ingfully process data that exceed the capacity of the human brain to comprehend” [10]. A
large number of data points is used to train ML computer-based models. Existing infor-
mation about specific data items and relationships between data elements is learned via
repeated cycles of mapping between inputs and outputs, rather than being explicitly coded
into the model. Therefore, cooperation between ML and clinical specialists is critical, and

https://pubmed.ncbi.nlm.nih.gov/
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there are many computational approaches that include various degrees of clinical experi-
ence into model parameters [11]. Currently, the generation of ML models is mainly grouped
into four categories: supervised learning, unsupervised learning, semi-supervised learning,
and reinforcement learning. Briefly, the output labels, such as a disorder, are known in
advance in supervised ML models. In fact, the objective is to generate a computational tool
for predicting an output from a set of input data (i.e., the output is usually termed a target
value, response variable, or label, while inputs are termed predictors or features). The
method “learns” the best model by analyzing the data contained in the training set, which
include many observations, each of which holds values for its characteristics as well as its
label. Additionally, there are two kinds of supervised ML: classification and regression. In
the classification, the output variable is divided into categories, such as “present” or “ab-
sent”, “disorder” or “no-disorder”, or “grading” (Grade1, Grade2, etc.), while in regression
the output variable is an actual value, such as “weight”, “dose”, or “concentration” (IC50,
EC50, TC50, etc.) for performing predictions on novel samples. Such ML may be employed
in medical imaging in a variety of areas, including radiology, pathology, and other imaging
fields, as well as in epidemiology. Recently, with the outbreak of the COVID-19 pandemic,
some ML approaches have been applied for predicting the infection rate, starting from an
epidemiology dataset [12], as well as from environmental conditions [13]. Furthermore, in
recent years, supervised ML has also been used in drug discovery and development [14–16].
These approaches employing supervised ML are valuable, but they must be approached
with prudence because they need huge and reliable data sets containing high-quality data
to become accurate, and the data must be correctly categorized [17].

On the other hand, unsupervised ML models aim to identify relationships in data that
we would not see otherwise. In particular, there are no labels on the data sets, but they
do contain features. As a result, the unsupervised ML algorithm must produce groups
and classes based on data set similarities. Unsupervised ML, in contrast to supervised ML,
predicts unknown outcomes, uncovering previously undiscovered patterns.

Unsupervised ML is exemplified through clustering. This latter is the process of
dividing data into various groups or clusters. Accordingly, when the exact information
about the clusters is unknown, we can utilize unsupervised ML to cluster them [18]. Various
scientific fields benefit from the application of unsupervised ML. For instance, in a recent
report, the unsupervised ML technique was applied for identifying subjects showing a high
likelihood of dementia in a population-based survey, with no need of a medical diagnosis
of dementia in the subsample [19]. Another study investigated healthcare professionals’
feelings toward a digital simulator, technology, and mentality for elucidating their effects
on neonatal resuscitation performance in simulation-based assessments [20]. In general
pathology, unsupervised ML is becoming a crucial tool for accelerating the transition
to autonomous pathological tissue analysis [21]. In another study, an unsupervised ML
approach was used to discover patient clusters established by genetic signatures [22].
Additionally, in this case, in drug discovery and development, unsupervised ML has
been successfully applied in atomistic simulations or to understand the comportment of
chemicals (e.g., drugs) as well as materials [23]. Recently, in a randomized clinical study,
unsupervised ML was applied to cluster septic patients to determine optimal treatment
(NCT03752489). To further clarify the difference between supervised and unsupervised ML
models, a supervised ML model can be used to identify which subjects will develop a given
disorder, a known entity, while an unsupervised ML model will be able to identify unknown
subgroups of patients suffering from a given pathology since unsupervised models assume
that the output labels are unknown. Most of the computer-based models incorporated
into clinical workflows, as clinical decision support, are supervised ML models. For
improving the performances of ML models, unsupervised and supervised ML can be
combined into semi-supervised ML (Figure 3). Ma and colleagues successfully reported
a combination of the two strategies for phenotyping complex diseases. They applied
this technique to obstructive sleep apnea, highlighting that the phenotyping framework
constructed by combining unsupervised and supervised ML techniques can be employed
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for other heterogeneous, complex diseases to phenotype patients, distinguishing significant
features for high-risk phenotypes [24]. Omta and coworkers, by combining unsupervised
and supervised ML-based tools, showed that they have a great capacity to increase the
capability of detecting new knowledge in functional genomics screening. Firstly, they
applied unsupervised exploratory ML models to the dataset to gain better insight into the
quality of the data. This latter approach enhances the selection and labeling of data for
establishing reliable training sets prior to applying ML. For demonstrating the validity of
the approach, they used a high-content genome-wide small interfering RNA (siRNA) screen.
By applying unsupervised ML models, they easily identified four robust phenotypes that
were consequently used as a training set for developing a high-quality random forest (RF)
ML tool for differentiating four phenotypes (accuracy = 91.1%; kappa = 0.85). The reported
approach significantly improved the ability to obtain novel information from a screening
compared with the usage of unsupervised ML techniques alone [25].
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However, it is important to highlight that the accuracy of these analyses is strongly
dependent on the quality of the training sets employed to generate ML models.

Finally, the reinforcement ML method allows the computational tool to learn from its
failures, generating an algorithm based on what it has learned. Thus, this learning is con-
structed upon the trial-and-error process [26]. In the scientific field, for example, different
tasks can include training an algorithm to understand the treatment regimens of medical
registry data and to find the optimal strategy for treating patients with chemotherapy. A
recent study reported the successful use of a reinforcement ML model for establishing
an effective formulation of clinical trial dosing. The algorithm was trained with proper
dosing regimens for reducing tumor diameters in patients treated by means of chemother-
apy and radiation [27]. In Figure 3 is reported a schematic illustration of the mentioned
ML approaches.

This brief excursion about the different ML techniques and how they can be applied
to scientific fields, for improving and enhancing the understanding of complex systems,
highlights the potential of ML methods. To this end, there is growing attention being
paid to the application of these methodologies in the framework of translational medicine,
enhancing the ability of translational scientists to provide novel effective treatments and
diagnostics for healthcare. In this paper, we analyze the most advanced AI/ML methods
applied to translational medicine that can learn from a range of big data sets produced
in the lab and be utilized for accomplishing jobs that are difficult for human scientists. In
particular, we report AI/ML, the most relevant and innovative approaches in different
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areas of medicine, with a particular focus on (a) drug discovery and development and
(b) imaging, biomarkers, diagnosis, and disease progression.

2. Artificial Intelligence (AI) and Machine Learning (ML) in Translational Medicine
2.1. Drug Discovery and Development, and Drug Target Prediction
2.1.1. Drug Discovery and Development

Beyond the classical computational approaches in drug discovery, such as ligand-
(mainly QSAR methods and pharmacophore modeling) [28–34] and structure-based strategies
(mainly based on molecular docking and molecular dynamics) [35–43] or a combination of
them [44–49], currently these computational methods are integrated with ML technologies for
improving the reliability of the calculation, avoiding false positive outcomes and enhancing
the success ratio in identifying safer hit compounds. Some examples are represented by
QSAR-ML models [50–53], and multi- and combi-QSAR approaches [54–60]. Furthermore,
in the drug discovery field, advanced computational models, based on ML technology,
have demonstrated strong potential in selecting effective hit compounds [61–68]. More-
over, ML-based approaches represent a valuable resource also in the drug repurposing
field [69,70]. Interestingly, these approaches have provided potential drugs for treating
COVID-19 in a short time [71,72]. Currently, protein structural modeling and design,
as well as protein structure prediction, which can increase the proficiency in the drug
discovery pipeline, are emerging areas of application of ML models [73–76]. In fact, ML
methods offer a theoretical framework for identifying and prioritizing bioactive molecules
possessing suitable pharmacological profile, as well as optimizing them as drug-like lead
compounds before clinical investigation [68]. Generally, three steps allow the development
of a computational protocol enabling ML-based models: (a) the selection of appropriate
descriptors for capturing crucial features of compounds involved in the study; (b) the
selection of a suitable metric or scoring system for comparing the set of molecules; (c) a
proper ML-based technique for determining the characteristic traits of the features that help
to qualitatively or quantitatively discriminate active molecules from inactive ones [77,78].
ML/DL approaches suitable in the drug discovery field include RF, Artificial Neural Net-
works (ANN), Deep Neural Networks (DNN), Graph Convolutional Neural Networks
(GCNN), Convolutional Neural Networks (CNN), Naïve Bayesian techniques, Multiple
Linear Regression (MLR), natural language processing (NLP), decision trees (DT), Logis-
tic Regression (LR), Linear Discriminant Analysis (LDA), Multi-Layer Perceptron (MLP),
Probabilistic Neural Networks (PNN), k-nearest neighbors (k-NN), and Support Vector
Machine (SVM), only considering some of them in the context of ML [77,79,80].

Briefly, we report some successful and representative examples in which ML-based
methods enable the discovery of interesting hit compounds against different targets (Table 1).
Vignaux and colleagues used publicly available data in ChEMBL (https://www.ebi.ac.uk/
chembl/; accessed on 14 October 2021) [81] for building and validating Bayesian ML models
for Alzheimer’s disease (AD) drug targets. The first selected target was glycogen synthase
kinase 3 beta (GSK-3β), a well-established protein for the design of anti-AD drugs. GSK-
3β is a proline-directed serine–threonine kinase able to phosphorylate the microtubule-
stabilizing tau protein. The process causes dissociation of the microtubule, forming insol-
uble oligomers that are the constituents of neurofibrillary tangles detected in AD brains.
The authors developed and validated a Bayesian ML (supervised ML) model for GSK-3β
considering 2368 compounds (cross validation, receiver operating characteristic (ROC)
curve = 0.905). Hence, the developed computational tool was used for virtually screening
a chemical library containing FDA-approved and investigational drugs. Experimental
validation showed that following this protocol, the authors selected a series of struc-
turally different GSK-3β inhibitors. Among the retrieved active compounds, a selective
small-molecule inhibitor (ruboxistaurin, CHEMBL91829), showing activity against GSK-3β
(IC50 = 97.3 nM) and GSK-3α (IC50 = 695.9 nM), deserves particular attention. This interest-
ing approach highlights the valuable help of ML for accelerating the drug discovery process
for finding effective AD therapeutic agents [63]. Fang and coworkers combined Bayesian
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ML and recursive partitioning (RP) algorithms for building classifiers to predict the activity
of molecules on 25 crucial cellular targets in AD (18,741 active compounds for the selected
targets from bindingDB database, https://www.bindingdb.org/bind/index.jsp; accessed
on 14 October 2021) applying a multitarget quantitative structure–activity relationships
(multi-QSAR) approach. The authors started to describe the selected molecules with two
types of fingerprint descriptors, namely, ECFP6 and MACCS; afterwards, they built one
hundred classifiers. The performance was assessed by internal and external validation
(area under the ROC curve for the test sets 0.741–1.0, average 0.965). The obtained values
are indicative of robust models. The validated computational tools were used for predict-
ing the possible targets for six approved anti-AD drugs and 19 known active molecules
within the AD framework. The experimental validation confirmed the prediction out-
comes, with the identification of various multitarget-directed ligands (MTDLs) against
AD (seven acetylcholinesterase (AChE) inhibitors (IC50 = 0.442–72.26 µM); four histamine
receptor 3 (H3R) antagonists (IC50 = 0.308–58.6 µM)). Among the retrieved active com-
pounds, the best MTDL, namely, DL0410, showed a dual cholinesterase inhibitor behavior
(IC50 AChE = 0.442 µM; IC50 butyrylcholinesterase (BuChE) = 3.57 µM). Moreover, DL0410
behaved as a H3R antagonist, showing an IC50 of 0.308 µM. Remarkably, the selected
work could have implications in MTDL research against other disorders [82]. Remain-
ing in the AD context, Rodriguez and colleagues reported the development of DRIAD
(Drug Repurposing In AD), an ML-based strategy for quantifying possible relationships
between the pathology of AD severity (the Braak stage) and molecular mechanisms as
determined in records of gene names. Authors applied DRIAD to lists of genes arising
from perturbations in differentiated human neural cells by using 80 FDA-approved and
investigational drugs, identifying potential drugs for repurposing. The top-ranked drugs
were experimentally evaluated against their targets. Interestingly, the results show that
33 FDA-approved drugs can be used for repurposing immediately. Notably, these selected
drugs, after the supplementary validation and identification of significant pharmacody-
namic biomarkers, could be directly investigated in human clinical trials [69]. Considering
another neurodegenerative disorder, such as Parkinson’s disease (PD), Shao and collabora-
tors described an integrated computational platform based on two in silico methods. The
ML approach was represented by SVM models coupled with Tanimoto similarity-based
clustering analysis (135 compounds in total, 96 from A2A and 39 from D2). Following
this strategy, the authors investigated the possibility to identify molecules possessing an
indole–piperazine–pyrimidine scaffold, able to modulate human adenosine receptor A2A
and human dopamine receptor D2 subtypes. They identified two compounds that behaved
as multifunctional ligands against human A2A (Ki = 8.7 and 11.2 µM) and D2 receptors
(EC50 = 22.5 and 40.2 µM). Furthermore, the retrieved hit compounds did not show any
mutagenicity (up to 100 µM), cardiotoxicity, or hepatotoxicity (up to 30 µM) issues, and
one molecule improved the movement and mitigation concerning the loss of dopaminergic
neurons in Drosophila models of PD [83]. In the same field, Michielan and coworkers
reported a different application of the SVM and Support Vector Regression (SVR) meth-
ods for describing A2A versus A3 receptor subtype selectivity profiles, as well as related
binding affinities. The authors implemented an integrated application of the SVM–SVR
method, constructed on the usage of molecular descriptors encoding for the molecular
electrostatic potential (autoMEP). In this way, the computational tool can simultaneously
distinguish A2A versus A3 receptor antagonists, predicting their binding affinity to the cor-
responding receptor subtype of a huge dataset composed of pyrazolo–triazolo–pyrimidine
derivatives. The in silico approach was experimentally validated by synthesizing 51 novel
pyrazolo–triazolo–pyrimidine-containing compounds, which confirmed the predicted
receptor subtype selectivity and related binding affinity profiles [84].

Regarding the anticancer research, Deshmukh and colleagues employed two ML algo-
rithms (SVM and RF) for generating four classification models, considering a large amount
of PubChem bioassay data and probable human Flap endonuclease1 (FEN1) inhibitors and
non-inhibitors (the training set contained 1163 FEN1 inhibitors and 281,583 non-inhibitors;
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the test set 388 inhibitors and 93,861 non-inhibitors). FEN1 is a crucial protein concern-
ing DNA replication and repair processes. Accordingly, the inhibition of Flap cleavage
action results in increased cellular sensitivity to DNA-damaging agents (e.g., cisplatin,
temozolomide), with the possibility of improving cancer prognosis. Since FEN1 is overex-
pressed in several kinds of tumors, FEN1 inhibitors could represent efficacious anticancer
agents. For developing the mentioned ML models, the authors used huge, freely acces-
sible, high-throughput screening data regarding small molecules targeting FEN1. The
findings showed that the SVM model with inactive molecules was superior to RF, with
a Matthews’s correlation coefficient (MCC) of 0.67 for the test set. The computational
tool was subsequently used in a virtual screening employing the Maybridge database
(53,000 molecules). Five top-ranked compounds were experimentally validated. In fact,
the selected hit compounds were tested against the enzyme and in the cell-based system.
The molecule JFD00950 behaved as a FEN1 inhibitor in the micromolar range, inhibiting
Flap cleavage activity, Moreover, JFD00950 showed cytotoxic activity against colon cancer
cells (DLD-1, IC50 = 16.7 µM) [85]. The exploration of another drug target for developing
anticancer drugs was performed by Zhang and colleagues. They investigated a promising
target for cancer immunotherapy, the indoleamine 2,3-dioxygenase (IDO). The authors
generated ML models using naïve Bayesian and RP techniques, considering a library
of established IDO inhibitors (504 compounds, 242 active compounds and 262 inactive
compounds). For building the models, they used descriptors employing 13 molecular
fingerprints for predicting IDO inhibitors. Model performances were evaluated in silico,
showing that the Q values of the top 10 models are greater than 0.76, the MCC values are
greater than 0.53, and the values of the area under the ROC curve are greater than 0.89. The
best-performing ML computational tool was employed in a virtual screening campaign
using a proprietary chemical library. This step provided 50 potential IDO inhibitors that
were experimentally validated. In vitro tests confirmed the prediction provided by the ML
model, since three new IDO inhibitors, belonging to the tanshinone family, were identified
(IC50 = 1.30, 4.10, and 4.68 µM) [86]. Kang and coworkers attempted to target vascular
endothelial growth factor receptor 2 (VEGFR-2), a well-established target for developing
anticancer compounds with anti-angiogenic activity. The authors developed an ML model
using the naïve Bayesian technique coupled with a molecular docking calculation, ob-
taining a virtual screening protocol that was used to identify VEGFR-2 inhibitors using
a chemical library containing FDA-approved drugs. The most promising naïve Bayesian
model, developed considering 3464 VEGFR-2 inhibitors, showed an MCC of 0.966 and
0.951 considering the test set and external validation set, respectively. Accordingly, using
the developed computational model, 1841 FDA-approved drugs were screened and subse-
quently submitted to a molecular docking calculation employing LibDock. The outcome of
virtual screening provided nine top-ranked drugs showing an EstPGood value ≥ 0.6 and
LibDock Score ≥ 120, which were submitted for biological evaluation. VEGFR-2 kinase test
results show that papaverine, rilpivirine, and flubendazole were able to inhibit VEGFR-2
(IC50s = 0.47–6.29 µM). Notably, the integrated screening platform provided three FDA-
approved drugs as new VEGFR-2 inhibitors, that can be rapidly translated into clinical
studies [87]. Montanari and coworkers applied four distinct ML algorithms to train the
model (LR, naïve Bayesian, SVM, and RF) for identifying novel agents acting as breast can-
cer resistance protein (BCRP) inhibitors. BCRP is involved in multidrug resistance (MDR)
events, thus emerging BCRP inhibitors for increasing the concentration of antitumor agents
into resistant cancer cells has been proposed as a valuable tactic for overcoming MDR. The
developed model, using 433 inhibitors and 545 noninhibitors, was validated, showing good
predictivity in cross-validation (area under ROC curve = 0.9) and satisfactory predictivity in
prospective validation (area under ROC curve = 0.7). Subsequently, the computational tool
was employed in a virtual screening approach using the drug library (1702 compounds).
Following this strategy, the authors identified 10 drugs as potential BCRP inhibitors to
submit for biological evaluation (inhibition of mitoxantrone efflux in BCRP-expressing
PLB985 cells). Among the drugs tested, two of them behaved as BCRP inhibitors (cisapride



Int. J. Transl. Med. 2021, 1 230

and roflumilast, IC50 = 0.4 µM and 0.9 µM, respectively) [88]. Allen and collaborators
used an ML model, based on Laplacien-modified naïve Bayesian classifiers developed
considering topological fingerprints, in a virtual screening campaign employing a large
database (eMolecules > 6 million compounds) for selecting dual kinase/bromodomain
(EGFR/BRD4) inhibitors. Two ML models for EGFR were developed considering extended
connectivity fingerprints (ECFP4) based on a total of 591,744 unique kinase compounds:
one with 3058 active molecules characterized by a pIC50/pKi ≥ 7, and another with 4785 ac-
tive compounds with pIC50/pKi ≥ 6. The two developed models showed exceptional area
under the ROC curve values of 0.98 to 0.99 based on a 50/50 training/test set and assessed
by employing leave-one-out cross-validations. The enrichment factors considering 1%
of the dataset were 78 and 66, respectively. The ML model for kinase was coupled with
a structure-based technique regarding the bromodomain. This computational protocol
allowed the identification of various BRD4 inhibitors. Among them, a first-in-class dual
EGFR–BRD4 inhibitor (compound 2870) was found (EGFR IC50 = 44 nM; ERBB2, ERBB4,
and BRD4 IC50 = 8.73, 24.2, and 9.02µM, respectively) [89].

