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Abstract: One of the main limitations of the typical hidden Markov model (HMM) implementation
for gene structure identification is that a single structure is identified on a given sequence of genomic
data—i.e., identification of overlapping structure is not directly possible, and certainly not possible
within the confines of the optimal Viterbi path evaluation. This is a huge limitation given that
we now know that significant portions of eukaryotic genomes, particularly mammalian genomes,
are alternatively spliced, and, thus, have overlapping structure in the sense of the mRNA transcripts
that result. Using the general meta-state HMM approach developed in prior work, however, more
than one ‘track’ of annotation can be accommodated, thereby allowing a direct implementation
of an alternative-splice gene-structure identifier. In this paper we examine the representation of
alternative splicing annotation in the multi-track context, and show that the proliferation on states
is manageable, and has sufficient statistical support on the genomes examined (human, mouse,
worm, and fly) that a full alt-splice meta-state HMM gene finder can be implemented with sufficient
statistical support. In the process of performing the alternative splicing analysis on alt-splice event
counts we expected to see an increase in alternative splicing complexity as the organism becomes
more complex, and this is seen with the percentage of genes with alt-splice variants increasing from
worm to fly to the mammalian genomes (mouse and human). Of particular note is an increase in
alternative splicing variants at the start and end of coding with the more complex organisms studied
(mouse and human), indicating rapid new first and last exon recruitment that is possibly spliceosome
mediated. This suggests that spliceosome-mediated refinements (acceleration) of gene structure
variation and selection, with increasing levels of sophistication, has occurred in eukaryotes and in
mammals especially.
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1. Introduction

Computational gene-finding work began to make significant advances in the 1980s [1–3],
especially upon introduction of hidden Markov models (HMMs), both in statistics intrinsic to the
genome under study (ab initio gene-finding) [1–3], and in analysis involving statistics extrinsic to
the genome using sequence similarity/alignments methods (e.g., homology or expressed sequence
tag, EST, matching with finite state automata, ‘FSAs’) [4]. Alignment, of query sequences to a known
sequence in a database is typically done using BLAST [5] (which involves a hybrid HMM/FSA
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method). BLAST can also be used for gene finding alone, where homology-based programs can
be used to identify new genes by aligning a query sequence with a known gene or genes [4].
More complex gene-finders that use extrinsic statistical information for the genome, along with intrinsic
genomic information (from statistical properties of the genomic sequence data alone), have also been
implemented [6]. The main drawback of homology-based approaches is that they cannot find new
genes if they are significantly different from the known gene sequences in the known-gene databases,
as discussed in [1], and explored in [7]. This is a significant limitation to purely homology-based
approaches since approximately half of the genes in a particular eukaryotic genome appear to be novel
to that genome (such as for C. elegans). This also appears to be the case for human, where only about
half of the proteins encoded in chromosome 22, for example, are found to be similar to previously
known proteins. In [8], the author describes application of a highly successful gene-finder known at
that time (ca. 2004) to gene-finding in novel genomes. From that study it is clear that gene-prediction
has species-specific statistical properties, i.e., an ab initio component must operate for any gene-finder
to succeed at identifying genes and genomic structures novel to that organism [8].

Starting around 2000 there was a movement towards consolidation of the intrinsic and extrinsic
approaches [7,9], as described in a 2002 review [9] and a 2006 review [10]. At that time there were
fundamental modeling limitations with the standard HMM implementation. So much so that in
the 2006 review it was claimed that “improved modeling efforts at the hidden Markov model
level are of relatively little value”. In the [11–13] publications that appeared in 2010 and 2011,
however, generalized HMMs (gHMMs) with significantly improved modeling capabilities were
shown that could be implemented very efficiently, sometimes with time-complexity comparable to the
standard HMM. What resulted was a clear improvement in HMM capabilities in gene-finding [11–13],
and in application to stochastic sequential data in general. Also beginning around 2000 was
specialization to sensor development [14–20] to help supplement the HMM-based structure discovery
process. There were sensors for transcription start site prediction [6], transcription initiation sites and
polyadenylation signals [21], splice-site recognition [22,23], and identification of 3’ ends of exons by
EST analysis [24], to list just a few examples.