In the field of parasitic and neglected tropical diseases, ML-based approaches can be
useful for identifying novel effective therapeutic agents, as recently reported [90]. Here,
we only highlighted the representative works explicative of the mentioned technology.
Keshavarzi Arshadi and colleagues developed an ML model based on a GCNN algo-
rithm. GCNN has demonstrated strong accuracy for predictions concerning the chemical
properties of molecules. These ML-based computational models transform the molecules
into graphs and learn higher-level abstract representations of the input solely based on
the data [91]. In the above-mentioned research, GCNN represent the core of a new AI
platform called DeepMalaria, with the aim to speed up the antimalarial drug discovery.
The characteristic capacities of GCNNs are employed for implementing a virtual screening
pipeline. A graph-based model was trained on 13,446 potential antimalarials contained
in the GlaxoSmithKline database. The developed model was validated by predicting hit
molecules from an additional chemical collection and an FDA-approved drug database.
The molecules were also tested by employing in vitro tests for validating the ML-based
model. DeepMalaria identified all molecules, showing nanomolar activity and 87.5% of the
chemicals having a greater percentage of inhibition (>50%). Additional tests to uncover
the mechanism of action of compounds showed that one of the hit molecules, DC-9237,
not only inhibits all asexual stages of Plasmodium falciparum, but is a fast-acting molecule,
making it a robust drug candidate to be optimized [92]. Furthermore, a very interesting
ML-based approach was reported by Stokes and collaborators regarding the application of
the DL method for the discovery of novel antibiotic agents. Due to the tremendous impact
of antibiotic resistance in clinical practice, there is an urgent need for novel chemicals able
to inhibit multidrug resistance bacteria [93]. In the mentioned work, the scientists trained a
DNN model, using a dataset of 2335 molecules, for identifying compounds possessing a
broad-spectrum antibacterial profile. The obtained computational tool exhibited an area un-
der the ROC curve of 0.896 considering the test data. As a result, the authors employed the
model for screening various chemical libraries. From this screening step, they identified an
existing drug, namely, halicin (SU-3327, developed for inhibiting c-June N-terminal kinase
(JNK)). Remarkably, the structure of this compound is totally different from classical antibi-
otic agents. Moreover, halicin was demonstrated to possess interesting bactericidal activity
in vitro as well as in vivo. The characterization of the mechanism of action as an antibiotic
revealed that halicin can dissipate the transmembrane ∆pH potential in bacteria, and it was
found to be effective against M. tuberculosis. Moreover, the developed ML model was used
to screen over 100 million compounds belonging to the ZINC15 database. This additional
screening provided eight further antibacterial agents, chemically unrelated to well-known
antibiotics. Among them, two compounds (ZINC000100032716 and ZINC000225434673)
showed strong broad-spectrum activity and overcame a range of frequent resistance factors.
This approach was the first effective experiment regarding the application of DNN for
drug repurposing and for discovering new drug lead compounds. The findings indicate
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that ML approaches can be relevant for identifying novel antibiotic agents, counteracting
the dissemination of resistance, decreasing the assets required for discovering these com-
pounds, and reducing the associated costs [94]. In another investigation, Li and colleagues
generated ML models, employing naïve Bayesian and RP techniques, based on physico-
chemical descriptors and structural fingerprints (137 DNA gyrase inhibitors with an IC50
ranging from nanomolar to high micromolar), aimed at identifying novel DNA gyrase
inhibitors to develop broad-spectrum antibacterial agents, bacterial DNA gyrase not being
expressed in eukaryotic cells. The overall predictive accuracy, considering the training
and test sets, was greater than 80%. The authors used eleven promising ML models for
the virtual screening of a chemical library. The potential hits, selected by virtual screening,
were experimentally validated against Escherichia coli, methicillin-resistant Staphylococcus
aureus and other bacteria, and DNA gyrase. For compounds able to inhibit DNA gyrase,
MIC values range between 1 and 32 µg/mL, and the relative inhibition rates of inhibitors
range from 42% to 75% at 1 µM [95].

In the context of antiviral research, Ekins and collaborators developed a Bayesian
ML model considering viral pseudotype entry assay and the Ebola virus replication assay
data (868 molecules). The developed model was submitted to an internal and external
validation step (area under ROC curve greater than 0.8). The scientists employed this
model in a virtual screening campaign using the MicroSource library of drugs, for select-
ing possible antiviral compounds. Among the retrieved potential hit compounds, three
promising antiviral candidates were found (quinacrine, pyronaridine, and tilorone were
experimentally validated with an EC50 = 350, 420, and 230 nM, respectively, against Ebola
virus replication). Notably, pyronaridine is an element of a combination therapy for malaria
recently approved by the European Medicines Agency (EMA); consequently, it could be
immediately used for clinical testing. Additionally, this study highlighted how ML models
can be used for speeding up the preclinical step of the drug discovery trajectory, providing
drugs for translational research [96].

Remarkably, ML approaches, especially based on reinforcement learning, can be
useful for developing models that can also be applied for the de novo design of small
molecules possessing desired pharmacological profiles [97–99]. Briefly, we report some
representative attempts to apply this methodology to this task. Recently, Zhavoronkov
and coworkers reported the development of a deep generative model, namely, generative
tensorial reinforcement learning (GENTRL), useful for de novo small molecule design,
acting as inhibitors of discoidin domain receptor 1 (DDR1) kinase, which is involved in
fibrosis and further disorders. To develop GENTRL, the authors combined reinforcement
learning, variational inference, and tensor decompositions into a generative two-step ML
algorithm. In the first step, the scientists mapped the chemical space, a set of discrete
molecular graphs, to a continuous space of 50 dimensions, parameterizing the structure of
the learned manifold in the tensor train format to utilize partly well-known features. The
computational model was generated using six data sets: (i) a big set of compounds from
ZINC database; (ii) known inhibitors of DDR1 kinase; (iii) common kinase inhibitors (posi-
tive set); (iv) compounds active against non-kinase target proteins (negative set); (v) patent
data of pharmaceutical companies regarding biologically active compounds; and (vi) 3D
structures for DDR1 inhibitors. In the second step, they explored the mapped chemical
space with reinforcement learning for the discovery of novel molecules against a selected
target. The results show that GENTRL is capable of optimizing synthetic accessibility,
novelty, and bioactivity. In the reported paper, GENTRL allowed the indication of several
compounds for the synthesis, and the authors synthesized six lead compounds. These latter
were experimentally evaluated for their inhibitory potential against DDR1. Notably, two
molecules strongly inhibited DDR1 activity (IC50 = 10–21 nM), the other two compounds
showed moderate potency (IC50 = 0.278–1µM), while the remaining two molecules were
found to be inactive. Moreover, the best-performing compounds demonstrated good selec-
tivity against DDR1 over DDR2, and one was highly selective against a panel of 44 diverse
kinases. Interestingly, these two compounds inhibited the induction of fibrotic markers (α-
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actin and CCN2) in MRC-5 lung fibroblasts. These chemical entities were able to inhibit the
expression of collagen (a hallmark of fibrosis) in LX-2 hepatic stellate cells [100]. McCloskey
and coworkers, in an interesting approach, described an effective ML platform aimed at
accelerating the drug discovery pipeline considering DNA-encoded small molecule library
(DEL) selection data. Two types of ML models were trained on the DEL selection data for
classifying molecules (over 2000): RF and GCNN. ML models were trained on the aggre-
gated selection data (using no prior off-DNA activity measurements). The computational
tool was applied to three drug targets (sEH (a hydrolase), ERα (a nuclear receptor), and
c-KIT (a kinase)) and used in the virtual screening of large chemical databases (~88 million
compounds). The outcomes revealed that the technique is efficient, with a global hit rate of
~30% at 30 µM, discovering powerful compounds (IC50 < 10 nM) for each drug target [101].
Lastly, a novel ML approach based on DL and reinforcement learning for the de novo design
of small molecules with desirable profiles was presented by Popova and coworkers. This
computational tool, named ReLeaSE (Reinforcement Learning for Structural Evolution),
combines two DNNs (generative and predictive) that are trained independently, although
are employed together for generating new focused chemical libraries. The methodology
was separated into two phases, in the first one, a supervised learning algorithm was em-
ployed for a separate training of generative and predictive models. The second phase
consisted of a joint training of both models with the reinforcement learning methodology
to bias the generation of new chemicals showing the desired physical and biological profile.
In the work, the authors applied ReLeaSE for generating a series of libraries containing
chemical entities with a precise profile: (a) satisfactory drug-likeness, regarding physchem
properties, for which the authors chose Tm and n-octanol/water partition coefficient (logP);
(b) desired biological activity, for which the authors selected Janus protein kinase 2 (JAK2)
as the target protein; and (c) novel chemotypes with significant chemical complexity, that
should guarantee a higher selectivity against the selected target. In particular, the number
of benzene rings and substituents was employed as a structural reward for designing
focused libraries enclosing chemically complex molecules [97].

2.1.2. Drug Target Prediction and Biomarker Identification

Noteworthy is that in addition to the previously discussed ML approaches to identify
promising drug candidates, AI techniques are also emerging in drug target prediction,
with remarkable success. For instance, in the field of neurodegenerative disorders, we
report here significant progress in ML approaches applied to drug target identification
in the drug discovery/drug repurposing field (Table 2). In fact, a computational model
based on DL methodology, namely, deepDTnet was successfully used in a repurposing
approach, providing interesting hints for treating multiple sclerosis [102]. DeepDTnet
was conceived for identifying novel drug targets and for drug repurposing, considering
the heterogeneous drug–gene–disease network, embedding fifteen categories of chemical,
genomic, phenotypic, and cellular network profiles. DeepDTnet was generated using
732 FDA-approved drugs for training. Subsequent validation analysis showed that deep-
DTnet was accurate in identifying innovative cellular drug targets for marketed drugs (area
under the ROC curve = 0.963). The experimental validation was performed considering the
output of topotecan (a topoisomerase-I inhibitor), a chemotherapeutic agent approved to
treat various forms of cancer, such as lung and ovarian cancer [103–105]. In fact, topotecan
was predicted by deepDTnet as an inhibitor of the human retinoic-acid-receptor-related
orphan receptor-gamma t (ROR-γt), a promising drug target for treating different disorders
including psoriasis, multiple sclerosis, and rheumatoid arthritis [106,107]. According to the
computational output, topotecan was found to inhibit ROR-γt (IC50 = 0.43 µM) and notably
showed potential therapeutic effects in multiple sclerosis, being effective in reverting the
pathological phenotype in vivo in the EAE mouse model at 10 mg/kg [102]. Madhukar
and colleagues, in the framework of drug target identification, developed a Bayesian ML
algorithm, namely, BANDIT (Bayesian ANalysis to determine Drug Interaction Targets).
This computer-based tool combines various kinds of data for predicting drug targets (e.g.,
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20 million data points derived from six diverse types of data, such as drug efficacy, post-
treatment transcriptional response, drug structure, described undesirable effects, bioassay
results, and well-established targets). Using over 2000 compounds, BANDIT showed an
accuracy of ~90% in identifying correct targets. Next, the authors used this computational
platform employing over 14,000 molecules for which any target was known. The results
show that the ML-based tool produced ~4000 undisclosed molecule target predictions.
Considering the most promising data, the authors validated fourteen molecules predicted
as microtubule binders. Among this subset, three compounds were highlighted for their
activity against resistant tumor cells. Experimental validation fully supported the BANDIT
predictions. Moreover, BANDIT was applied to ONC201 (anticancer agents in clinical
development with an unknown target). The development algorithm predicted ONC201
as an antagonist of the D2 receptor. The target was validated confirming the prediction,
and currently this hint derived from the mentioned studies was the basis for designing
an appropriate clinical trial using ONC201. ONC201 will be evaluated for its efficacy
in pheochromocytomas, a rare cancer in which was observed an overexpression of D2
receptor (NCT03034200). Lastly, BANDIT identified linkers among distinct classes of drugs,
revealing undisclosed clinical observations, highlighting novel possibilities for drug re-
purposing. According to these findings, BANDIT is a useful screening platform that can
efficiently speed up the drug discovery process, accelerating translational research toward
clinical application [108]. Dezső and Ceccarelli reported the development of an ML-based
approach for scoring proteins for generating a druggability score of novel unidentified drug
targets. The authors included in the ML model 70 features obtained from drug targets (e.g.,
features indicating protein functions, features extracted from the sequence, and network
features obtained from the protein–protein interaction network). They generated 10,000 ML
models based on the RF algorithm using a training set built considering drug targets in
complex with marketed drugs (102 targets), and a “negative” set enclosing 102 non-drug
targets. The developed ML models were able to detect relevant combinations of included
features, discriminating drug targets from non-pharmacological targets. The approach was
validated using an external test set of clinically relevant drug targets (277 targets). The
validation results showed a significant accuracy, accounting for an area under the ROC
curve of 0.89. The authors further validated their predictions using an independent set
of clinical drug targets, attaining a high accuracy, as indicated by an area under the ROC
curve of 0.89. The output reported in this work provided new potential drug targets for
developing innovative anticancer drugs [109].
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Table 1. Main examples of AI/ML in the drug discovery and development field.

AI Technique Target Dataset Statistical
Parameters Outcomes Ref

Bayesian ML models GSK-3β
AD 2368 compounds Cross-validation, ROC curve = 0.905

Virtual screening found ruboxistaurin
(CHEMBL91829) as GSK-3β (IC50 = 97.3 nM) and

GSK-3α (IC50 = 695.9 nM) inhibitor
[63]

Bayesian ML and RP algorithms for
developing a multi-QSAR approach 25 crucial cellular targets in AD 18,741 active compounds against

the selected targets

Internal and external validation (area
under the ROC curve for the test set

0.741–1.0, average 0.965)

Identification of various MTDLs against AD
(seven AChE inhibitors (IC50 = 0.442–72.26 µM);

four H3R antagonists (IC50 = 0.308–58.6 µM). The
best performing MTDL (DL0410) showed a dual

cholinesterase inhibitor behavior
(IC50 AChE = 0.442 µM; IC50 BuChE = 3.57 µM),

and behaved as a H3R antagonist
(IC50 = 0.308 µM)

[82]

ML-based approach DRIAD for drug repurposing
in AD

DRIAD was applied to find
relationships between the

pathology of AD severity (the
Braak stage) and molecular

mechanisms as determined in
records of gene names by using

80 FDA-approved and
investigational drugs

Model performance was evaluated
through leave-pair-out

cross-validation, area under the ROC
curve ranging from 0.6 to 0.8

33 FDA-approved drugs can be used for
repurposing immediately [69]

SVM models coupled with Tanimoto
similarity-based clustering analysis

A2A and D2 receptor subtypes as
targets for PD

135 compounds (96 from A2A
and 39 from D2) Experimental validation

Virtual screening of over 13.5 million compounds
from PubChem and MDDR databases.

Two compounds behaved as multifunctional
ligands against human A2A (Ki = 8.7 and 11.2 µM)

and D2 receptors (EC50 = 22.5 and 40.2 µM)

[83]

SVM and SVR

PD drug discovery A2A vs. A3
receptor subtype selectivity

profiles and related
binding affinities

For SVM, 104 selective N7- and
N8-substituted

pyrazolo–triazolo–pyrimidine
analogs. For SVR, 104

N8-substituted
pyrazolo–triazolo–pyrimidine

derivatives.
A test set of 51 N8-substituted
pyrazolo–triazolo–pyrimidine
analogs to validate both SVM

and SVR models

LOO-cv
Correct prediction 93.3,

sensitivity 92.0, specificity 94.4

51 novel pyrazolo–triazolo–pyrimidine containing
compounds that confirmed the predicted receptor

subtype selectivity and the related binding
affinity profiles

[84]
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Table 1. Cont.

AI Technique Target Dataset Statistical
Parameters Outcomes Ref

SVM and RF Anticancer drug
discovery—target FEN1

The training set contained
1163 FEN1 inhibitors and

281,583 non-inhibitors; the test
set 388 inhibitors and
93,861 non-inhibitors

For the test set:
sensitivity 0.54, specificity 0.99,

MCC 0.67

The computational tool was used in a virtual
screening employing the Maybridge database

(53,000 molecules). Five top-ranked compounds
were experimentally validated. The molecule
JFD00950 behaved as a FEN1 inhibitor in the
micromolar range, inhibiting Flap cleavage

activity, showing cytotoxic activity against colon
cancer cells (DLD-1, IC50 = 16.7 µM)

[85]

ML models using naïve Bayesian and
RP techniques

Indoleamine 2,3-dioxygenase
(IDO), a promising target for

cancer immunotherapy

The model was trained using a
library of established IDO

inhibitors (504 compounds,
242 active and 262 inactive)

The Q values for the test set of the top
10 models are greater than 0.76, the
MCC values >0.53, the area under

ROC curve >0.89

Virtual screening campaign using a proprietary
chemical library. This step provided 50 potential
IDO inhibitors that were experimentally validated.
In vitro tests confirmed the prediction of the ML

model, since three new IDO inhibitors, belonging
to the tanshinone family, were identified

(IC50s = 1.30, 4.10, and 4.68 µM)

[86]

ML model using naïve Bayesian
technique coupled with a molecular

docking calculation

VEGFR-2, a drug target for
developing anticancer

compounds with
anti-angiogenic activity

The model was trained using
3464 VEGFR-2 inhibitors

MCC of 0.966 and 0.951 considering
the test set and external validation set

Virtual screening protocol for identifying
VEGFR-2 inhibitors using a chemical library

containing 1841 FDA-approved drugs.
Papaverine, rilpivirine, and flubendazole were
able to inhibit VEGFR-2 (IC50 = 0.47–6.29 µM)

[87]

Four distinct ML algorithms to train
the model (LR, naïve Bayesian, SVM,

and RF)

Anticancer drug
discovery—target BCRP

The dataset contained
433 inhibitors and

545 noninhibitors, collected from
47 publications

Cross-validation (area under ROC
curve = 0.9) and predictivity in

prospective validation (area under
ROC curve = 0.7)

Virtual screening approach using a drug library
(1702 compounds). 10 drugs as potential BCRP

inhibitors were identified (inhibition of
mitoxantrone efflux in BCRP-expressing PLB985

cells). Among the drugs tested two of them
behaved as BCRP inhibitors
(cisapride and roflumilast,

IC50 = 0.4 µM and 0.9 µM, respectively)

[88]

ML model, based on
Laplacien-modified naïve Bayesian
classifiers. The ML model for EGFR
was coupled with a structure-based

technique regarding
the bromodomain

Anticancer drug
discovery—target EGFR/BRD4

Two ML models for EGFR were
developed considering ECFP4

based on a total of
591,744 unique kinase

compounds (one with 3058 active
molecules, pIC50/pKi ≥ 7, and

another with 4785 active
compounds, pIC50/pKi ≥ 6).

Area under ROC curve values of 0.98
to 0.99 based on 50/50 training/test
set and assessed employing LOO-cv

Virtual screening campaign employing a large
database (eMolecules > 6 million compounds).
Among them, a first-in-class dual EGFR–BRD4
inhibitor (compound 2870) was found (EGFR

IC50 = 44 nM; ERBB2, ERBB4, and BRD4
IC50 = 8.73, 24.2, and 9.02µM, respectively)

[89]
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Table 1. Cont.