Since 2000, there has also been rapid growth in the development of motif-discovery algorithms—in
parallel with the aforementioned sensor specialization. Many of these motif-discovery algorithms
can be used to augment the HMM-based structure identification via motif-based validation of
gene-structure regions indicated by the HMM. Using ‘zone dependent’ Markov modeling in
gene-finding at high Markov order [12], it is possible to both effectively capture regulatory motifs
by their anomalously high occurrence rate, and to absorb this into the overall HMM structure
identification task [11,12]. In [11,12,25,26], many important transcription factor binding sites (TFBS’s),
miRNA binding sites, promoters, and other regulatory motifs can be identified by their position
relative to the start and stop of coding (and other non-self-transitions identified by the HMM’s
optimal Viterbi-path parsing). In [25] it is shown that the motif finding effort is greatly enhanced
by referencing to nearby gene-structure and identifying local regions for focused motif searches.
Not surprisingly, if separate statistical profiling is performed on the regions just outside the translation
region (cis and trans), then gene-finding is improved [13,25]. Motif discovery can be focused on the
cis-regulatory regions for TFBS discovery and on the trans-regulatory regions for miRNA binding site
discovery, and if linked with the HMM discovery, the motif-discovery and gene-discovery efforts are
simultaneously strengthened. Using an intrinsic HMM formulation as a foundation, with extrinsic
statistical information from motif discovery and signal-sensor augmentations, one then arrives at a
unified and powerful intrinsic/extrinsic gene and motif discovery platform. This capability is enhanced
further if zone-dependent emissions are employed [12] or via reference to HMMD improvements
as indicated in [12,13,27]. The HMM formulation with HMMD augmentation (technically a form of
hidden semi-Markov model) also provides a local state-path optimization that can directly, locally
in the dynamic programming table construction, incorporate extrinsic statistics (side-information)
into the Viterbi optimization (as described in [13]). The ‘scaffolding’ provided by the HMMD parsing
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(via the Viterbi path derivation) defines regions where zone-dependent statistics and zone-restricted
motif-discovery can be applied. With zone-restricted motif discovery, gap and hash interpolated
Markov model’s [28,29] become powerful tools for motif discovery in a restricted region [21,29–33].
The approach we describe in [11–13], seeks to unify the above approaches within a powerful new
HMM-based structure-modeling architecture.

The shortcomings of the HMM due to algorithmic definitions, such as lack of state-duration
modeling, are readily apparent (with fixes as described in [12,13,27]). The shortcomings of the
HMM due to choice of model definition and related implementation, are more subtle. In an HMM
implementation the number of look-ups to a particular emission or transition probability table will
show how that table’s anomalous statistics influence the overall computation (where the count on use
of a particular component in the table is precisely what provides an estimation in the HMM Baum–Welch
algorithm). Standard HMM’s lead to a model that strongly de-emphasizes (with low table usage) the
anomalous statistics known to exist around non-self-transitions, and restricts to transition probabilities
that are not sequence dependent. In [11] it is shown that use of transition probabilities that are sequence
dependent, via use of a constrained set of ‘meta-states’, is possible with comparable computational
complexity to the standard HMM. There is, thus, a ‘model primitive’ shortcoming underlying the
standard HMM implementation that is resolved in the meta-state HMM description [11].

The generalized-clique, ‘meta-state’, hidden Markov model introduced in [11] has been
applied to the analysis of the genomic structure of C. elegans (a genome-data intrinsic approach,
e.g., not using EST or homology information). The meta-state HMM generalizes from primitive
states to windows of adjacent primitive states (e.g., “footprint states”), and does so by only allowing
one coding-to-noncoding, or noncoding-to-coding, transition in the footprint state. A comparison
between the clique structure of the standard HMM and the meta-state HMM is shown in Figure 1,
with comparative performance results for the meta-state HMM and standard HMMs shown in
application to C. elegans (worm) shown in Supplementary Section 1 (Tables S1 and S2). The constraint
to have no more than a single ‘non-self’ transition in a footprint is equivalent to a minimum length
constraint on exons, introns, and ‘junk’. The linear growth in footprint states with this constraint
(shown in [11] and described in Supplementary Section 2) is critical for practical use of the larger
footprint size models.