AI Technique Target Dataset Statistical
Parameters Outcomes Ref

ML model based on a
GCNN algorithm

DeepMalaria antimalarial
drug discovery

13,446 potential antimalarials
contained in GSK database

Accuracy from 44.13% in the whole
library to 87.75%. Accuracy of 100%
for all nanomolar active compounds

The developed model was validated by predicting
hit molecules from an additional chemical

collection and a FDA-approved drug database.
DeepMalaria identified all molecules showing

nanomolar activity and 87.5% of chemicals with
greater percentage of inhibition

[92]

DL method
DNN model

Discovery of novel antibiotic
agents, possessing a

broad-spectrum
antibacterial profile

Dataset of 2335 molecules Area under ROC curve of 0.896
considering the test data

Virtual screening of various chemical libraries.
From this screening step, they identify an existing

drug, namely, halicin (SU-3327), showing
interesting bactericidal activity in vitro as well as

in vivo. It was found to be effective against M.
tuberculosis. Virtual screening of ZINC15

(>100 million compounds) provided eight further
antibacterial agents, chemically unrelated to
known antibiotics. ZINC000100032716 and

ZINC000225434673 showed strong
broad-spectrum activity, overcoming a range of

frequent resistance factors

[94]

ML models, employing naïve
Bayesian and RP techniques

DNA gyrase to find
broad-spectrum

antibacterial agents

137 DNA gyrase inhibitors
spanning several orders

of magnitude

The overall predictive accuracy,
considering the training and test sets,

was greater than 80%

ML models used for virtual screening of a
chemical library. The potential hits were

experimentally validated against DNA gyrase, E.
coli, methicillin-resistant S. aureus and other

bacteria. For compounds able to inhibit DNA
gyrase, MIC values range between 1 and

32 µg/mL, and the relative inhibition rates of
inhibitors, range from 42% to 75% at 1 µM

[95]

Bayesian ML model Antiviral research—Ebola virus
868 molecules viral pseudotype
entry assay and the Ebola virus

replication assay data

Cross-validation showed ROC values
greater than 0.8

Virtual screening campaign using the MicroSource
library of drugs, for selecting possible antiviral
compounds. Among the retrieved potential hit

compounds, three promising antiviral candidates
were found (quinacrine, pyronaridine, and

tilorone EC50 = 350, 420, and 230 nM, respectively,
against Ebola virus replication).

[96]

GENTRL
For de novo small molecule
design acting as inhibitors of

DDR1 kinase

The model was generated using
six data sets: (i) molecules from

the ZINC database; (ii) inhibitors
of DDR1 kinase; (iii) common
kinase inhibitors (positive set);
(iv) actives against non-kinase

targets (negative set); (v) patent
data of biological actives; (vi) 3D

structures for DDR1 inhibitors

Experimental validation—GENTRL
allowed indication of several

compounds for the synthesis, and the
authors synthesized six

lead compounds

Two molecules strongly inhibited DDR1 activity
(IC50 = 10–21 nM), the other two compounds

showed moderate potency (IC50 = 0.278–1 µM)
[100]
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Table 1. Cont.

AI Technique Target Dataset Statistical
Parameters Outcomes Ref

ML models
RF and GCNN

Three drug targets (sEH, a
hydrolase, ERα, a nuclear
receptor, c-KIT, a kinase)

Models were trained on the DEL
selection data for classifying

molecules (over 2000)
Experimental validation

Virtual screening of large chemical databases
(∼88 million compounds). The outcomes revealed

that the technique is efficient, with a global hit
rate of ∼30% at 30 µM, discovering powerful

compounds (IC50 < 10 nM) for each drug target

[101]

DL and reinforcement learning DNNs
De novo design of small

molecules with desired profile,
and JAK2 as the target protein

The generative network was
trained with ~1.5 million

structures from the
ChEMBL21 database

Experimental validation

ReLeaSE was successfully applied for generating
a series of libraries containing chemical entities

with a precise profile: (a) satisfactory
drug-likeness, regarding physchem properties, for
which the authors chose Tm and n-octanol/water
partition coefficient (logP); (b) desired biological

activity, for which the authors selected Janus
protein kinase 2 (JAK2) as the target protein

[97]

Abbreviation: A2A—adenosine receptor 2A subtype; A3—adenosine receptor 3 subtype; AChE—acetylcholinesterase; AD—Alzheimer’s disease; BCRP—breast cancer resistance protein; BuChE—
butyrylcholinesterase; D2—dopamine receptor type 2; DDR1—discoidin domain receptor 1; DEL—DNA-encoded small molecule library; DNN—deep neural network; DRIAD—Drug Repurposing In
AD; ECFP4—extended connectivity fingerprints; EGFR—epidermal growth factor receptor; FDA—United States Food and Drug Administration; FEN1—flap endonuclease1; GENTRL—generative tensorial
reinforcement learning; GCNN—graph convolutional neural networks; GSK—GlaxoSmithKline; GSK-3β—glycogen synthase kinase 3 beta; H3R—histamine receptor 3; IDO—indoleamine 2,3-dioxygenase;
JAK2—Janus protein kinase 2; LOO-cv—leave-one-out cross-validation; LR—logistic regression; MCC—Matthews’s correlation coefficient; MIC—minimum inhibitory concentration; ML—machine learning;
MTDLs—multitarget-directed ligands; PD—Parkinson’s disease; QSAR—quantitative structure-activity relationship; ReLeaSE—reinforcement learning for structural evolution; RF—random forest; RP—recursive
partitioning; ROC—receiver operating characteristic; SVM—support vector machine; SVR—support vector regression; VEGFR-2—vascular endothelial growth factor receptor 2.
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Table 2. Main examples of AI/ML in drug target prediction and biomarker identification.

AI Technique Target Dataset Statistical
Parameters Outcomes Ref

DL methodology deepDTnet Multiple sclerosis
DeepDTnet was generated
using 732 FDA-approved

for training

Area under the ROC
curve = 0.963

Topotecan was predicted as an inhibitor of
ROR-γt, (IC50 = 0.43 µM), showing potential

therapeutic effects in multiple sclerosis,
being effective in reverting the pathological
phenotype in vivo in an EAE mouse model

at 10 mg/kg

[102]

Bayesian ML algorithm
BANDIT

Prediction of drug targets
combining various kinds of data

A total of 20 million data
points derived from six

diverse types of data such as
drug efficacy, post-treatment

transcriptional response,
drug structure, described

undesirable effects, bioassay
results, and

well-established targets

Using over 2000 compounds,
BANDIT showed an accuracy of

~90% in identifying
correct targets

BANDIT was validated using
14,000 molecules with no target, producing
~4000 molecule target predictions. Fourteen

molecules were predicted as microtubule
binders and validated in vitro, supporting
the predictions. BANDIT was applied to
ONC201 (anticancer in clinical with no

target). ONC201 was predicted and
validated as a D2 receptor antagonist and

will be evaluated in pheochromocytomas, a
rare cancer overexpressing D2 receptor

NCT03034200

[108]

ML-based approach
RF algorithm

Druggability score of novel
unidentified drug targets

The ML model included
70 features obtained from
drug targets, generating

10,000 ML models using a
training set enclosing
102 complexes drug
targets/drugs, and a

“negative” set enclosing
102 non-drug targets

The ML models discriminated
drug targets. The approach was
validated using an external test

set of 277 clinically relevant drug
targets (area under the ROC

curve of 0.89)

The output reported in this work provided
new potential drug targets for developing

innovative anticancer drugs
[109]

Abbreviation: BANDIT—Bayesian ANalysis to determine Drug Interaction Targets; D2—dopamine receptor type 2; DL—deep learning; FDA—United States Food and Drug Administration; ML—machine
learning; RF—random forest; ROC—receiver operating characteristic; ROR-γt—human retinoic-acid-receptor-related orphan receptor-gamma t.
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2.1.3. AI/ML in Quantitative Systems Pharmacology (QSP)

Following the identification of prospective therapeutic drug targets, analysis must
be performed to validate them. Computational approaches offer affordable, time-saving
strategies to evaluate the likelihood that potential targets could provide an efficient method
for treating a given disorder. Accordingly, a pivotal step in target validation is represented
by the construction of a confidence interval for a given potential therapeutic hypothesis,
employing quantitative systems pharmacology (QSP) models [110]. QSP is a stimulating
and effective conjunction of biological pathways, pharmacology, and mathematical models
for drug development. QSP possesses potential for providing a considerable impact on
modern medicine as a result of the discovery and deployment of new molecular path-
ways and drug targets in the quest for innovative therapeutic agents and personalized
medicine. The combination of these specialties is triggering substantial attention in pharma
companies to expand predictions from a pharmacodynamic (PD) and pharmacokinetics
(PK) perspective, and through improvements in computing capacity, QSP is currently
capable of improving outcomes in the drug discovery trajectory. In fact, QSP models can
combine information on PK/PD properties, biological processes of interest, and mecha-
nisms of action, resulting from prior knowledge and available preclinical and clinical data,
to quantitatively predict efficacy and safety responses over time and translate molecular
data to clinical outcomes [111–114]. QSP provides a perfect quantitative framework for
integrating different big data sources, including omics (i.e., proteomics, transcriptomics,
metabolomics, and genomics) and imaging, the dimensionality of which can be reduced
using ML methods. By allowing the identification of relevant association and data rep-
resentations, the development of QSP platforms with higher granularity and enhanced
predictive power can be further enhanced [115]. Moreover, the opportunity to implement
a QSP platform with ML techniques to enhance the capacity to handle big data can offer
great opportunities for systems pharmacology modeling. In fact, with the high availability
of processed and organized data for building interpretable and actionable computational
models, supporting decision making in the whole process of drug discovery and develop-
ment, QSP can improve the reliability of predictions, providing more complex analysis,
a better understanding of biomedical systems, and ultimately the design of optimized
treatments. We report some examples regarding this approach.

In a recent study, Ramm and collaborators took advantage of systems biology methods
coupled with multi-dimensional datasets and ML for identifying biomarkers to predict
nephrotoxic molecules, for characterizing their mechanism of toxicity in vitro. The authors
employed primary human kidney cells and used an approach based on systems biology,
combining multidimensional datasets and ML for identifying biomarkers for predicting
nephrotoxic molecules, along with the mechanism of toxicity. ML using the RF technique
was applied for systematically identifying genes and imaging features from 46 different
nephrotoxic compounds. From this analysis, the authors acquired information regarding
changes in cell morphology as well as mRNA levels, finding and validating HMOX1 and
SQSTM1 as nephrotoxic biomarkers. Furthermore, the RF algorithm was trained and
validated using clinical observations of kidney toxicity and employed for nephrotoxicity
classification (class labels as nontoxic = 0 (10 instances, including 8 molecules, DMSO, and
medium controls) or toxic = 1 (38 molecules)). The developed computational model could
discriminate nephrotoxic from non-nephrotoxic molecules and a hierarchical clustering
approach, considering chemicals with an established mechanism of action, allowing the
detection of the potential mechanisms of toxicity of drug candidates [116].

Notably, the individuation of appropriate and useful therapies for treating a given
pathology is extremely important. Computational models can help with this issue, also
providing the responsiveness of patients for a given treatment. In an interesting work,
Song and coworkers reported the development and validation of a large-scale bidirectional
generative adversarial network for predicting the tyrosine kinase inhibitor (TKI) response
in patients with stage IV EGFR variant-positive non-small cell lung cancer. In the men-
tioned diagnostic/prognostic study were enrolled 465 patients, and the authors developed
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a DL semantic signature for predicting progression-free survival (PFS), which was built
into the training group. The computational approach was validated by employing two
external validation and two control groups, compared with the radiomics signature. Briefly,
342 subjects with stage IV EGFR variant-positive non-small cell lung cancer receiving
EGFR–TKI therapy met the inclusion criteria. Of these, 145 patients from two hospitals
(n = 117 and 28) were included in the training group, and the patients from two additional
hospitals established two external validation groups (validation cohort 1: n = 101; valida-
tion cohort 2: n = 96). A total of 56 patients with advanced-stage EGFR variant-positive
non-small cell lung cancer and 67 patients with advanced-stage EGFR wild-type non-small
cell lung cancer who received first-line chemotherapy were included. A total of 90 subjects
(26%) receiving EGFR–TKI therapy with a high risk of rapid disease progression were
detected by applying the DL semantic signature. When compared to other patients in vali-
dation groups, PFS dropped by 36% (hazard ratio, 2.13; 95% CI, 1.30–3.49; P = 0.001). When
comparing the PFS of high-risk patients receiving EGFR–TKI treatment to chemotherapy
groups, no substantial variations were detected (median PFS, 6.9 vs. 4.4 months; P = 0.08).
In terms of predicting tumor progression risk after EGFR–TKI therapy, clinical decisions
based on the DL semantic signature led to better survival outcomes than those based on
radiomics signatures across all risk probabilities by decision curve analysis [117]. Recently,
Lu and collaborators described a significant ML approach based on the DL algorithm
for predicting patient response time course from early data via neural-PK/PD modeling.
Currently, analyses of patient response following doses of therapeutics are conducted
employing standard PK/PD methods that require relevant human scientific expertise. In-
terestingly, DL has been applied to system pharmacology, as in the case of PK/PD models
that directly learn the governing equations from data for predicting patient response time
course, and for simulating the effects of unseen dosing regimens. Accordingly, the authors,
in this new methodology, combined crucial pharmacological rules with neural ordinary
differential equations. This neural-PK/PD model was used for analyzing the drug concen-
tration and platelet response considering a clinical dataset comprising over 600 patients.
In particular, the computational strategy was applied to predict drug concentration and
platelet dynamics after treatment with trastuzumab emtansine (intravenous administra-
tion at 3.6 mg/kg once every three weeks) for human epidermal growth factor receptor
2 (HER2)-positive metastatic breast cancer in subjects failing treatment beforehand with
trastuzumab and taxanes. The outcomes demonstrated that the computational model could
predict patient responses, and simulate patient responses considering untested dosing
regimens. These findings prove the potential of neural-PK/PD for automated predictive
analytics of patient response time course, suggesting that the AI/ML approach can support
clinical pharmacologists with the prospect, in the near future, to use neural-PK/PD as an
advanced analytics tool for understanding and predicting drug concentration and response
for dosing recommendation [118].

At the end of this section, day-by-day it is evident how AI has emerged in the field
of drug discovery and development, being able to improve affordable and effective thera-
peutic treatments for common and emerging disorders, accelerating drug repurposing and
minimizing the translational gap in drug development.

2.2. Imaging, Biomarkers, Diagnosis, and Disease Progression
2.2.1. General Consideration

With the growing accessibility to high-quality amounts of cell imaging data, there
are currently relevant possibilities to use ML-based methods to aid researchers in cell
image processing. In fact, the image features that are supposed to be crucial in producing
predictions or diagnoses can be generally processed using ML algorithms. The latter offers
the possibility of predictive, descriptive, and prescriptive assessment to acquire relevant
information that would otherwise be impossible to obtain by human analysis, providing
accurate medical diagnoses [119,120]. Accordingly, in recent years, numerous clinical
investigations have enabled the use of AI in several fields, providing general pathological
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classification, risk evaluation, diagnosis, prognosis, and the prediction of appropriate ther-
apy and possible responses to a given pharmacological treatment [121,122]. In particular,
DL, a class of ML that employs ANN (CNN and recurrent neural networks (RNN)) resem-
bling human cognitive capabilities, has proven undeniable superiority over conventional
ML approaches owing to algorithm improvement, better processing hardware, and access
to massive amounts of imaging data [123]. The successful incorporation of DL technology
into normal clinical practice has determined that the diagnosis accuracy is comparable
to that of healthcare experts. Furthermore, DL model integration provides additional
advantages, including speed, efficiency, affordability, increased accessibility, and ethical
behavior [120]. For these reasons, the FDA has approved the use of specific DL-driven
diagnostic computational tools for clinical usage (Table 3) [124–126]. The application of AI
encompasses several medical and biomedical fields, including radiology [127], gastroen-
terology [128,129], neurology [130,131], ophthalmology [132,133], cardiology [134,135],
dermatology [136], general pathology [137], oncology [138], healthcare [139,140], and
clinical medicine [141,142].
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Table 3. List of some examples of FDA-approved AI/ML-based solutions [124,126,138,143–145].

Device/Algorithm (Company) Type of Algorithm Description FDA Approval Number Medical Field(s) Date and Reference

Accipio Ix
(MaxQ-Al Ltd.), Tel Aviv, Israel AI

The tool is used for an automatic, rapid, highly accurate
identification and prioritization of suspected

intracranial hemorrhage
K182177 Radiology

Neurology
October 2018

[146]

Advanced Intelligent Clear-IQ Engine (AiCE)
(Canon Medical Systems Corporation,

Ōtawara, Japan)
Deep CNN AiCE system is used for reducing noise-boosting signals to

quickly deliver sharp, clear, and distinct images K183046 Radiology June 2019
[147]

AI-Rad Companion (Cardiovascular) (Siemens
Medical Solutions USA, Inc., Malvern, PA, USA) DL The software is used for detecting cardiovascular risks

from CT images K183268 Radiology October 2019
[148,149]

AI-Rad Companion (Pulmonary)
(Siemens Medical Solutions USA, Inc.,

Malvern, PA, USA)
DL The software is used for detecting lung nodules from

CT images K183271 Radiology July 2019
[148,149]

AI Segmentation
(Varian Medical Systems, Inc., Crawley, UK) AI

The software is used for providing fast, accurate, and
intelligent contouring for improving the reproducibility of

structure delineation in radiation oncology
K203469 Radiology

Oncology
April 2021

[150]

AmCAD-UO
(AmCad BioMed Corporation, Taipei City, Taiwan) AI

The tool is used for detecting OSA in awake patients; it
can precisely scan upper airway and analyze the gap

between normal breathing and Müller Maneuver models
K180867 Radiology December 2018

[151]

AmCAD-US
(AmCad BioMed Corporation, Taipei City, Taiwan) AI

The tool is used to view and quantify ultrasound image
data of backscattered signals acquired from

ultrasound data
K162574 Radiology May 2017

[152]

AmCAD-UT Detection 2.2
(AmCad BioMed Corporation, Taipei City, Taiwan) AI

The software is used for facilitating the detection,
visualization, and characterization of thyroid nodule

features on sonographic images
K180006 Radiology August 2018

[153,154]

AmCAD-UV
(AmCad BioMed Corporation, Taipei City, Taiwan) AI

The tool is used for classifying the ultrasonic color
intensity data from signals of flow Doppler

ultrasound images
K170069 Radiology April 2017

[155]

Arterys Cardio DL
(Arterys Inc., San Francisco, CA, USA) DL The software is used for the analysis of cardiac

MRI images K163253 Radiology
Cardiology

January 2017
[156]

Arterys Oncology DL
(Arterys Inc., San Francisco, CA, USA) DL The software is used for measuring and tracking lesions

and nodules from MRI and CT images K173542 Radiology
Oncology

January 2018
[157]

Arterys MICA
(Arterys Inc., San Francisco, CA, USA) AI AI platform used for liver and lung cancer diagnosis from

MRI and CT images K182034 Radiology
Oncology

October 2018
[158]

BladderScan Prime PLUS System
(Verathon Inc., Bothell, WA, USA) DL The tool provides improved bladder volume

measurement accuracy K172356 Radiology September 2017
[159]

Bone VCAR (BVCAR)
(GE Medical Systems SCS, Buc, France) DL The tool is used for automated spine labeling (segments or

whole spine) from CT images K183204 Radiology April 2019
[160]

Brainomix 360◦ e-CTA
(Brainomix Limited, Oxford, UK) AI The tool is used for automatically detecting LVO on

CT angiography K192692 Radiology May 2020
[161,162]

BriefCase
(Aidoc Medical, Ltd., Tel Aviv, Israel) DL

The tool is used for detecting acute abnormalities across
the body, helping radiologists to prioritize life-threatening

cases, expediting patient care
K180647 Radiology

Emergency Medicine
August 2018

[163]
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Table 3. Cont.

Device/Algorithm
(Company) Type of Algorithm Description FDA Approval Number Medical Field(s) Date and Reference

cvi42 for cardiac CT/MRI
(Circle Cardiovascular Imaging Inc., Calgary, AB,

Canada)
ML/DL The software is used for assessing heart function, flow,

and tissue attributes from CT/MRI images K141480 Radiology
Cardiology

August 2014
[164,165]

Brainomix 360◦ e-CTA
(Brainomix Limited, Oxford, UK) AI The tool is used for automatically detecting LVO on

CT angiography K192692 Radiology May 2020
[161,162]

BriefCase
(Aidoc Medical, Ltd., Tel Aviv, Israel) DL

The tool is used for detecting acute abnormalities across
the body, helping radiologists to prioritize life-threatening

cases, expediting patient care
K180647 Radiology

Emergency Medicine
August 2018

[163]

cvi42 for cardiac CT/MRI
(Circle Cardiovascular Imaging Inc., Calgary, AB,

Canada)
ML/DL The software is used for assessing heart function, flow,

and tissue attributes from CT/MRI images K141480 Radiology
Cardiology

August 2014
[164,165]

ClariCT.AI
(ClariPI Inc., Seoul, South-Korea) DL The tool is used for processing and enhancing CT images

reducing noise K183460 Radiology Jun2019
[166]

ClearRead CT
(Riverain Technologies, LLC, Miamisburg, OH, USA) DL The software is used to detect pulmonary nodules and

abnormalities in CT K161201 Radiology
Oncology

September 2016
[167,168]

cmTriage
(CureMetrix, Inc., La Jolla, CA, USA) AI cmTriage is a tool enabling radiologists to triage, sort, and

prioritize mammography K183285 Radiology
Oncology

March 2019
[169]

ContaCT
(Viz.AI, San Francisco, CA, USA) AI The software is used for detecting stroke from CT

angiogram images of the brain DEN170073 Radiology
Neurology

February 2018
[170]

Critical Care Suite
(GE Medical Systems, LLC, Waukesha, WI, USA) AI The platform is used for automatically detecting PNX

from X-rays, triaging critical cases K183182 Radiology
Emergency Medicine

August 2019
[171]

CuraRad-ICH
(CuraCloud Corp., Seattle, WA, USA) DL The tool is used for triaging suspected

intracranial hemorrhage K192167 Radiology April 2020
[172]

Deep Learning Image Reconstruction
(GE Medical Systems, LLC, Waukesha, WI, USA) DL

The application is used for CT image reconstruction
Follow-up—K201745 DL Image Reconstruction for

Gemstone Spectral Imaging (December 2020)
K183202 Radiology April 2019

[173]

DV.Target
(Deepvoxel Inc., Irvine, CA, USA) DL

The algorithm is used to automatically delineate OARs.
Contours generated by DV.Target may be used as an input

to clinical workflows in radiation therapy.
K202928 Radiology April 2021

[174]

EchoMD Automated Ejection Fraction Software
(Bay Labs, Inc., San Francisco, CA, USA) ML This software is used for automated ECG analysis K173780 Radiology

Cardiology
June 2018

[175]

FerriSmart Analysis System
(Resonance Health Analysis Service Pty Ltd.,

Burswood, Australia)
ML/CNN

The software is used for measuring liver iron
concentration from R2-MRI images. The system is based
on the previously approved (K043271, Jan2005) R2-MRI

Analysis System

K182218 Radiology
Internal Medicine

November 2018
[176–178]

HealthCXR
(Zebra Medical Vision Ltd., HaMerkaz, Israel) AI The software is used for identifying and triaging pleural

effusion in chest X-rays K192320 Radiology
Emergency Medicine

November 2019
[179]

HealthMammo
(Zebra Medical Vision Ltd., HaMerkaz, Israel) DL The tool is used for supporting identifying and

prioritizing suspicious mammograms K200905 Radiology
Oncology

June 2020
[180]

HealthPNX
(Zebra Medical Vision Ltd., HaMerkaz, Israel) AI The tool increases the radiologist’s confidence in making

PNX diagnosis from chest X-rays imaging output K190362 Radiology
Emergency Medicine

May 2019
[180]
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Table 3. Cont.

Device/Algorithm
(Company) Type of Algorithm Description FDA Approval Number Medical Field(s) Date and Reference

icobrain
(icometrix NV, Leuven, Belgium) ML and DL The software is used for interpreting MRI images from the

brain for detecting neurological disorders K181939 Radiology
Neurology

November 2018
[181,182]

Illumeo System
(Philips Medical Systems Technologies, Ltd., Haifa,

Israel)
AI The tool is used for acquiring, storing, distributing,

processing, and displaying images K173588 Radiology January 2018
[183]

lnferRead Lung CT
(Beijing Infervision Technology Co. Ltd., Beijing,

China)
AI

The tool is used for assisting radiologists fin detecting
pulmonary nodules from CT

(NCT04119960)
K192880 Radiology

Oncology
June 2020
[184,185]

Infinitt PACS 7.0
(Infinitt Healthcare Co. Ltd., Seoul, South-Korea) AI The software is used to analyze incoming tasks,

identifying high-priority cases K172803 Radiology September 2017
[186]

KOALA
(IB Lab GmbH, Wien, Austria) DL The algorithm is used to detect radiographic signs of knee

osteoarthritis K192109 Radiology November 2019
[187]

Koios DS for Breast
(Koios Medical, Inc., Chicago, IL, USA) AI

The software is used for analyzing ultrasound images for
providing improved accuracy and efficiency in

cancer diagnosis
K190442 Radiology

Oncology
July 2019

[188]

LiverMultiScan
(Perspectum Diagnostics Ltd., Oxford, UK) ML This platform is used to assess liver tissue to enable

diagnostic and patient management decisions. K190017 Radiology June 2019
[189]

LVivo Software Application
(DiA Imaging Analysis Ltd., Beer-Sheva, Israel) AI

The software provides an automated AI-based ejection
fraction analysis, allowing a fast assessment of

cardiac functions
K210053 Radiology January 2021

[190]

LungQ
(Thirona Corp., Nijmegen, Netherlands) AI The software is used for automatically identifying lung

abnormalities from CT images K173821 Radiology June 2018
[191]

MRCP+ V1.0
(Perspectum Diagnostics Ltd., Oxford, UK) AI The software is used for quantitatively analyzing the

biliary tree and pancreatic duct from MRCP images K183133 Radiology January 2019
[192]

MRCAT brain
(Philips Medical Systems MR, Vantaa, Finland) AI The tool is used for radiotherapy planning of primary and

metastatic tumors using MRI K193109 Radiology January 2020
[193]

OsteoDetect
(Imagen Technologies, Inc., New York, NY, USA) DL The software is used for detecting signs of distal radius

fracture from X-ray DEN180005 Radiology
Emergency Medicine

May 2018
[194]

PixelShine
(ALGOMEDICA, Palo Alto, CA, USA) DL The software is used for improving the quality of scans

obtained from any CT images, reducing noise K161625 Radiology September 2016
[195]

PowerLook Density Assessment Software
(iCAD, Inc., Nashua, NH, USA) ML The algorithm is used for assessing breast density in 2D

and 3D mammography K180125 Radiology April 2018
[196]

ProFound™ AI Software
(iCAD, Inc., Nashua, NH, USA) DL The software is used for detecting both malignant soft

tissue densities and calcifications from DBT images K191994 Radiology
Oncology

April 2019
[197]

QuantX
(Qlarity Imaging, Chicago, IL, USA) AI The software is used for assessing and characterizing

breast abnormalities from MRIdata DEN170022 Radiology
Oncology

July 2017
[198]

qp-Prostate
(Quibim S.L., Valencia, Spain) AI The tool is used for analyzing prostate MRI images K203582 Radiology

Oncology
December 2020

[199]
Rapid ASPECTS

(iSchemaView, Inc., San Mateo, CA, USA) AI The tool is used as assisted diagnostic software for lesions
suspicious of cancer K200760 Radiology May 2020

[200]
RAPID-ICH

(iSchemaView, Inc., San Mateo, CA, USA) AI The tool is used to triage non-contrast CT (NCCT) cases
for rapidly detecting suspicious intracranial hemorrhage K193087 Radiology March 2020

[201]
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RayCare 3.1
(RaySearch Laboratories AB, Stockholm, Sweden) ML/DL

The software is used for improving workflow efficiency
across different treatments in medical, radiation, and
surgical oncology to support decisions in the clinic

K200487 Radiology
Oncology

June 2020
[202]

RayStation 10.1
(RaySearch Laboratories AB, Stockholm, Sweden) ML The platform is used to automatically generate

treatment plans K210645 Radiology
Oncology

June 2021
[203]

RBknee
(Radiobotics ApS, Copenaghen, Denmark) ML The software is used for automatically identifying

osteoarthritis in the knees based on X-ray images K203696 Radiology August 2021
[204]

Red DotTM

(Behold.AI Technologies Ltd., London, UK)
AI The software is used for assessing PNX from chest

X-ray images K191556 Radiology January 2020
[205]

StoneChecker
(Imaging Biometrics, LLC, Elm Grove, WI, USA) AI

The software is used with standard CT scans in people
with kidney stones for measuring stone parameters and to

inform clinical decisions
K191530 Radiology June 2019

[206]

StrokeViewer
(NiCo-Lab B.V., Amsterdam, Netherlands) AI This tool is used for the localization and quantification of

stroke biomarkers from CT scans K200873 Radiology October 2020
[207]

SubtleMR
(Subtle Medical, Inc., Menlo Park, CA, USA) CNN The application is used for improving the quality of MRI

images increasing resolution and reducing noise K191688 Radiology September 2019
[208]

SubtlePET
(Subtle Medical, Inc., Menlo Park, CA, USA) DNN The application is used for processing PET images K182336 Radiology November 2018

[209]
syngo.CT Cardiac Planning

(Siemens Medical Solutions USA, Inc., Malvern, PA,
USA)

AI
The software is used forenhancing CT images; analysis of

morphology and pathology of vascular and
cardiac structures

K200515 Radiology March 2020
[210]

TransparaTM

(Screenpoint Medical B.V., Nijmegen, Netherlands)
ML

The software provides a support solution for
mammography, identifying suspicious areas in 2D and

3D mammograms
K192287 Radiology

Oncology
December 2019

[211,212]

Veolity
(MeVis Medical Solutions AG, Bremen, Germany) ML The software is used to recognize even the subtlest

potential signs of lung cancer K201501 Radiology February 2021
[213]

Workflow Box including DCLExpertTM

(Mirada Medical Ltd., Oxford, UK)
AI The software is used for autocontouring organs for cancer

treatment planning K181572 Radiology July 2018
[214]

AI-ECG Platform
(Shenzhen Carewell Electronics, Ltd., Shenzhen,

China)
AI AI platform for assisting physicians in measuring and

interpreting ECG K180432 Cardiology November 2018
[215]

AI-ECG Tracker
(Shenzhen Carewell Electronics, Ltd., Shenzhen,

China)
AI The tool is used for improving the detection efficiency of

non-persistent arrhythmias (irregular heartbeats) K200036 Cardiology March 2020
[216]

BioFlux Device
(Biotricity Inc., Redwood City, CA, USA) AI The tool is used for detecting arrhythmias K172311 Cardiology December 2017

[217]

EchoGo Core
(Ultromics Ltd., Oxford, UK) ML

The application is used to automatically evaluate cardiac
functions from echocardiography, enabling physicians to

diagnose heart failure and coronary artery disease
K191171 Cardiology November 2019

[218]

Eko Analysis Software
(Eko Devices Inc., Oakland, CA, USA) ANN The software is used for detecting suspected murmurs in

the heart sounds and atrial fibrillation from ECG data K192004 Cardiology January 2020
[219]

eMurmur ID
(CSD Labs GmbH, Graz, Austria) ML The software is used to understand, identify, and detect

heart murmurs K181988 Cardiology April 2019
[220]
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KardiaAI
(AliveCor, Inc., Mountain View, CA, USA) AI The tool is used for enhancing cardiac MRI to improve

diagnosis of heart disorders K181823 Cardiology November 2019
[221]

KOSMOS
(EchoNous Inc., Redmond, WA, USA) DL This tool combining ultrasound with DL is used for

clinical assessment of the heart, lungs, and abdomen K193518 Cardiology March 2020
[222]

Ventripoint Medical System Plus (VMS+) 3.0
(Ventripoint Diagnostics Ltd., Toronto, ON, Canada) AI

The tool is used for measuring whole heart function using
conventional ultrasound

(NCT01557582)
K191493 Cardiology October 2019

[223]

Altoida
(Altoida, Inc., Washington, DC, USA) ML

The software is used for detecting AD up to 10 years prior
to the onset. ML is used for classifying patients’ risk of

MCI due to AD (NCT02843529)
FDA-ClassII Neurology August 2021

[224,225]

BrainScope Ahead 100
(Brainscope Company, Inc., Bethesda, MD, USA) AI

The software is used for interpreting the structural
condition of the patient’s brain after head injury from

EEG data
DEN140025 Neurology November 2014

[226]

Cognoa ASD Diagnosis Aid
(Cognoa, Inc., Palo Alto, CA, USA) ML The software is used for evaluating patients at risk of ASD DEN200069 Neurology June 2021

[227]

complete control system gen2
(Coapt, LLC, Chicago, IL, USA) AI/ML

The platform provides a human–bionic interface that
learns and adapts to users, giving them unrivaled control

of their prosthetic arms
K191083 Neurology April 2019

[228]

EnsoSleep
(EnsoData, Inc., Madison, WI, USA) AI The application assists clinicians in the diagnosis of

sleep disorders K162627 Neurology March 2017
[229]

QbTest/QbCheck
(QbTech AB, Goteborg, Sweden) AI/ML

The tools are used for braingazing using eye-tracking
technology to capture eye vergence and AI algorithms for

classifying ADHD patients vs. non-ADHD
K040894 K143468 Neurology

Psychiatry

June 2004 March
2016

[230,231]
Clarus 700

(Carl Zeiss Meditec Inc., Dublin, CA, USA) DL The algorithm is applied to diagnosing and monitoring
retina disorders K191194 Ophthalmology May 2019

[232]
EyeArt

(EyeNuk, Inc., Woodland Hills, CA, USA) AI The software is used as a screening tool for detecting
diabetic retinopathy K200667 Ophthalmology March 2020

[233,234]
IDx

(Digital Diagnostics Inc. -IDx LLC., Coralville, IA,
USA)

AI The software is used for detecting diabetic retinopathy DEN180001 Ophthalmology January 2018
[235,236]

DreaMed Advisor Pro
(DreaMed Diabetes, Ltd., Petah Tikva, Israel) AI The application is used for automatically determining the

optimal therapy to maintain balanced glucose levels DEN170043 Endocrinology June 2018
[237]

Guardian Connect System
(Medtronic Minimed, Northridge, CA, USA) AI The application is used with diabetic patients for

monitoring blood glucose content, predicting changes P160007 Endocrinology March 2018
[238]

APAS Independence
(Clever Culture Systems AG, Bäch, Switzerland) AI/ML The tool is used to automate culture plate imaging,

analysis, and interpretation K183648 Microbiology September 2019
[239,240]

NightOwl
(Ectosense nv, Leuven, Belgium) AI

The algorithm is used for analyzing biophysical
parameters for evaluating sleep-related breathing

disorders of patients suspected of sleep apnea
(NCT03774199; NCT04194073)

K191031 Anesthesiology March 2020
[241]
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NuVasive Pulse System
(NuVasive, Inc., San Diego, CA. USA) AI The tool is used during spinal surgery, neck dissection,

and thoracic surgeries, improving surgical procedures K180038 Surgery June 2018
[242]

Sight OLO
(Sight Diagnostics Ltd., Tel Aviv, Israel) AI The algorithm is used for inspecting blood samples

(NCT03595501) K190898 Hematology November 2019
[243,244]

SOZO
(ImpediMed Ltd., Carlsbad, CA, USA) AI

The tool is use for the clinical assessment of unilateral
lymphedema, combining BIS with AI to create a rapid,

non-invasive scan of a person’s body
K190529 Gastroenterology

Urology
November 2019

[245]

wheezo WheezeRate Detector
(Respiri Ltd., Melbourne, Australia) ML The tool is used for asthma management and

remote monitoring K202062 Pneumology March 2021
[246]

Abbreviation: AD—Alzheimer’s disease; ADHD—attention deficit hyperactivity disorder; AI—artificial intelligence; ANN—artificial neural network; ASD—autism spectrum disorder; BIS—bioimpedance
spectroscopy; DL—deep learning; CNN—convolutional neural network; CT—computed tomography; DBT—digital breast tomosynthesis; EEG—electroencephalogram; ECG—electrocardiogram; LVO—large
vessel occlusion; MCI—mild cognitive impairment: ML—machine learning; MRCP—magnetic resonance cholangiopancreatography; MRI—magnetic resonance imaging; OARs—organs-at-risk; OSA—obstructive
sleep apnea; PET—positron emission tomography; PNX—pneumothorax.
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2.2.2. Basic Research

In this section, we illustrate some relevant and representative examples of how AI can
be an added value in translational medicine, starting from research laboratories to clinical
practice, speeding up the understanding of disorders (targets involved, phatophysiological
mechanisms, etc.) and the translation of acquired knowledge in clinical medicine. For
example, in medical/cellular imaging, ML-based methods hold great promise. Considering
cell microscopy and histopathology, observation of the slides is often complicated, such that
a pathologists’ interpretation might be inconsistent, making histopathological diagnoses
problematic [247]. Conventional approaches (e.g., microscopic/biological inspection of a
sample) have limitations, reducing the possibility of discovering particular biomarkers,
genomic driver mutations, and patterns within a cell’s subcellular apparatus [248]. Accord-
ingly, with the aid of ML, unravelling disease heterogeneity through enhancing the cellular
profiling of specific morphological features is becoming progressively possible. ML ap-
proaches are able to improve sample categorization, allowing the acquisition of undisclosed
disease characteristics that cannot be identified by humans alone (Table 4). To this end,
Simm and collaborators described a fascinating approach in which an ML-based method
was employed for predicting the activity of a given compound from images. The interesting
idea starts with the evidence that large-scale assays (e.g., high-throughput screening) for
the drug discovery pipeline are costly, time-consuming, and frequently unfeasible, mainly
for the growing number of relevant physiological systems needing primary cells, organoids,
or entire organisms, as well as pricey or rare reagents. The authors assumed that data
from only high-throughput imaging (HTI) assay could be repurposed for predicting the
bioactivities of molecules in other assays, similar to those that target different biological
processes or pathways. For that purpose, they developed a protocol for predicting the
activity of compounds in several orthogonal tests. In the first step, the researchers extracted
a large set of image-based fingerprints of morphological descriptions for each molecule
(considering the three-channel glucocorticoid receptor (GCR) as a target for the HTI assay
employed in the evaluation, the authors obtained 842-dimensional feature vectors per cell).
The second step consisted of introducing known activity data for orthogonal assays of
interest on the considered molecules. Finally, by using the supervised ML approach, they
trained models, selecting the one that showed higher predictivity. The resulting ML model
was successfully used for selecting novel chemical entities for biological evaluation [249].
Another interesting study was conducted by Nassar and colleagues. They reported an ML-
based method (evaluating six ML algorithms: AdaBoost, Gradient Boosting (GB), k-NN,
RF, and SVM) for classifying white blood cells (WBCs). Currently, WBC count, a method for
assessing the immune system status of a person, requires a flow cytometer and fluorescent
markers. Obviously, for accomplishing this process, various steps for sample preparation
are required. By using the proposed label-free approach only, employing an imaging flow
cytometer combined with ML methods, unstained WBCs were classified. The developed
model showed good scores, being also able to discriminate B and T lymphocytes. The
approach was validated by performing WBC analyses from unstained samples collected
from 85 donors. Notably, the described approach allows an extremely precise classification
of WBCs while avoiding cell disruption and leaving marker channels open to address
further biological issues. In the end, the proposed method enables the use of ML for liquid
biopsy, applying powerful information regarding cell morphology for several diagnostics
of primary blood, such as, for example, the detection of tumor products or circulating tu-
mor cells in the blood [250]. Coudray and colleagues applied ML algorithms for classifying
and predicting mutations from histopathological images belonging to non-small cell lung
cancer. In fact, the visual inspection represents the elected methodology for assessing stage,
type, and subtype of lung cancers. Expert pathologists can distinguish adenocarcinoma
(LUAD) and squamous cell carcinoma (LUSC) by visual inspection. The authors presented
an ML approach based on deep CNN trained on whole-slide images acquired from The
Cancer Genome Atlas for accurately and automatically classifying them into LUAD, LUSC,
or normal lung tissue. The performance of the methodology is equivalent to that of pathol-
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ogists, showing an average area under the ROC curve of 0.97. The in silico model was
validated on independent datasets of frozen tissues, formalin-fixed paraffin-embedded
tissues, and biopsies. Additionally, the network was also trained for predicting ten of
the most frequently mutated genes in LUAD. Six of them (STK11, EGFR, FAT1, SETBP1,
KRAS, and TP53) can be predicted from pathology images, with a significant area under
the ROC curve (0.733–0.856) as determined on a held-out population. Remarkably, a similar
approach based on ML models could aid pathologists in detecting gene mutations related
to cancer subtypes [251]. Moreover, ML-based approaches can assist in identifying specific
biomarkers involved in a given disease. The most fruitful computer-based approaches
were recently well reviewed [6,252]. To understand the task, we report some examples
highlighting ML approaches in this field. Kang and collaborators used the python package
sklearn for building an ML-based computational model, employing the SVM technique,
that executed 10-fold cross-validation to implement a diagnostic tool for identifying the
lung cancer risk of suspected cases. The authors performed an inclusive assessment of
results from genetic analysis and critical clinical data regarding patients affected by lung
cancer to develop a model able to diagnose early lung cancer, also indicating tumor risks.
They considered tissues from samples of patients with lung cancer and tissue from healthy
persons for a total of 70 pairs. The authors evaluated the methylation rates of six genes
(FHIT, p16, MGMT, RASSF1A, APC, DAPK) in lung cancer patients, as well as the critical
clinical data and tumor marker concentrations of these patients. The SVM model was vali-
dated by calculating the area under the ROC curve and other statistical parameters. Based
on these validation data (area under the ROC curve of 0.963, sensitivity of 0.900, specificity
of 0.971, and accuracy of 0.936), the scientists proved the validity of the developed method,
highlighting the crucial role of ML models as diagnostic tools for the early diagnosis of
cancers that can contribute to increase the survival rate of patients [253].
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Table 4. Main examples of AI/ML in basic research.