Using the general meta-state HMM approach, however, more than one ‘track’ of annotation can
be accommodated, thereby allowing a direct implementation of an alternative-splice gene-structure
identifier. There is still the necessity, however, for there to be sufficient statistical support (e.g., samples)
on the non-self-transitions to have a reliable profile HMM developed (e.g., establish the bare-bones
HMM sensors). This can only succeed, practically speaking, if the multi-track annotation describing
the alternative splicing can be represented with a manageable number of multi-track transition states,
where the intrinsic genomic statistics on these multi-tack states has sufficient support to properly
model the proliferation in meta-states that results.

In this paper we examine the representation of alternative splicing annotation in the multi-track
context, and show that the proliferation on states is manageable, and has sufficient statistical support
on the Genbank annotated genomes examined (human, mouse, worm, fly) that a full alt-splice
meta-state HMM gene finder can be implemented using an analysis only based on the intrinsic
statistical information of the genome studied (the actual implementation will be done in a separate
paper). The four organisms selected in this study are all animals, thus our focus is on eukaryotes that
are animals and not plants or protists (or single-celled anything). Plants and protists will be the focus
of later studies.
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Figure 1. Comparison of standard hidden Markov model (HMM) and the clique-generalized 
meta-state HMM. The upper graphical model is for the standard HMM and shows the ‘emission’ 
observation sequence xi, and the associated hidden label sequence λi, and the arrows denote the 
conditional probability approximations used in the model (for the transition and emission 
probabilities). Focusing at the level of the core joint-probability construct at instant ‘i’ in the middle 
graph, the standard HMM is a subset of the joint probability construct P(λi, λi+1, xi+1). The 
generalized-clique HMM is shown in the graphical model at the bottom for one particular clique 
generalization. The model can be exact on emission positionally, then extend via zone dependence 
and use of generalized HMM (gIMM) interpolation. The model can be exact to higher order in state, 
and using an HMMD generalization [12] also extends modeling to have HMM with duration 
modeling. When doing the latter, zone-dependent and position dependent modeling can be 
incorporated via reference to the duration in the model, and can be directly incorporated into a 
generalized Viterbi algorithm (and other generalized HMM algorithms), as well as any other 
side-information of interest [13]. Reprinted with permission [11]. 

2. Background 

A brief background is given for the standard first order HMM, followed by background on its 
meta-state HMM generalization (where the derivation of associated generalized Viterbi and Baum–
Welch algorithms is given in [11]). Background information is then given for the HMM states and 
transitions, and their representations, that are relevant in the context of alt-splice gene structure 
identification.  

2.1. The Standard 1st Order HMM 

We define the 1st order HMM as consisting of the following: 

• A hidden state alphabet, Λ, with “Prior” Probabilities P(λ) for all λ ∈  Λ, and “Transition” 
Probabilities P(λ2|λ1) for all λ1 λ2 ∈  Λ—where the standard transition probability is denoted 
akl = P(λn = l|λn−1 = k) for a 1st order Markov model on states with homogenous stationary 
statistics (i.e., no dependence on position ‘n’). 

• An observable alphabet, B, with “Emission” Probabilities P(b|λ) for all λ ∈  Λ b ∈  B—where 
the standard emission probability is ek(b) = P(bn = b|λn = k), i.e., a 0th order Markov model on 
bases with homogenous stationary statistics. 

Given the above, there are three classes of problems that the HMM can be used to solve [34,35]: 

• Evaluation—Determine the probability of occurrence of the observed sequence. 
• Learning (Baum–Welch)—Determine the most likely emission and transition probabilities for a 

given set of observational data. 
• Decoding (Viterbi)—Determine the most probable sequence of states emitting the observed 

Figure 1. Comparison of standard hidden Markov model (HMM) and the clique-generalized meta-state
HMM. The upper graphical model is for the standard HMM and shows the ‘emission’ observation
sequence xi, and the associated hidden label sequence λi, and the arrows denote the conditional
probability approximations used in the model (for the transition and emission probabilities). Focusing
at the level of the core joint-probability construct at instant ‘i’ in the middle graph, the standard HMM
is a subset of the joint probability construct P(λi, λi+1, xi+1). The generalized-clique HMM is shown
in the graphical model at the bottom for one particular clique generalization. The model can be exact
on emission positionally, then extend via zone dependence and use of generalized HMM (gIMM)
interpolation. The model can be exact to higher order in state, and using an HMMD generalization [12]
also extends modeling to have HMM with duration modeling. When doing the latter, zone-dependent
and position dependent modeling can be incorporated via reference to the duration in the model,
and can be directly incorporated into a generalized Viterbi algorithm (and other generalized HMM
algorithms), as well as any other side-information of interest [13]. Reprinted with permission [11].