AI Technique Target Dataset Statistical Parameters Outcomes Ref

ML-based method
DNN

algorithm

Predicting the activity of a given
compound from images

Image-based fingerprints of
morphological descriptions for
each molecule considering GCR
as a target for HTI assays used. A
total of 842-dimensional feature

vectors per cell related to activity
data for selected orthogonal
assays. Supervised ML for

training models

Area under the ROC curve >0.9 as threshold for
selecting the best performing models

The resulting ML model was
successfully used for selecting

novel chemical entities for
biological evaluation

[249]

ML-based method (evaluating six
ML algorithms: AdaBoost, GB,

k-NN, RF, and SVM)

Classifying WBC for assessing
the immune system status of

a person

By using the proposed label-free
approach only employing an

imaging flow cytometer
combined with ML methods,

unstained WBCs were classified

The developed model discriminated B and T
lymphocytes. Validation was achieved performing

WBC analyses from unstained samples from
85 donors. The approach allows a precise classification

of WBC avoiding cell disruption, leaving marker
channels open to address further biological issues

The proposed method enables
the use of ML for liquid biopsy,

applying the powerful
information in cell morphology

for several diagnostics (e.g.,
detection of tumor products or

circulating tumor cells in
the blood

[250]

ML algorithms
CNN

Classifying and predicting
mutations from histopathological
images from non-small cell lung

cancer into LUAD, LUSC or
normal lung tissue

Whole-slide images acquired
from The Cancer Genome Atlas.

The network was also trained for
predicting most frequently

mutated genes in LUAD (STK11,
EGFR, FAT1, SETBP1, KRAS, and

TP53)

The ML model performance was equivalent to that of
pathologists (area under the ROC curve = 0.97).
Validation using independent datasets of frozen

tissues, formalin-fixed paraffin-embedded tissues and
biopsies. Mutated genes in LUAD correctly predicted

from pathology images (area under the ROC curve
0.733–0.856)

Aid pathologists in detecting
gene mutations related to

cancer subtypes
[251]

ML-based model,
SVM algorithm

Implementing a diagnostic tool
for identifying lung cancer risk of

suspected cases

Tissues from samples of patients
with lung cancer and tissue from

healthy persons (70 pairs).
Evaluation of the methylation
rates of six genes (FHIT, p16,

MGMT, RASSF1A, APC, DAPK)
in lung cancer patients, the
critical clinical data, tumor

marker concentrations

Area under the ROC curve of 0.963, sensitivity of
0.900, specificity of 0.971, and accuracy of 0.936

ML models as diagnostic tools for
the early diagnosis of cancers

that can contribute to increasing
the survival rate of patients

[253]

Abbreviation: CNN—convolutional neural network; DNN—deep neural network; GB—gradient boosting; GCR—glucocorticoid receptor; HTI—high-throughput imaging; k-NN—k-nearest neighbors;
LUAD—lung adenocarcinoma, LUSC—lung squamous cell carcinoma; ML—machine learning; RF—random forest; ROC—receiver operating characteristic; SVM—support vector machine; WBC—white
blood cell.
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2.2.3. AI, Imaging and Ophthalmology

In the context of imaging in diagnosis and disease progression, applying ML-based
techniques, ophthalmology is one of the medical fields in which these computational
approaches have been successfully employed [133]. In fact, AI principally based on DL
methods has been used to detect several ocular disorders, including retinopathy of prema-
turity [254], diabetic retinopathy [255,256], macular edema [257,258], age-related macular
degeneration [259,260], and glaucoma [261–263], using fundus images, optical coherence
tomography (OCT), and visual fields. Screening, diagnosis, and monitoring of major eye
disorders for patients in primary care might be achievable using DL in ocular imaging
combined with telemedicine. Briefly, we report here some representative examples of how
ML can revolutionize diagnostics, improving the quality of diagnosis, reducing potential
medical errors and the workload of medical staff, and also saving the time of the patients
examined (Table 5). Recently, Dai and coworkers reported the development of an intriguing
screening platform for detecting diabetic retinopathy. It is well established that retinal
screening has a tremendous impact on the early diagnosis of retinopathy to start effective
treatments to avoid vision loss, slowing down the progression of the disorder. For facil-
itating the screening procedure, they used an ML approach based on DL algorithms for
developing a computational tool, namely, DeepDR (DL Diabetic Retinopathy). DeepDR is
a transfer-learning-aided multi-task network for evaluating retinal image features, retinal
lesions, and diabetic retinopathy grades. This evaluation allows the detection of early-to-
late stages of diabetic retinopathy. DeepDR was generated considering 666,383 fundus
images from 173,346 patients, and it is trained for real-time image quality evaluation, lesion
detection, and grading; 466,247 fundus images from 121,342 patients (70%) affected by
diabetes were randomly included in the training set, while the evaluation was conducted
considering 52,004 patients (30%) for a local validation set consisting of 200,136 fundus im-
ages and three external datasets containing 209,322 images. The results show an area under
ROC curves of 0.901, 0.941, 0.954, and 0.967 regarding the detection of microaneurysms,
cotton-wool spots, hard exudates, and hemorrhages, respectively, while the grading of
diabetic retinopathy as mild, moderate, severe, and proliferative accomplishes a significant
area under the ROC curves (0.943, 0.955, 0.960, and 0.972, respectively). Finally, the statisti-
cal parameters, considering the external validation, ranged from 0.916 to 0.970 (area under
the ROC curves). In summary, DeepDR showed significant accuracy and high sensitivity
in detecting diabetic retinopathy from early-to-late stages [255]. Asaoka and colleagues
reported an ML approach based on deep and transfer learning for an accurate diagnosis
regarding early-onset glaucoma using October images [263]. The DL model was built
starting from 4316 October images from 1565 eyes from patients suffering from glaucoma
and 193 normal eyes, used as a pre-training dataset. A smaller set of October images was
used to train the model (94 eyes from patient with early glaucoma and 84 healthy eyes).
The independent dataset employed as a test set for assessing the diagnostic performance of
the developed model comprised 114 eyes from 114 patients at early stages of glaucoma and
82 eyes from 82 healthy people. In particular, a DL classifier based on CNN was employed
in the reported study, and the input features were 8 x 8 grid macular retinal nerve fiber
layer thickness and ganglion cell complex layer thickness from October images. Diagnostic
performances were assessed using the test set and applying RF and the SVM algorithm.
The results show that the DL model displayed an area under the ROC curve of 93.7%,
considerably decreasing (to 76.6 and 78.8%) with no pre-training procedure, suggesting a
relevant sensitivity and specificity of the DL model to diagnose glaucoma, highlighting
the robustness of the proposed approach. Accordingly, also in the reported case is un-
derlined that the use of ML approaches can offer a significant improvement in diagnostic
performance, assisting clinicians in making a decision [263]. Finally, another interesting
approach was conducted by Zhang and collaborators. They used October images of the
fundus retina for generating and validating an ML-based model as a diagnostic model for
diabetic macular edema (DME). Concisely, the authors used 38,057 October images (drusen,
choroidal neovascularization (CNV), DME, and healthy) in a multiscale transfer-learning
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algorithm model by using the CNN technique. This computational-based tool consisted of
two steps (self-enhancement and disease detection). The self-enhancement model was built
using a multiscale feature-learning method for detecting and extracting the frame of the
diagnostic target. Next, the enhanced data were employed to generate a disease diagnostic
model that combined transfer-learning knowledge. The data were initially processed by
convolutional and pooling layers for extracting characteristics hidden in the original data.
Lastly, these features were used in a classification step for automatically determining the
type of disorder. In the training set were enclosed 37,457 samples (9891 cases (26.41%) of
CNV, 9633 cases (25.72%) of DME, 7975 cases (21.29%) of drusen, and 9958 healthy cases
(26.58%)), while 600 samples (150 cases (25%) of CNV, 150 cases (25%) of DME, 150 cases
(25%) of drusen and 150 healthy cases (25%)) comprised the validation set. The statistical
parameters (accuracy, precision, sensitivity, and specificity) of the model were evaluated
as well as the parameters for assessing the performance of the ML-based model from
the perspective of clinical application. The developed computational tool showed 94.5%
accuracy, 97.2% precision, 97.7% sensitivity, and 97% specificity in the independent testing
dataset. Notably, the developed model based on a multiscale transfer-learning algorithm
can accurately employ October images for assessing the health of patients, automatically
and accurately diagnosing several eye health conditions. Such an approach could help
clinicians by improving the effectiveness of therapies, reducing the disability ratio of
severe disorders [258].
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Table 5. Main examples of AI/ML in ophthalmology.

AI Technique Target Dataset Statistical
Parameters Outcomes Ref

ML approach based on DL
algorithms

Development of DeepDR, an
intriguing screening platform

for detecting
diabetic retinopathy

DeepDR was generated considering
666,383 fundus images (173,346 patients),

and it was trained for real-time image
quality valuation, lesion detection and

grading by 466,247 fundus images from
121,342 patients with diabetes. The

evaluation was conducted considering
52,004 patients. Validation set:

200,136 fundus images, three external
datasets, 209,322 images

Area under ROC curves of 0.901, 0.941,
0.954, and 0.967 regarding the detection
of microaneurysms, cotton-wool spots,

hard exudates, and hemorrhages,
respectively. Area under the ROC curves

of 0.943, 0.955, 0.960, and 0.972,
regarding the grading of diabetic

retinopathy (mild, moderate, severe, and
proliferative). External validation, area

under the ROC curves ranging from
0.916 to 0.970

DeepDR showed significant
accuracy and high sensitivity

in detecting diabetic
retinopathy from

early-to-late stages

[255]

ML approach based on deep
and transfer learning

Diagnosis regarding
early-onset glaucoma using

October images

The DL model was built from
4316 October images (1565 eyes from
patients suffering from glaucoma and

193 normal eyes) used as a pre-training
set. A set of October images trained the
model (94 eyes from patient with early

glaucoma, 84 healthy eyes). Test set
comprised 114 eyes from 114 patients at

early stages of glaucoma and 82 eyes
from 82 healthy people

The DL model displayed an area under
the ROC curve of 93.7%, considerably
decreasing (to 76.6 and 78.8%) with no
pre-training procedure, suggesting a

relevant sensitivity and specificity of the
DL model to diagnose glaucoma

The use of ML approaches
can offer a significant

improvement in diagnostic
performances, assisting

clinicians in making
a decision

[263]

ML-based model
CNN algorithm Diagnostic model for DME

The model was generated from
38,057 October images (drusen, CNV,

DME, healthy) by CNN technique.
Training set 37,457 samples (9891 CNV,

9633 DME, 7975 drusen, and
9958 healthy). Validation set 600 samples

(150 CNV, 150 DME, 150 drusen and
150 healthy)

The developed computational tool
showed 94.5% accuracy, 97.2% precision,
97.7% sensitivity, and 97% specificity in

the independent testing dataset

October images can be used
for assessing the health of

patients, automatically and
accurately diagnosing several

eye health conditions

[258]

Abbreviation: CNN—convolutional neural network; CNV—choroidal neovascularization; DeepDR—DL diabetic retinopathy; DME—diabetic macular edema; DNN—deep neural network; DL—deep learning;
ML—machine learning; OCT—optical coherence tomography; ROC—receiver operating characteristic.
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2.2.4. AI/ML in Central Nervous System (CNS)-Related Disorders

Another interesting area in which AI/ML and DL have also been widely employed
for brain image assessment to develop imaging-based diagnostic and classification sys-
tems is that of neurology and central nervous system (CNS)-related disorders, such as
psychiatric disorders, demyelinating diseases, neurodegenerative disorders, epilepsy,
and strokes [131,264–269]. Together with extensive usage in image recognition, language
processing, and data mining, ML approaches have also obtained growing interest in
neurological-related applications, ranging from automated imaging assessment to disorder
prediction. In epilepsy, ML approaches are currently applied for automatically detecting
seizures using electroencephalography (EEG), video, and kinetic data, automated imaging
analysis and pre-surgical planning, prediction of medication response, and prediction
of medical and surgical outcomes using several data sources. This was accomplished
by different ML techniques, including ANN, SVM, decision tree, RF, and decision forest
(Table 6) [269]. For example, in a recent study, Abdelhameed and Bayoumi used EEG
data for developing an ML model based on a DL approach for identifying seizures in
pediatric patients based on the classification of raw multichannel EEG signal recordings
after a limited pre-processing step. The developed ML model based on the CNN tech-
nique takes advantage of the automatic feature learning abilities of a two-dimensional
deep convolution autoencoder (2D-DCAE) associated with a neural network-based clas-
sifier to generate a unified system that is trained in a supervised way to attain the best
classification accuracy between the ictal and interictal brain state signals. Generally, two
subsequent steps are required for accomplishing the automatic detection of seizure after
the acquisition and pre-processing steps of EEG raw signals. The first step involves the
extraction and selection of specific characteristics of the EEG signals. In the second stage,
it is required to build and train a classification system to use the extracted features for
detecting epileptic events. Notably, the step regarding feature extraction directly influences
the accuracy/precision of the developed automatic seizure detection model. In the men-
tioned study, the used dataset was recorded at Boston Children’s Hospital, and consists
of the long-term EEG scalp recordings of 23 pediatric patients with intractable seizures,
while a DL-based system using a supervised 2D-DCAE approach was used for retrieving
epileptic seizures in the multichannel EEG signal recording. In order to test and assess
the strategy, two models were developed and evaluated, employing three different EEG
data segment lengths and a 10-fold cross-validation scheme. Considering five evaluation
metrics, the best-performing ML-based tool was a supervised DCAE. In particular, this
model showed 98.79% accuracy, 98.72% sensitivity, 98.86% specificity, 98.86% precision,
and an F1-score of 98.79% [268]. According to this study and other similar research works
in the field, the use of ML-based models can be useful in detecting seizures in epilepsy.
Furthermore, due to the improvement in processing capabilities, the availability of efficient
and more sophisticated ML methods, and the collection of larger datasets, scientists will
benefit from these computational approaches, with considerable progress acquired in their
use in epilepsy [268,269].
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Table 6. Main examples of AI/ML in CNS-related disorders.

AI Technique Target Dataset Statistical
Parameters Outcomes Ref

ML model based on
CNN technique

Automatic detection of seizure
for identifying epileptic events

Extraction and selection of specific
characteristics of the EEG signal dataset was
recorded at Boston Children’s Hospital from
23 pediatric patients with intractable seizures

The model showed accuracy 98.79%,
sensitivity 98.72%, specificity 98.86%,
precision 98.86%, F1-score of 98.79%

ML-based models can be useful
in detecting seizure in epilepsy [268]

ML algorithm based on
SVM technique

Classification of adult ADHD
using EEG data

The model was trained using 117 adults
(67 ADHD, 50 healthy) from four conditions:
two resting conditions (eyes open and eyes
closed) and two neuropsychological tasks

(visual and emotional continuous
performance tests). Four datasets (one for

each condition) independently trained
diverse SVM classifiers

Model performances:
normal vs. ADHD >70%

ADHD II vs. ADHD III >90%
ADHD III vs. ADHD IV >87%

ML-based model discriminated
patients with ADHD from

healthy subjects, differentiating
ADHD subtypes

[270]

ML-based model Prediction of ADHD by
employing CPT indices

CPT indices from 458 children were used for
training, cross-validating, and testing ML

models (age 6–12 years, 213 ADHD patients
and 245 healthy)

The tool was capable of discriminating
patients with ADHD, showing an accuracy of
87%, sensitivity of 89%, and specificity of 84%

ML models can accurately
classify ADHD using CPT data [271]

ML model based on RF technique

Approach for discriminating
ADHD patients from healthy
subjects using multivariate,

genetic, and PET imaging data

The model was built considering 16 ADHD
patients and 22 healthy subjects. These

groups were scanned via PET for measuring
the SERT binding potential. The subjects were

analyzed on the basis of 30 possible SNPs

The results regarding the model performances
revealed an accuracy of 0.82, sensitivity of

0.75, and specificity of 0.86

The outcomes highlighted the
relevance of SERT along with

SNPs in ADHD, indicating that a
diagnostic tool based on these

features supports clinical
decisions

[272]

ML model based on the
CNN technique

Discrimination of ADHD patients
from healthy subjects using data

extracted from EEG analysis

EEG data obtained from 20 ADHD patients
and 20 healthy controls were used to train the

model

The computational tool can correctly
categorize ADHD patients with an accuracy

of 88%

CNN algorithm built using EEG
data is suitable for developing

diagnostic tools for ADHD
[273]

ML-based approach based on DL
technique

Approach for an early diagnosis
of AD from MRI and FDG-PET

images

Data from 1242 subjects with both a
T1-weighted MRI scan and FDG-PET images

from ADNI database were used for
developing and validating the model.

Subjects were clustered into 5 classes: (1) sNC
360 subjects; (2) sMCI 409 subjects; (3) pNC
18 subjects; (4) pMCI 217 subjects; (5) sAD

238 subjects

The classifier trained using pNC, pMCI, and
sAD samples showed the highest

classification accuracy of 82.4% (identification
of individuals with MCI who will convert to

AD), a 94.23% sensitivity in classifying
persons with probable AD, a 86.3% specificity

in classifying non-dementia controls

The results indicate that DNN
classifiers may be useful as a
potential tool for providing
evidence in support of the

clinical diagnosis of probable AD

[274]

DL algorithm based on DPN Approaches for AD diagnosis
and progression

Data from ADNI dataset (MRI and PET
images from 51 AD patients, 99 MCI patients

(43 MCI-C, who progressed to AD, and
56 MCI-NC, who did not progress to AD in

18 months), and 52 NC

Validation results using ROC curve showed
an area under the curve of 0.897

ML-based approaches for correct
AD diagnosis, classifying all

stages of AD progression
[275]
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Table 6. Cont.

AI Technique Target Dataset Statistical
Parameters Outcomes Ref

ML approach based on CNN Classification of CT brain images
for AD patients

Three main groups containing subjects with
AD (1000 images), lesions (e.g., cancer)

(947 images), or normal aging (2129 images).
These data were used for training the model

Accuracy of 88.8%, 76.7%, and 95% for groups
of AD, lesion and normal, respectively

(average of 86.8%)

ML approach based on CNN is
suitable for classifying CT brain

images for AD
[276]

ML-based models,
LRCV technique

Extraction of extracting
spectrogram features from

speech data for identifying early
AD

Info from speech dataset, based on the
spectrogram features (extracted based on

audio data using an algorithm ad hoc), that
enclosed AD patients and healthy subjects as
controls. A total of 36 subjects were included

in the collected speech dataset (23 AD
13 healthy)

LRCV accuracy 0.833, precision 0.869, recall
0.869, F1-score 0.869

Identification of AD at early
stages for providing therapies for
delaying the disorder progression

[277]

ML approach
EN, SVM, GP, k-NN

Prediction of possible
progression of patients with MCI

and preMCI to AD in 3 years

ML models were trained employing
information from 90 patients with MCI and

94 subjects with PreMCI

The best performing ML model based on
SVM technique showed an area under the

ROC curve of 0.962 and an accuracy of 0.913

Possible use of ML applications
in medical practice and clinical

trials
[278]

Abbreviation: AD—Alzheimer’s disease; ADHD—attention deficit hyperactivity disorder; ADNI—Alzheimer’s disease neuroimaging initiative; CPT—continuous performance test; CNN—convolutional neural
network; CT—computed tomography; DL—deep learning; DPN—deep polynomial networks; DNN—deep neural network; EEG—electroencephalography; EN—elastic net; FDG-PET—fluorodeoxyglucose
positron emission tomography; GP—gaussian processes; k-NN—k-nearest neighbors; LRCV—logistic-regressionCV; MCI—mild cognitive impairment; MCI-C—MCI converters; MCI-NC—MCI non-converters;
ML—machine learning; MRI—magnetic resonance imaging; NC—normal controls; PET—positron emission tomography; pMCI—progressive MCI; pNC—progressive NC; RF—random forest; ROC—receiver
operating characteristic; sAD—stable AD; SERT—serotonin transporter; sMCI—stable MCI; sNC—stable NC; SNPs—single-nucleotide polymorphisms; SVM—support vector machine.
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Considering CNS-related disorders, AI/ML approaches have been used for classifying
and diagnosing patients with ADHD (attention deficit hyperactivity disorder). Tenev and
colleagues used an ML algorithm based on the SVM technique for classifying adult ADHD
using EEG data. The model was trained by enclosing 117 adults (67 ADHD, 50 healthy).
Four conditions were considered during measurements: two resting conditions (eyes open
and eyes closed) and two neuropsychological tasks (visual continuous performance test
and emotional continuous performance test). The authors considered four datasets (one
for each condition) that independently trained diverse SVM classifiers. The output was
combined, employing a logical expression obtained from the Karnaugh map. The eval-
uation of the developed computational protocol indicated that following this strategy,
it is possible to discriminate patients with ADHD from healthy subjects, differentiating
ADHD subtypes [270]. Slobodin and coworkers applied an ML-based model for predicting
ADHD by employing a continuous performance test (CPT) index. These data from 458 chil-
dren were used for training, cross-validating, and testing ML models (age 6–12 years,
213 ADHD patients and 245 healthy). Authors used the CPT total score containing four
indices (timeliness, attention, impulsiveness, and hyperactivity) and four variables (gender,
age, day of the week, and time of day), to obtain relevant data capable of discriminating
patients with ADHD. The developed model showed significant predictivity, displaying
accuracy, sensitivity, and specificity of 87%, 89%, and 84%, respectively. Interestingly,
ML models can accurately classify ADHD using CPT data [271]. In another impressive
work, Kautzky and collaborators described the development of an ML model for discrim-
inating ADHD patients form healthy subjects using multivariate, genetic, and positron
emission tomography (PET) imaging data. They selected 16 patients with ADHD and
22 healthy subjects. These groups were scanned via PET for measuring the serotonin
transporter (SERT) binding potential, employing the radioligand [11C]DASB (3-amino-
4-(2-dimethylaminomethylphenylsulfanyl)-benzonitrile). The considered subjects were
analyzed based on 30 possible single-nucleotide polymorphisms (SNPs) involving HTR1A,
HTR1B, HTR2A, and TPH2 genes. Accordingly, authors defined cortical and subcortical
regions of interest (ROI), and an ML model based on the RF technique was employed
for selecting and classifying relevant features in a 5-fold cross-validation model (10 re-
peats). The results regarding the model performances revealed an accuracy, sensitivity,
and specificity of 0.82, 0.75, and 0.86, respectively, indicating the significant predictivity
of the model. Furthermore, the outcomes highlighted the relevance of SERT along with
HTR1B and HTR2A genes in ADHD, indicating disease-specific effects and suggesting
that a diagnostic tool based on these features can be suitable for supporting clinical de-
cisions [272]. In the last example, Dubreuil-Vall and colleagues developed an ML model
based on the CNN technique with a four-layer architecture combining filtering and pooling,
employing various types of data extracted from EEG analysis for discriminating ADHD
patients from healthy subjects. These data obtained from 20 ADHD patients and 20 healthy
controls were used to train the model. Based on the results presented by the authors, the
computational tool can correctly categorize ADHD patients, showing an accuracy value of
88%, outperforming other models such as RNN and other ML models previously reported.
Although the data are interesting and promising, studies considering a more consistent
number of participants are highly desirable [273].

A different field in which the imaging techniques can be helpful during diagnosis is
the area of neurodegenerative diseases. In fact, the multifactorial and complex molecular
mechanisms involved in neurodegeneration make the discovery of tools for early diagnosis
challenging, as well as the identification of effective treatments. In this scenario, ML-based
approaches allow this gap to be reduced, assisting researchers in devising an early diagno-
sis, interpreting brain images and developing potential effective therapeutic strategies [266].
In fact, regarding AD, a precise diagnosis, and its early-stage characterization, such as mild
cognitive impairment (MCI), is essential to opportunely treat and possibly slow down AD
progression. Accordingly, Lu and coworkers described an ML-based approach based on
the DL technique for an early diagnosis of AD. They proposed a multimodal and multiscale
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ML-based method in which information from magnetic resonance imaging (MRI) and
fluorodeoxyglucose positron emission tomography (FDG-PET) images were combined
within the DNN framework for discriminating AD patients. For developing the above-
mentioned model, the following two steps are required: (I) Pre-processing images from
MRI and FDG-PET. This step allows the sub-division of the gray matter into patches of a
range of sizes, for extracting features from each patch size; (II) Training a DNN algorithm
for learning the patterns for discriminating AD individuals. Next, the ML-based model
can be employed for an individual classification. Data from 1242 subjects with both a
T1-weighted MRI scan and FDG-PET images from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database were used for developing and validating the model. Subjects
were clustered into five classes based on clinical diagnosis: (1) stable normal controls (sNC),
360 subjects; (2) stable MCI (sMCI), 409 subjects; (3) progressive NC (pNC), 18 subjects
assessed to be NC at baseline visit but progressed to a clinical diagnosis of possible AD;
(4) progressive MCI (pMCI), 217 subjects evaluated to be MCI at the baseline visit and
progressed to a clinical diagnosis of possible AD at some point in the future; and (5) stable
AD (sAD), 238 subjects with AD. Furthermore, the classifier trained with the combined
samples of pNC, pMCI, and sAD was found to yield the highest overall classification
accuracy of 82.4% (accuracy in identifying individuals with MCI who will convert to AD
at 3 years before conversion (86.4% combined accuracy for conversion within 1–3 years)),
a 94.23% sensitivity in the classification of persons with a clinical diagnosis of probable
AD, and an 86.3% specificity in the classification of non-dementia controls. These results
suggest that DNN classifiers may be useful as a potential tool for providing evidence in
support of the clinical diagnosis of probable AD [274]. Shi and colleagues highlighted
the importance of combining information derived from different tests. To this end, they
developed a DL algorithm based on deep polynomial networks (DPN) to develop a com-
putational model trained by multimodal neuroimaging data (MRI and PET). In the selected
work, they built a multimodal stacked DPN (MM-SDPN) algorithm. MM-SDPN involves
two SDPN stages, one dedicated to fusing multimodal neuroimaging data, and the other
devoted to learning high-level features from AD diagnosis. The authors used data from the
ADNI dataset (same MRI and PET images from 51 AD patients, 99 MCI patients (43 MCI
converters [MCI-C], who progressed to AD, and 56 MCI non-converters [MCI-NC], who
did not progress to AD in 18 months), and 52 normal controls (NC)). The developed MM-
SDPN algorithm was applied to the ADNI dataset for conducting both binary classification
and multiclass classification tasks. Validation results using a ROC curve showed an area
under the curve of 0.897, indicating that the MM-SDPN approach performed better than
other multimodal ML-based approaches in achieving correct AD diagnosis, being able to
classify all stages concerning AD progression [275]. Gao and collaborators, by using an
ML approach based on the CNN technique, classified computed tomography (CT) brain
images with the aim to translate images into clinical applications. This classification was
carried out considering three main groups: containing subjects with AD (1000 images),
lesions (e.g., cancer) (947 images), or normal aging (2129 images). Interestingly, because of
the features of CT brain images with higher thickness, the authors considered both 2D and
3D CNN in this research. The fusion was consequently performed considering both 2D CT
images along the axial direction and 3D segmented blocks with accuracy rates of 88.8%,
76.7%, and 95% for groups of AD, lesion, and normal, respectively, leading to an average of
86.8%. Accordingly, adopting the ML approach based on CNN makes it possible to classify
CT brain images for AD with great accuracy [276]. In another interesting approach, Liu and
collaborators conceived a different ML approach to identify AD. In particular, the authors
collected a novel speech dataset, based on the spectrogram features (extracted based on
audio data using an algorithm ad hoc) that enclosed AD patients and healthy subjects as a
control. Next, ML-based models were employed for comparing this new dataset with the
speech provided by the Dem@Care project. Among the assessed ML-based models, the
logistic regression CV (LRCV) model showed the best performance. Notably, the authors
demonstrated that ML-based approaches, trained by extracting spectrogram features from
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speech data, can be applied for identifying AD, helping in understanding the development
of AD at early stages for providing therapies to delay disorder progression [277]. Finally,
we report an interesting ML approach described by Grassi and colleagues. Their study
focused on the development of an algorithm for predicting, based on a time of 3 years, a
possible progression of patients with MCI and preMCI to AD. ML models were trained
by employing information from 90 patients with MCI and 94 subjects with PreMCI, with
a diagnostic follow-up evaluation for at least 3 years. They extracted several features
from the data for a total of 36 predictors (e.g., diagnostic subtypes, clinical and neuropsy-
chological test scores, sociodemographic characteristics, cardiovascular risk indexes, and
levels of medial temporal lobe brain atrophy in the hippocampus (HPC), the perirhinal
cortex (PRC), and the entorhinal cortex (ERC), and assessed by a clinician-rated Visual
Rating Scale (VRS)). To model these data, the authors used several ML-based techniques,
including Elastic Net (EN) with polynomial features, SVM, Gaussian processes (GP), and
k-NN. The resulting models were validated using leave-pair-out-cross-validation. The
best-performing ML model based on the SVM technique showed an area under the ROC
curve of 0.962, with an accuracy of 0.913 [278]. The reported work further demonstrated
how ML applications can assist translational research, providing computational tools for
prompt applications in medical practice and clinical trials. Similarly, comparable pro-
cedures, extracting specific features from available data, allowing the development of
ML-based models for Parkinson’s disease (PD). In fact, as reported for AD, several stud-
ies highlighted that through ML-based approaches applied to PD [279], it is possible to
predict the progression of the disorder by employing serum cytokines [280], MRI [281],
and walking tests [282]; to estimate the state of PD, employing longitudinal data [283]; to
rate the main symptoms (resting tremor and bradykinesia) [284]; and to produce a correct
diagnosis from EEG analysis [285,286] and from voice datasets [287,288].

2.2.5. AI in Cardiology and Cardiovascular Diseases

Due to the enormous progress in cardiovascular imaging, along with the advancement
of recording technologies, enabling the acquisition of complex and huge multi-dimensional
data, AI/ML can be applied in cardiology. ML-based techniques allow cardiologists to
investigate new possibilities, producing findings not detected using classical strategies. Ad-
ditionally, considering this field, ML can offer novel chances for improving patient support
(survival prediction, appropriate diagnoses, and pharmacological treatments) and medical
decision making, covering the gap between the swift progress of cardiac imaging and clini-
cal care [134,289,290]. Several studies in cardiology and related fields employed supervised
ML models as diagnostic predictors [291,292]. These computer-based tools can extract
specific features obtained from imaging data and clinical outcomes, selecting features
derived from any imaging data sample (e.g., electrocardiograms (ECG), echocardiograms,
cardiac MRI, cardiac computed tomography (CCT)) for providing specific diagnoses [293].
In this section, some relevant and innovative examples of ML applications in cardiol-
ogy field are examined and discussed (Table 7). Madani and colleagues developed an
ML protocol based on the DL approach using the CNN algorithm for establishing an AI
tool to interpret echocardiograms. They trained a CNN using images and video from
267 transthoracic echocardiograms depicting real-world clinical variation (e.g., different
patient variables, echocardiographic indications, technical qualities, and pathologies) for
classifying 15 distinct standard echocardiographic views. For generating the CNN model,
they employed over 200,000 images (240 studies) for arranging a training and validation set
of over 20,000 images (27 studies), comprising the test set. The developed computer-based
model showed an overall accuracy of 97.8% on videos (F-score 0.964 ) and of 100% on seven
of the twelve video views, supporting the robustness of the approach [294]. Another study
performed by Madani and colleagues reported the development of an ML-based approach
using the CNN technique, employing DL classifiers for automatically interpreting echocar-
diographic data. The results from this report showed an accuracy of 94.4%, considering
15 echocardiographic view classifications of still images and 91.2% accuracy for binary
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left ventricular hypertrophy view classification. Subsequently, the authors employed a
semi-supervised generative adversarial network model for detecting left ventricular hy-
pertrophy. The model showed excellent performances, accounting for an accuracy of 80%
in view classification and of 92.3% accuracy for left ventricular hypertrophy [295]. Zhang
and colleagues reported the development of different ML models based on the CNN tech-
nique for an automatic classification of echocardiogram data for detecting three distinct
cardiovascular diseases: hypertrophic cardiomyopathy, cardiac amyloid, and pulmonary
arterial hypertension. For training and validating the models for multiple tasks, the authors
used 14,035 echocardiograms, spanning a 10-year period. The results were assessed by
comparing data from manual segmentation and measurements considering 8666 echocar-
diograms from routinary clinical assessment. The developed CNN models were able to
identify views, including flagging partially obscured cardiac chambers and facilitated the
segmentation of individual cardiac chambers. Overall, the authors’ findings demonstrated
that automated measurements can be similar or even superior to manual measurements,
considering 11 internal consistency metrics (e.g., the correlation of left atrial and ventricular
volumes). Furthermore, CNN models appropriately detect hypertrophic cardiomyopathy,
cardiac amyloidosis, and pulmonary arterial hypertension, showing C statistical parame-
ters of 0.93, 0.87, and 0.85, respectively [296]. Interestingly, echocardiography outcomes
were used from Samad and colleagues to develop a supervised ML model based on RF
algorithm to predict future adverse cardiac events. In fact, the RF algorithm was employed
for predicting survival from echocardiography data. They trained the model employing the
information obtained from echocardiograms considering 171,510 patients, providing three
different classes of input: (I) clinical variables, such as 90 cardiovascular-relevant interna-
tional classification of diseases (ICD)-10 codes, sex, weight, age, height, blood pressures,
heart rate, LDL, HDL, and smoking; (II) clinical variables plus physician-reported ejection
fraction; and (III) clinical variables, ejection fraction, plus 57 additional echocardiographic
measurements. The ML models based on the RF algorithm showed good accuracy regard-
ing the prediction, with an area under the ROC curve >0.82 greater than conventional
clinical risk scores (area under the ROC curve ranging from 0.61 to 0.79). Accordingly,
ML can successfully use combining several and distinct input variables for predicting
survival considering echocardiography data [297]. Again, the CNN technique was also
used from Strodthoff and coworkers for developing an ML model for detecting myocardial
infarction directly from ECG with no preprocessing. They used a dataset of 549 ECG
outcomes from 290 subjects available from the Physikalisch Technische Bundesanstalt (PTB)
database, which enclosed a large amount of publicly accessible ECG data. The developed
ML model based on a DL approach showed a sensitivity and specificity of 93.3% and
89.7%, respectively, as assessed by employing a 10-fold cross-validation with sampling
established on patients. The described model was able to detect myocardial infarction
and it showed performances comparable with those obtained from human cardiologists.
Furthermore, another analysis showed that it is also able to discriminate channel-specific
regions, substantially contributing to the neural network’s decision. This highlighted that
the same signs indicative of myocardial infarction recognized by human cardiologists were
underlined from the ML model. This work further demonstrated that ML models applied
to ECG evaluation can be progressed into clinical application [298]. Hannun and coworkers
developed an ML model based on the DNN technique, employing ECG data, for detecting
arrhythmias. The DNN algorithm was trained using 91,232 single-lead ECG records from
53,549 patients who used a single-lead ambulatory ECG monitoring device for classifying
12 rhythm classes (10 arrhythmias, as well as sinus rhythm and noise). The resulting
model was validated using an independent test set (328 ECGs collected from 328 patients),
showing an average area under the ROC curve of 0.97. Moreover, the median F1 score,
which represents the harmonic mean of the positive predictive value and sensitivity, for
the DNN (0.837) surpassed that of average cardiologists (0.780) for all rhythm classes. The
results clearly indicate that the ML approach based on DNN can be used for correctly
classifying different types of arrhythmias from ECG outcomes. This approach could hold
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tremendous potential if used in clinical settings, reducing misdiagnoses to prioritize urgent
health status [299]. Recently, Elul and colleagues used ECG data for developing an ML
model to detect a heterogeneous combination of known and unknown arrhythmias and
to identify underlying cardio-pathology, considering segments marked as normal sinus
rhythm documented in patients with intermittent arrhythmia [300]. Furthermore, asymp-
tomatic left ventricular dysfunction (ALVD) can be predicted using a CNN algorithm
employing ECG data, as reported by Attia and colleagues. The authors used paired 12-lead
ECG and echocardiogram data, including the left ventricular ejection fraction (a measure
of contractile function), considering 44,959 patients for training a CNN algorithm for iden-
tifying subjects affected by ventricular dysfunction (defined as ejection fraction ≤35%).
The developed model was tested against an independent set of 52,870 subjects, showing an
area under the ROC curve, accuracy, specificity, and sensitivity of 0.93, 85.7%, 85.7%, and
86.3%, respectively. Very interesting is that the authors found that in patients devoid of
ventricular dysfunction, those with positive outcomes, indicated by the ML model, were
at four times the risk (hazard ratio, 4.1; 95% confidence interval, 3.3 to 5.0) of developing
future ventricular dysfunction compared with those with a negative screen. Remarkably,
the application of AI/ML to ECG data is versatile for predicting many possible outputs,
in order to find potential subjects who will develop a given disorder, as in the case of
ALVD [301]. The following example reported the use of an unsupervised ML approach
for assessing diastolic dysfunction. The objective of the study conducted by Pandey and
collaborators was to develop an ML model based on the DNN technique for integrating
multidimensional echocardiographic data, with the aim to detect distinct patient subgroups
with heart failure in conjunction with preserved ejection fraction (HFpEF). This study is
particularly relevant, since, currently, no algorithms translated for clinical use exist for
phenotyping the severity of diastolic dysfunction in HFpEF. The authors established a DNN
model for predicting high- and low-risk phenogroups in a derivation group (n = 1242).
Next, two external groups were considered for validating the performance of the model in
identifying high left ventricular filling pressure (n = 84) and assessing its prognostic capac-
ity in patients (n = 219) presenting different degrees of systolic and diastolic dysfunction.
Notably, the clinical relevance of the ML model was evaluated in three HFpEF clinical trials
by assessing the relationships of the groups with adverse clinical consequences (TOPCAT
trial, NCT00094302, n = 518), cardiac biomarkers, and exercise parameters (NEAT-HFpEF
trial, NCT02053493, and RELAX trial, n = 346). Notably, the developed unsupervised
ML model based on the DNN technique showed an area under the ROC curve higher
than that reported by the American Society of Echocardiography guidelines for predicting
high left ventricular filling pressure (0.88 vs. 0.67; p = 0.01). Furthermore, the developed
model showed high performance when also considering the validation sets, including the
three HFpEF clinical trials. In fact, the DNN classifier can depict the severity of diastolic
dysfunction and identify a specific subgroup of patients with HFpEF showing high left
ventricular filling pressure, biomarkers of myocardial injury and stress, and adverse events,
and those who are more likely to respond to spironolactone [302]. Another interesting
application of an ML model applied to the cardiovascular system was described by Ma and
coworkers. They started considering the relationships between carotid plaque echogenicity
in ultrasound images and the risk of stroke in atherosclerotic patients. For accurately classi-
fying carotid plaques to estimate their stability to predict cardiovascular events, the authors
used an ML model employing the CNN technique. This approach automatically provides a
carotid plaque echogenicity classification. For improving the reliability of the method, the
authors redesigned the spatial pyramid pooling (SPP) and proposed multilevel strip pool-
ing (MSP) for the automatic and accurate classification of carotid plaque echogenicity in the
longitudinal section. By performing this step, the resulting MPS module was able to accept
arbitrarily sized carotid plaques as input and capture a long-range informative context
for improving the accuracy of classification. Accordingly, the scientists implemented an
MSP-based CNN, employing the visual geometry group (VGG) network as the backbone.
They trained the model using 1463 carotid plaque images (335 echo-rich plaques, 405 inter-
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mediate plaques, and 723 echolucent plaques). The five-fold cross-validation results show
that the proposed MSP-based VGGNet achieved a sensitivity of 92.1%, specificity of 95.6%,
accuracy of 92.1%, and F1-score of 92.1%. The findings of this work prove that this strategy
is relevant for enhancing the applicability of CNN using any input size of samples, leading
to an improvement in the accuracy of classification, making the objective risk assessment
more effective [303].

The rising usage of ML-based approaches in cardiology is likely to continue in the
foreseeable future. Following a proper validation, they might enhance treatment outcomes
by facilitating daily workflow, patient satisfaction, early identification, and the correct
interpretation of data.
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Table 7. Main examples of AI/ML in cardiology and cardiovascular diseases.

AI Technique Target Dataset Statistical Parameters Outcomes Ref

DL approach CNN algorithm AI tool to interpret
echocardiograms

The model was trained using images
and video (267 transthoracic

echocardiograms) consisting of
200,000 images (240 studies) for

arranging a training and validation set
and a test set of over 20,000 images

The developed computer-based model
showed an overall accuracy of 97.8% on

videos (F-score 0.964) and of 100% on
seven of the 12 video view

The use of CNN algorithms is
suitable for a correct

interpretation of
echocardiograms

[294]

ML-based approach using
CNN technique

Development of DL
classifiers for automatically

interpreting
echocardiography data

The model was built using a dataset of
347,726 echocardiogram images

(325,980 images were in the training set)

The model showed accuracy of 94.4%
considering 15 echocardiographic view
classifications of still images and 91.2%

accuracy for binary left ventricular
hypertrophy view classification

Efficient DL solutions for
medical imaging assessment

in cardiology
[295]

ML models based on
CNN technique

Approach for an automatic
classification of

echocardiograms to detect
three cardiovascular diseases:

hypertrophic
cardiomyopathy, cardiac
amyloid, and pulmonary

arterial hypertension

For training and validating the models
14,035 echocardiograms spanning a

10-year period were used. Results were
assessed by comparing data from

manual segmentation and
measurements considering

8666 echocardiograms from clinical
assessment

CNN models appropriately detect
hypertrophic cardiomyopathy, cardiac
amyloidosis, and pulmonary arterial
hypertension showing C statistical

parameters of 0.93, 0.87,
and 0.85, respectively

ML models are useful for
classifying echocardiograms

and for detecting
cardiovascular disorders

[296]

Supervised ML model based
on RF algorithm

Approach for predicting
future adverse cardiac

events—RF algorithm for
predicting survival from
echocardiography data

The model was trained using
echocardiograms from 171,510 patients

The ML model showed an area under
the ROC curve >0.82 greater than

conventional clinical risk scores (area
under the ROC curve ranging from 0.61

to 0.79)

ML can successfully be used
for predicting survival

considering
echocardiography data

[297]

ML model based on
CNN technique

ML model for detecting
myocardial infarction directly

from ECG with no
preprocessing

Dataset of 549 ECG outcomes from
290 subjects (PTB database) was used

The ML model showed sensitivity of
93.3% and specificity of 89.7%
as assessed employing 10-fold
cross-validation with sampling

established on patients

The model detected
myocardial infarction with
performances comparable
with those obtained from

human cardiologists

[298]

ML model based on
DNN technique

Approach for detecting
arrhythmias employing

ECG data

The model was trained using
91,232 single-lead ECG records from

53,549 patients for classifying 12 rhythm
classes (10 arrhythmias, sinus rhythm

and noise). Validation test set 328 ECGs
collected from 328 patients

The ML model showed an area under the
ROC curve of 0.97. The F1 score of 0.837
surpassed that of average cardiologists

(0.780) for all rhythm classes

The results clearly indicate
that the ML approach based

on DNN can be used for
correctly classifying different

types of arrhythmias from
ECG outcomes

[299]
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Table 7. Cont.

AI Technique Target Dataset Statistical
Parameters Outcomes Ref

CNN algorithm ALVD can be predicted
employing ECG data

Dataset composed of
ECG/echocardiogram data from

44,959 patients for training a CNN
algorithm. The developed model was
tested against an independent set of

52,870 subjects

The model showed an area under the
ROC curve, accuracy, specificity, and
sensitivity of 0.93, 85.7%, 85.7%, and

86.3%, respectively

AI/ML to ECG data is
versatile for predicting

possible outputs for finding
potential subjects who will

develop ALVD

[301]

Unsupervised ML approach
based on DNN technique

Approach for assessing
diastolic dysfunction

integrating multidimensional
echocardiographic data with

the aim to detect distinct
patient subgroups

with HFpEF

The established DNN model predicted
high- and low-risk phenogroups in a

derivation group (n = 1242). Two
external groups for validating the model

to identify high left ventricular filling
pressure (n = 84) and assessing its

prognostic capacity in patients (n = 219)
showing different degrees of systolic and

diastolic dysfunction

The relevance of the ML model was
evaluated in three HFpEF clinical trials

by assessing the relationships of the
groups with adverse clinical outcomes.
The developed model showed an area

under ROC curve higher than that
reported by the American Society of

Echocardiography guidelines for
predicting high left ventricular filling

pressure (0.88 vs. 0.67; p = 0.01)

The DNN classifier can depict
the severity of diastolic

dysfunction and identify a
specific subgroup of patients

with HFpEF

[302]

ML model employing
CNN technique

Approach for accurately
classifying carotid plaques to

estimate their stability to
predict cardiovascular events

The model was trained using
1463 carotid plaque images (335

echo-rich plaques, 405 intermediate
plaques, and 723 echolucent plaques)

The model showed sensitivity of 92.1%,
specificity of 95.6%, accuracy of 92.1%,

F1-score of 92.1%

The findings of this work
proved that this strategy is
relevant for enhancing the
applicability of CNN using
any input size of samples

[303]

Abbreviation: ALVD—asymptomatic left ventricular dysfunction; CNN—convolutional neural network; DNN—deep neural network; DL—deep learning; ECG—electrocardiograms; HFpEF—heart failure in
conjunction with preserved ejection fraction; ML—machine learning; PTB—Physikalisch Technische Bundesanstalt; RF—random forest; ROC—receiver operating characteristic.
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2.2.6. AI in Gastroenterology

In the area of gastroenterology, clinicians work with many clinical data and several
imaging technologies, including endoscopy and ultrasound. In this context, for managing
and analyzing huge quantities of information, AI/ML methodologies can play a pivotal
role regarding image analysis, diagnosis, prognosis, and possible treatments. AI/ML-based
techniques can be applied to gastroenterology for improving endoscopic diagnosis, allow-
ing the detection of abnormalities of the gastrointestinal tract such as colorectal polyps,
malignancies such as esophageal, gastric, and intestinal tumors, and conditions such as
inflammatory bowel disease, irritable bowel syndrome, and peptic ulcer bleeding [304–306].
We report here some relevant examples demonstrating the translational potential of the
AI/ML-based approach in gastroenterology (Table 8). Mori and collaborators reported an
AI approach for detecting small (<5 mm) adenomatous or sessile polyps, usually extremely
difficult to identify for clinicians employing colonoscopy. For validating the approach in
a prospective, single-group, and open-label clinical trial (UMIN000027360), they trained
an ML-based model with data from 325 subjects presenting 466 microscopic polyps. In
this prospective study, the model showed an accuracy of 94% (with a negative predictive
value of 96%), including a pathologic prediction rate of 98.1% (457 of 466) [307]. In another
approach, Wang and colleagues developed an ML algorithm for detecting polyps in clinical
colonoscopy investigations. Specifically, they generated a DL algorithm trained by employ-
ing data derived from 1290 patients (5545 colonoscopy images). The training of the model
was performed in two separate steps: (1) A training step in which 4495 images were used,
selecting 2607 images containing polyps and 1888 images with no polyps. The training
data were employed for optimizing the network parameters; (2) A tuning step in which
1050 images (1027 with polyps and 23 without polyps) were considered for optimizing
hyperparameters. The authors validated the approach using information obtained from
(I) A novel collected set consisting of 27,113 colonoscopy images taken from 1138 patients,
presenting, as a minimum, one detected polyp. The calculated statistical parameters
demonstrated the validity of the approach, showing a sensitivity of 94.38% and a specificity
of 95.92%, with an area under the ROC curve of 0.984; (II) A public database containing
clinical images of 612 polyps (sensitivity of 88.24%); (III) A total of 138 colonoscopy videos,
including histologically established polyps (sensitivity of 91.64%; per-polyp sensitivity of
100%); (IV) A set of 54 intact full-range colonoscopy videos with no polyps (specificity of
95.40%). The developed DL model has great potential in assisting clinicians while conduct-
ing colonoscopy, being able to correctly discriminate polyps and adenomas [308]. Byrne
and coworkers developed an ML model based on the deep CNN technique for real-time
evaluation of endoscopic video images of colorectal polyps. The model was trained and
validated using untouched video data derived from routine clinical investigations not
adapted for classification based on an AI approach. For assessing the performance of the
developed computational tool, the authors tested the model, employing an independent
set of 125 videos of sequentially encountered diminutive polyps classified as adenoma-
tous or hyperplastic polyps. The ML model showed a sensitivity of 98%, a specificity of
83%, and an accuracy of 94%, being able to discriminate hyperplastic from adenomatous
polyps [309]. Urban and colleagues used a similar approach to develop a deep CNN
algorithm for detecting polyps from colonoscopy exams. They trained an ML model by em-
ploying 8641 hand-labeled images, with 4088 unique polyps, from colonoscopy screenings
derived from over 2000 subjects. The authors tested the model using 20 colonoscopy videos
(5 h of duration). When validated considering manually labeled images, the developed
model detected polyps with an area under the ROC curve of 0.991 and an accuracy of 96.4%.
Interestingly, in the examination of colonoscopy videos where 28 polyps were removed,
four expert reviewers found eight extra polyps with no ML-based support that had not
been removed and observed further 17 polyps by taking advantage of CNN support (45 to-
tal polyps). Notably, every one of the polyps removed and detected by experts were found
using the ML-based model, although the computational tool showed 7% false positives.
However, the CNN algorithm identified a number of polyps higher than that observed by
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expert clinicians. Notably, the additional polyps found by the model were small adenomas
with a size ranging from 1–3 to 4–6 mm [310]. Regarding gastrointestinal malignancies,
some methods, based on AI/ML, for detecting cancers in the gastrointestinal tract have
been described. For example, Tokai and colleagues, in their study, estimated the diagnostic
capability of an ML tool based on the CNN algorithm in detecting esophageal squamous
cell carcinoma (ESCC) and assessing its invasiveness. For a comprehensive assessment
of the performances, they compared the acquired results with the findings obtained from
thirteen expert endoscopists. The CNN algorithm was trained using white light imaging
and narrow-band imaging endoscopic images, including 1751 images of ESCC. In the
validation step, the ML-based model identified 95.5% of ESCC in test pictures (279/291) in
ten seconds, properly estimating the invasion depth of ESCC, with a sensitivity of 84.1%
and accuracy of 80.9%, in six seconds. The diagnosis assisted by the CNN algorithm was
more accurate than the diagnosis of expert clinicians alone, indicating a potential role of
ML as an ESCC diagnostic tool [311]. Another example of an AI/ML application to detect
cancer and its invasive potential was carried out by Nakagawa and collaborators. They
reported the development of a DNN approach for diagnosing the invasion depth of ESCC.
The ML-based model was built by employing endoscopic images from subjects affected
by superficial ESCC. In particular, the authors generated a training set by collecting 8660
non-magnified endoscopic images, as well as 5678 magnified images, from 804 patients
with superficial ESCC presenting cancer invasion, while they compiled a validation test set
consisting of 405 non-magnified images and 509 magnified images from 155 subjects. The
DNN algorithm showed the following statistical parameters: specificity 95.8%, sensitivity
90.1%, accuracy 91%, positive predicted value 99.2%, and negative predictive value 63.9%.
These parameters highlighted the capacity of the model to identify pathologic mucosal
and submucosal microinvasive (SM1) cancers from submucosal deep invasive (SM2/3)
cancers. Compared with the assessment performed by a pool of experts, employing the
same validation set, the model showed a slight improvement in the performances, confirm-
ing the ability to detect the invasion depth in patients with superficial ESCC [312]. Other
interesting works in the field regard the possibility to assess the severity of inflammatory
bowel disease (IBD) and improve its classification by using the AI/ML approach. Ozawa
and coworkers developed an ML-based system for evaluating the severity of ulcerative
colitis. They developed a CNN algorithm trained on colonoscopy images (26,304 images)
derived from 841 subjects affected by ulcerative colitis. The performance of the ML model
was assessed considering an independent test set composed of 3981 images from 114
patients with ulcerative colitis. The model was examined for its capacity to distinguish
normal mucosa (Mayo 0) and mucosal healing state (Mayo 0–1). The validation was
achieved by calculating the areas under the ROC curve, and the results for the ML-based
model were 0.86 and 0.98 in identifying Mayo 0 and 0–1, respectively. The CNN algorithm
better performed for the rectum than for the right side and left side of the colon when
identifying Mayo 0 (areas under the ROC curve = 0.92, 0.83, and 0.83, respectively). This
work underlined the robustness of the method in identifying endoscopic inflammation
seriousness in subjects with ulcerative colitis, indicating that the CNN algorithm can assist
clinicians in determining severity-based therapies as well as follow-up endoscopy waits
for IBD [313]. Mossotto and collaborators developed an ML model for classifying pediatric
IBD, employing data derived from endoscopic and histological imaging of 287 children
affected by IBD. These data were used for developing, training, testing, and validating an
ML model for classifying disorder subtypes. Unsupervised ML models displayed wide
clustering of Crohn’s disease/ulcerative colitis, but no apparent subtype differentiation,
while hierarchical clustering recognized new categories with varying levels of colonic con-
tribution. Furthermore, endoscopic data alone, histological data alone, and a combination
of endoscopic/histological data were used to generate three supervised ML models, show-
ing a classification accuracy of 71.0%, 76.9%, and 82.7%, respectively. The most promising
ML model was assessed by considering an independent group of 48 children affected by
IBD. The findings demonstrated that the ML-based model appropriately classified patients
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with an accuracy of 83.3%. This work highlighted that for the development of a proper
supervised ML model, it is necessary to consider both endoscopic and histological data for
performing a more accurate classification of a disease [314].

A fascinating approach in which the AI/ML-based approach can be used is in the
field of food intolerance. In particular, starting from a decade ago, several computational
attempts were made for detecting subjects presenting celiac disease and for classifying the
disorder [315]. In a pioneering approach, Vècsei and collaborators developed a computer-
based methodology for automatically classifying celiac severity on 612 endoscopic images
from pediatric patients considering a two-class issue: mucosa affected by celiac disease and
unaffected duodenal tissue. Even though the classification method was able to discriminate
celiac disease into two groups (disease vs. no disease), showing an overall accuracy
of 88%, the model displayed a reduced accuracy (63.7%) in classifying the severity of
disorders, possibly due to the small set for training the model [316]. Afterwards, Wimmer
and collaborators theorized that AI methods can be employed for classifying luminal
endoscopic images of celiac disease. They developed a CNN transfer-learning method that
categorized luminal endoscopic images from the duodenum gathered by white light and
narrow-band imaging endoscopy, collecting 1661 images. The CNN algorithm showed
an accuracy of 90.5% in the identification of celiac disease considering endoscopic images
alone. The authors indicated that while the gold standard for the diagnosis of celiac disease
remains unchanged, ML could offer a new method in diagnostic settings, especially where
acquiring biopsies is complicated [317]. Hujoel and collaborators developed an ML model
for detecting undiagnosed celiac disease. For this purpose, they collected serum samples
derived from 47,557 subjects, with no previous diagnosis of celiac disease. From this
set, 408 undiagnosed cases were detected. To apply ML in a retrospective study, they
developed various ML-based predictive models, employing several approaches such as LR,
EN, tree-based models with and without boosting and/or bagging, SVM with radial basis
functions, ANN, RF, and LDA. The performances of all the developed models were assessed
by applying the calculation of the area under the ROC curve. Ten models were trained
considering the images set including and excluding variables, and a predictor set including
sex, age, number of symptoms, history of any autoimmune condition, thyroid disorder,
anemia, hypothyroidism, previous indication to test for celiac disease, dyspepsia, and
recurring abdominal pain. Unfortunately, by using this approach, the authors obtained ML-
based models with limited discriminatory power, showing an area under the ROC curve
ranging from 0.49 to 0.53. Two models (RF and bagged classification trees) showed better
performance with respect to the random chance (likelihood > 95%), although the predictive
power showed a slight improvement compared to the other models. The partial failure in
developing effective ML-based models can probably be ascribable to the subtle symptoms
in atypical cases, suggesting that considering the mentioned variables for developing
predictive models could be impractical, since they did not characterize undiagnosed celiac
disease [318]. Accordingly, for improving diagnostic rates, other approaches must be
investigated for detecting celiac disease, and recently, Koh and coworkers developed a
new ML algorithm for an automated classification of duodenal biopsy images, aiding
clinicians to detect celiac disorder and the severity of villous atrophy, taking into account
the Marsh score. In the first step, the authors performed a pre-process procedure on biopsy
images, subjecting images to a Steerable Pyramidal Transform (SPT) for obtaining sub band
coefficients. Considering each sub band diverse entropy (Fuzzy entropy, Kapur entropy,
Renyi entropy, Shannon entropy, Vajda entropy, Yager entropy), nonlinear features were
calculated and used as input to the decision tree (DT), k-NN, SVM, Adaboost M1 for two
classes and Adaboost M2 for multiclass classification, and Bagged Trees and Discriminant
Subspace for automatically classifying the extracted features (734 features were extracted
from each set of data and so, 26,424 features were extracted from three diverse sets of
data) from two classes (normal and celiac) and multiclass (diverse degree of severity of
villous atrophy considering Marsh scores) biopsy images. Interestingly, for avoiding the
bias created by data imbalance, the authors employed an adaptive synthetic sampling
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(AdaSyn) technique. Next, the authors employed a ten-fold cross-validation approach for
training and testing the model. In the ten-fold scheme, the set was divided into ten parts,
where nine parts were employed to train the model and one part for testing. Consequently,
a different part was utilized to test the model, while the other nine parts were used for
training. This procedure was repeated ten times for each part. The performance of the
developed ML model was evaluated, and the results showed an accuracy, sensitivity,
and specificity of 88.89%, 89.67%, and 86.67% in the two-class classification of two sets
of data (Marsh I + II and Marsh III) of Hematoxylin–Eosin–DAB (HED) biopsy images.
Furthermore, 82.92% accuracy, 85.67% sensitivity, and 76.67% specificity results were
achieved in the two-class classification of two sets of data (Marsh I + II and Marsh III)
of RGB biopsy images. Considering the results of multi-class classification (three sets of
data), an accuracy of 72% was obtained for HED biopsy images employing SVM. The
suggested approach for an automatic classification of biopsy pictures can help with the
process of evaluating villous atrophy using the Marsh score, suggesting that automation
of biopsy images is a feasible task. Nevertheless, more data with improved quality (e.g.,
well-orientated biopsy images) are needed to appropriately train the model, enhancing its
predictive power [319]. Remarkably, the reported results have shown great potential for
AI/ML in the automation of biopsy images for detecting celiac disease, as well as other
disorders. Finally, we discuss a recent article in which ML based on the DL technique was
adopted for detecting Helicobacter pylori, considering gastric biopsies. Klein and colleagues
reported for the first time a computer-based approach for accelerating the recognition of
Helicobacter pylori on histological samples. They developed a DL decision support algorithm
to be employed on conventional images of gastric biopsies for detecting H. pylori on H&E-
and Giemsa-stained slide images. The latter were classified using a DNN algorithm trained
with Giemsa and H&E slides (191 H&E-stained and 286 Giemsa-stained slides, for a total
of 2629 tiles containing Giemsa and 790 H&E; additionally, 4241 (Giemsa) and 1533 (H&E)
tiles without Helicobacter pylori-like bacterial structures). Several validation approaches
presented in the work showed a significant area under the ROC curve >0.8, indicating
the ability of the model to detect Helicobacter pylori, indicating that AI/ML tools can assist
clinicians to formulate a more accurate diagnosis regarding the presence of H. pylori on
gastric biopsies [320].
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Table 8. Main examples of AI/ML in gastroenterology.

AI Technique Target Dataset Statistical Parameters Outcomes Ref

ML algorithm
Approach for detecting small

(<5 mm) adenomatous or
sessile polyps

The ML-based model was trained with
data from 325 subjects presenting

466 microscopic polyps

The model showed an accuracy of 94%
(negative predictive value 96%), with a

pathologic prediction rate of 98.1%
(457/466)

The application of ML models can be
useful for assisting clinicians in detecting

gastric pathological state
[307]

ML model based on
DL algorithm

Approach for detecting polyps in
clinical colonoscopy

investigations

The model was trained using data from
1290 patients (5545 colonoscopy images
containing polyps and images with no

polyps). Validation set of
27,113 colonoscopy images of

1138 patients with one detected polyp

The model showed sensitivity of 94.38%,
specificity of 95.92%, area under the ROC

curve of 0.984

The developed DL model has great
potential in assisting clinicians while

conducting colonoscopy, being able to
correctly discriminate polyps

and adenomas

[308]

ML model based on deep
CNN technique

Approach for real-time
evaluation of endoscopic video

images of colorectal polyps

The model was trained and validated
using untouched video data derived from

routine clinical investigations. An
independent set of 125 videos was used

for the validation

The ML model showed a sensitivity of
98%, a specificity of 83%, and an accuracy

of 94%

The model was able to discriminate
hyperplastic from adenomatous polyps [309]

ML model based on deep
CNN technique

Approach for detecting polyps
from colonoscopy exams

The ML model was trained used
8641 hand-labeled images, with

4088 unique polyps, from colonoscopy
derived from over 2000 subjects. The

authors tested the model using
20 colonoscopy videos (5 h of duration)

The model showed an area under the
ROC curve of 0.991 and an accuracy

of 96.4%

The CNN algorithm identified a number
of polyps higher than that observed from

expert clinicians
[310]

ML model based on
CNN algorithm

Development of a model for
detecting ESCC and assessing

its invasiveness

The model was trained using 1751 images
of ESCC (white light imaging and

narrow-band imaging
endoscopic images)

In the validation step, the model
identified 95.5% of ESCC properly,

estimating the invasion depth of ESCC
(sensitivity of 84.1% and accuracy

of 80.9%)

The diagnosis assisted by CNN algorithm
was more accurate than diagnosis by

expert clinicians, indicating a role of ML
as ESCC diagnostic tool

[311]

ML tool based on
DNN algorithm

Approach for diagnosing the
invasion depth of ESCC

The model was built using a training set
of 8660 non-magnified endoscopic images

and 5678 magnified images from
804 patients with superficial ESCC

presenting cancer invasion. Validation set
consisted of 405 non-magnified ad

509 magnified images from 155 subjects

The model showed specificity 95.8%,
sensitivity 90.1%, accuracy 91%, positive

predicted value 99.2%
negative predictive value 63.9%

These parameters highlighted the
capacity of the model to detect invasion
depth in patients with superficial ESCC

[312]

ML tool based on CNN algorithm
Approach for assessing the

severity of IBD and improving
its classification

The model was trained on
26,304 colonoscopy images derived from
841 subjects with ulcerative colitis. The

model was assessed using an
independent test set (3981 images from

114 patients with ulcerative colitis)

The validation was achieved by
calculating the areas under the ROC

curve, and the results for the ML-based
model were 0.86 and 0.98 in identifying
normal mucosa (Mayo 0) and mucosal

healing state (Mayo 0–1)

This work indicated that the CNN
algorithm can assist clinicians in

determining severity-based therapies as
well as follow-up endoscopy waits

for IBD

[313]
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Table 8. Cont.

AI Technique Target Dataset Statistical
Parameters Outcomes Ref

ML model ML model for classifying
pediatric IBD

The model was trained using data
derived from endoscopic and histological
imaging of 287 children affected by IBD

Three supervised ML models showed a
classification accuracy of 71.0%, 76.9%,

and 82.7%. The most promising ML
model properly classified patients

(accuracy of 83.3%)

This work indicated that for the
development of a proper model, it is

necessary to consider both endoscopic
and histological data for a more accurate

disease classification

[314]

ML model
Approach for detecting subjects
presenting celiac disease and for

classifying the disorder

The model was trained using
612 endoscopic images from pediatric
patients considering a two-class issue:
mucosa affected by celiac disease and

unaffected duodenal tissue

The model discriminated celiac disease
with an overall accuracy of 88%. The

model showed a reduced accuracy
(63.7%) in classifying the severity of

disorders

The classification method was able to
discriminate celiac disease into two

groups (disease vs. no disease)
[316]

CNN transfer-learning
Approach for classifying luminal

endoscopic images of
celiac disease

The training set was composed of
1661 images from luminal endoscopic

data

The model showed an accuracy of 90.5%
in identifying celiac disease considering

endoscopic images alone

ML could offer a new method in
diagnostic settings, especially where

acquiring biopsies is complicated
[317]

ML-based models Approach for detecting
undiagnosed celiac disease

The training set was composed of serum
samples derived from 47,557 subjects,

whit no previous diagnosis of
celiac disease

The models showed an area under the
ROC curve ranging from 0.49 to 0.53.

Two models (RF and bagged classification
trees) showed better performance

(likelihood >95%)

Considering the selected variables, the
development of predictive models could

be impractical, since they did not
characterize undiagnosed celiac disease

[318]

ML algorithm
Approach for an automated

classification of duodenal
biopsy images

The model was trained using biopsy
images extracting features (734 features

from each set of data and so,
26,424 features were extracted from three

diverse sets of data) from two classes
(normal and celiac)

The model showed: accuracy of 88.89%,
sensitivity of 89.67% specificity of 86.67%

in the two-class classification

The approach for an automatic
classification of biopsy pictures can help

with the process of evaluating villous
atrophy, suggesting that automation of

biopsy images is a feasible task

[319]

DL decision support method
based on DNN algorithm

Approach for detecting
Helicobacter pylori considering

gastric biopsies

The model was trained considering
Giemsa and H&E slides (191 H&E- and
286 Giemsa-stained slides for a total of

2629 tiles containing Giemsa and
790 H&E; additionally, 4241 (Giemsa) and

1533 (H&E) tiles without H. pylori-like
bacterial structures)

Several validation approaches were used
showing an area under the ROC

curve >0.8

The model was able to detect H. pylori,
indicating that ML tools can assist

clinicians in diagnosis regarding the
presence of H. pylori in gastric biopsies

[320]

Abbreviation: CNN—convolutional neural network; DL—deep learning; DNN—deep neural network; ESCC—esophageal squamous cell carcinoma; IBD—inflammatory bowel disease; ML—machine learning;
RF- random forest; ROC—receiver operating characteristic.
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2.2.7. AI in Dermatology

As discussed for different medical fields, the translational power of AI/ML in medicine
is great. From diagnosis to targeted therapy, ML techniques have great potential to improve
dermatologists’ practices. Current progress in computing, along with the availability of
huge datasets (e.g., image and -omics databases, electronic medical records), has spurred
the development of ML-based approaches in dermatology [136,321]. Some relevant exam-
ples were analyzed here (Table 9). Spyridonos and coworkers described a computational
approach for discriminating actinic keratoses from healthy skin based on color texture
examination of typical clinical photographs. It is important to recognize such skin le-
sions early, since they are frequent pre-malignant injuries that indicate the possibility
of developing invasive skin squamous cell carcinoma. They collected non-standardized
clinical photographs of 22 patients of both actinic keratoses and healthy skin, labeled by
experienced dermatologists, highlighting ROI. In this way, the authors obtained a dataset
composed of 6010 (actinic keratoses) and 13,915 (healthy) ROI. Information about color tex-
ture was obtained by employing local binary patterns (LBP) or texton frequency histograms
and assessed using a classifier based on the SVM technique. The classification method
was evaluated by employing the leave-one-patient-out procedure in RGB, YIQ, and CIE-
Lab color spaces. The best performing configuration of the SVM model was tested using
157 actinic keratoses and 216 healthy skin rectangular regions of arbitrary size. The actinic
keratoses treatment outcome was assessed in a further group of eight subjects with 32 skin
lesions. The excellent configuration for discriminating the samples was obtained using LBP
color texture descriptors estimated from Y and I of the YIQ color space, and the SVM model
achieved a sensitivity of 80.1% and a specificity of 81.1% at ROI level, while a sensitivity
of 89.8% and a specificity of 91.7% at region level. The authors observed a quantitative
actinic keratoses reduction of 83.6% considering the classifier used. Interestingly, this work
indicated that a combination of clinical photographs with the ML algorithm for a detailed
image analysis represents a useful, non-invasive, cost-effective approach to monitor actinic
keratoses for early therapeutic strategies against such skin lesions [322]. Intriguingly, some
AI-based models have been established for predicting skin sensitization. In this context,
Tsujita-Inoue and collaborators developed an ML approach based on ANN algorithm for
assessing the skin sensitization risk derived from several chemicals. The authors used
several descriptors (e.g., data from antioxidant response element (ARE) tests and LogP,
indicating lipid solubility and skin absorption) for implementing a previous version of a
software able to predict the murine local lymph node assay (LLNA) test results [323]. In
fact, LLNA is the most used in vivo method to assess the sensitizing potential of chemical
entities. Accordingly, they developed iSENS ver.2. The authors used the data obtained for
62 compounds in murine LLNA tests. Among them, 53 composed the training set, while the
others were employed for validating the developed computational tool. The predictivity
of the ANN-based model was assessed by employing a 10-fold cross-validation method.
The accuracy, specificity, and sensitivity of the computational model were 84.9%, 92.3%
and 82.5%, respectively [324]. According to the results, ML approaches for evaluating
the risk estimation of compounds regarding skin sensitization can represent a valuable
resource for replacing animal testing. Subsequently, Zang and collaborators improved the
number of selected chemicals for developing an ML model to predict the skin sensitiza-
tion, considering two datasets, one including LLNA results regarding 120 chemicals and
the other covering human skin sensitization results taking into account 87 chemicals (all
these substances were included in the LLNA dataset). Moreover, the authors included
six physicochemical features of these chemicals related to skin exposure and penetration
(octanol/water partition coefficient, water solubility, vapor pressure, melting point, boiling
point, and molecular weight). The molecules were distributed into the training set (75%)
and test set (25%). Different ML approaches were used for developing predictive models,
including classification and regression tree, LDA, LR, and SVM. The validation step was
performed by applying the leave-one-out cross-validation procedure. SVM was found
to be the best method in modeling LLNA output with an accuracy of 89%, sensitivity of
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86%, and specificity of 92% on the test set. Regarding the prediction for human outcomes,
SVM model demonstrated an accuracy of 81%, a sensitivity and specificity of 86%, and
78%, respectively [325]. Another area of dermatology regards skin lesions and malig-
nancies. Esteva and coworkers generated a deep CNN-based model for classifying skin
lesions. They trained a CNN model, employing a set of 129,450 clinical images enclosing
2032 diverse disorders, matching the performance of 21 dermatologists experienced across
three serious diagnoses: keratinocyte carcinoma classification, melanoma classification
and melanoma classification by means of dermoscopic data. The results show an area
under the ROC curve of 0.96 for carcinoma, and of 0.94 for melanoma [326]. Haenssle and
colleagues, in an interesting experiment, evaluated the accuracy of melanoma skin cancer
diagnosis considering the performance of 58 experts in comparison with the assessment
performed by an ML-based model generated using the CNN technique. The ML model
was developed, validated, and tested for classifying dermoscopic images of lesions of
melanocytic origin (melanoma, benign nevi) for diagnostic purposes. The dataset enclosed
a test set composed of 300 images containing 20% melanomas (in situ and invasive) of all
body sites and of all common histotypes, and 80% benign melanocytic nevi. The average of
the calculated area under the ROC curves was 0.79, considering the results from the 58 der-
matologists, and 0.86, considering the ML model, respectively, indicating an improvement
concerning the diagnostic performance derived from the application of the computer-based
tool. Accordingly, the study highlighted that appropriately trained ML models have the
ability to perform accurate diagnostic classification of dermoscopic images of melanocytic
origin [327,328]. Han and coworkers developed an ML model using the CNN algorithm
for classifying clinical images from 12 skin diseases (basal cell carcinoma, squamous cell
carcinoma, intraepithelial carcinoma, melanocytic nevus, pyogenic granuloma, seborrheic
keratosis, actinic keratosis, wart, malignant melanoma, hemangioma, lentigo, and der-
matofibroma). The ML model was trained, tested, and validated employing the Asan
dataset, MED-NODE dataset, and atlas site images, for a total of 19,398 images, divided
into the training set and test set. Considering the Asan dataset, the area under the ROC
curve concerning the diagnosis of basal cell carcinoma, squamous cell carcinoma, intraep-
ithelial carcinoma, and melanoma was 0.96, 0.83, 0.82, and 0.96, respectively. Considering
the Edinburgh dataset, the area under the ROC curve for the same disorders was 0.90, 0.91,
0.83, and 0.88, respectively. The developed ML-based model demonstrated comparable
performances to those obtained from 16 dermatologists. Furthermore, as indicated by the
authors, for improving the performance of the CNN algorithm, supplementary images
representing a larger variety of ages and ethnicities should be employed [329]. Follow-
ing this trend, other studies have employed data from dermoscopic images sometimes
combined with macroscopic images for training supervised or unsupervised ML models,
based principally on CNN algorithms to detect and/or classify cutaneous malignancies,
including melanoma and basal cell carcinoma [330–337]. Notably, CNN algorithms showed
interesting performances also in classifying and detecting other relevant dermatological
disorders, including onychomycosis, rosacea, atopic dermatitis, and psoriasis [338–344].
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Table 9. Main examples of AI/ML in dermatology.

AI Technique Target Dataset Statistical Parameters Outcomes Ref

ML model based on
SVM technique

Computational approach for
discriminating actinic keratoses
from healthy skin based on color

texture examination of typical
clinical photographs

Dataset composed of 6010 (actinic
keratoses) and 13,915 (healthy) ROI from
22 patients. The model was tested using

157 actinic keratoses and 216 healthy skin
rectangular regions of arbitrary size

The SVM model achieved a sensitivity of
80.1% and a specificity of 81.1% at ROI
level, while a sensitivity of 89.8% and a

specificity of 91.7% at region level

This work indicated that combining
clinical photos with ML algorithms for a

detailed image analysis is a useful,
non-invasive, cost-effective method to

monitor actinic keratoses for early
therapeutic strategies against such

skin lesions

[322]

ML approach based on
ANN algorithm

Approach for assessing the skin
sensitization risk derived from

several chemicals

Dataset obtained for 62 compounds in
murine LLNA (53 composed the training

set, while the others were used for
validating the computational tool)

The model was assessed using a 10-fold
cross-validation method. The accuracy,
specificity, and sensitivity of the model

were 84.9%, 92.3%, and 82.5%,
respectively

ML approaches for evaluating the risk
estimation of compounds regarding skin

sensitization can represent a valuable
resource for replacing animal testing

[324]

ML model based on
SVM technique

Approach for assessing the skin
sensitization risk derived from

several chemicals

Dataset composed of 120 chemicals with
data on human skin sensitization,

including LLNA. The molecules were
distributed into the training set (75%) and

test set (25%)

The validation step was performed
applying LOO-cv. SVM was found to be

the best method in modeling LLNA
output with an accuracy of 89% and a

sensitivity of 86%, and specificity of 92%
on the test set

SVM model showed interesting results
regarding the prediction of

human outcomes
[325]

Deep CNN-based model Approach for classifying
skin lesions

The model was trained using a set of
129,450 clinical images

Results show an area under the ROC
curve of 0.96 for carcinoma, and of 0.94

for melanoma

Computational tools based on CNN
algorithms correctly classified skin lesions [326]

ML-based model generated
using CNN technique

Approach for evaluating the
accuracy of melanoma skin

cancer diagnosis considering the
performance of 58 experts in

comparison with the
ML-based model

ML model was developed, validated, and
tested for classifying dermoscopic images
of lesions. The dataset enclosed a test set
composed of 300 images containing 20%

melanomas and 80% benign
melanocytic nevi

The average of the calculated area under
the ROC curves was 0.79, considering the
results from the 58 dermatologists, and

0.86, considering the ML model,
respectively

ML models appropriately trained have
the ability to perform accurate diagnostic
classification of dermoscopic images of

melanocytic origin

[327,328]

ML model using
CNN algorithm

Approach for classifying clinical
images from 12 skin diseases

ML model was trained, tested, and
validated employing the Asan dataset,

MED-NODE dataset, and atlas site
images, for a total of 19,398 images,

opportunely divided in training set and
test set

Considering the Asan dataset, the area
under the ROC curve concerning the

diagnosis of basal cell carcinoma,
squamous cell carcinoma, intraepithelial
carcinoma, and melanoma was 0.96, 0.83,
0.82, and 0.96, respectively. Considering

the Edinburgh dataset, the area under the
ROC curve for the same disorders was
0.90, 0.91, 0.83, and 0.88, respectively.

The ML-based model showed
comparable performances to those
obtained from 16 dermatologists

[329]

Abbreviation: ANN—artificial neural network; CNN—convolutional neural network; LLNA—local lymph node assay; LOO-cv—leave-one-out cross-validation; ML—machine learning; ROC—receiver operating
characteristic; ROI—regions of interest; SVM—support vector machine.
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3. Conclusions and Future Perspective

AI/ML has reemerged in recent years as a powerful set of tools for unlocking value
from big datasets. The extraordinary increase in the use of AI and ML techniques in almost
all fields of technology, science, and medicine clearly indicates a significantly greater role
for these procedures in the discovery of innovative therapies in the near future. The above
descriptive examples demonstrate how useful these methodologies can be in discovering
novel drug candidates, biomarkers, and drug targets, as well as for detecting and evaluating
the progression of a given disease. It is also clear from the literature that the rate of adoption
of these methods is increasing significantly. This is determined by the increase in the usage
of high-throughput screens, increased power and availability of open-source ML methods,
and the development of new AI/ML algorithms, generating more accurate descriptors
and model relationships. Remarkably, the quality of the generated ML algorithms is also
principally defined by the quality of the input data, so proper data acquisition and curation
are crucial steps for developing predictive/effective ML-based models. In the context of
ML as a new diagnostic technique and for identifying appropriate therapeutic regimens,
most of the developed models were found to outperform current clinical standards based
on the assessment of sensitivity, specificity, and accuracy, employing the ROC method for
comparing ML algorithms and clinician performances. This validation undoubtedly added
validity to model performances, but for a real-world assessment, any new methodology
employed in clinical settings should demonstrate superior performance in properly de-
signed, randomized clinical trials. Nonetheless, advances in ML will provide, in the near
future, effective methods for addressing the uncertainty observed in translational medicine,
facilitating more forceful, data-driven decision making for developing the next generation
of diagnostic tools and therapeutic agents.
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