2. Background

A brief background is given for the standard first order HMM, followed by background on
its meta-state HMM generalization (where the derivation of associated generalized Viterbi and
Baum–Welch algorithms is given in [11]). Background information is then given for the HMM
states and transitions, and their representations, that are relevant in the context of alt-splice gene
structure identification.

2.1. The Standard 1st Order HMM

We define the 1st order HMM as consisting of the following:

• A hidden state alphabet, Λ, with “Prior” Probabilities P(λ) for all λ ∈ Λ, and “Transition”
Probabilities P(λ2|λ1) for all λ1 λ2 ∈ Λ—where the standard transition probability is denoted
akl = P(λn = l|λn−1 = k) for a 1st order Markov model on states with homogenous stationary
statistics (i.e., no dependence on position ‘n’).

• An observable alphabet, B, with “Emission” Probabilities P(b|λ) for all λ ∈ Λ b ∈ B—where the
standard emission probability is ek(b) = P(bn = b|λn = k), i.e., a 0th order Markov model on bases
with homogenous stationary statistics.

Given the above, there are three classes of problems that the HMM can be used to solve [34,35]:

• Evaluation—Determine the probability of occurrence of the observed sequence.
• Learning (Baum–Welch)—Determine the most likely emission and transition probabilities for a

given set of observational data.
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• Decoding (Viterbi)—Determine the most probable sequence of states emitting the
observed sequence.

Here we focus only on the 3rd problem, the Viterbi decoding problem. The probability of a
sequence of observables B = b0, b1, . . . , bn−1 being emitted by the sequence of hidden states Λ = λ0, λ1,
. . . , λn–1 is solved by using P(B, Λ) = P(B|Λ)·P(Λ) in the standard factorization, where the two terms
in the factorization are described as the observation model and the state model, respectively. In the 1st
order HMM, the state model has the 1st order Markov property and the observation model is such
that the current observation, bn, depends only on the current state, λn:

P(B|Λ)·P(Λ) = P(b0|λ0) P(b1|λ1) . . . P(bn-1|λn-1) × P(λ0)P(λ1|λ0)P(λ2|λ0, λ1) . . . P(λn-1|λ0 . . . λn−2)

With first order Markov assumption in the state-model this becomes:

P(B|Λ) P(Λ) = P(b0|λ0) P(b1|λ1) . . . P(bn-1|λn-1) × P(λ0)P(λ1|λ0)P(λ2|λ1) . . . P(λn-1|λn-2)

In the Viterbi algorithm, a recursive variable is defined (following the notation in [34]):
vk(n) = “the most probable path ending in state ‘k’ with observation ‘bn’”. The recursive definition of
vk(n) is then: vl(n + 1) = el(bn+1) maxk [vk(n) akl]. From which the optimal path information is
recovered according to the (recursive) trace-back:

Λ* = argmaxΛ P(B, Λ) = (λ*0, . . . , λ*n−1)

λ*n|λ*n+1 = 1 = argmaxk [vk(n) akl], and where λ*L–1 = argmaxk [vk(L – 1)], for length L sequence.

2.2. The Meta-State HMM

The generalized clique HMM begins by enlarging the primitive hidden states associated with
individual base labeling (as exon, intron, or junk) to substrings of primitive hidden states or footprint
states (details on the definitions of the base-label states and footprint states are in Section 2.3 and
Supplementary Section 2). In what follows, the transitions between primitive hidden states for coding
{e} and non-coding {i, j}, {ei, ie, je, ej}, are referred to as ‘eij-transitions’, and the self-transitions,
{ee, ii, jj}, are referred to as ‘xx-transitions’. The emissions are likewise expanded to higher order in the
fundamental joint probability that is the basis of the generalized-clique, or ‘meta-State’, HMM. In [11]
we consider application to eukaryotic gene finding and show how a meta-state HMM improves the
strength of eij-transition contributions to gene-structure identification. It is found that the meta-state
eij-transition modeling can effectively ‘recapture’ the exon and intron heavy tail distribution modeling
capability as well as manage the exon-start ‘needle-in-the-haystack’ problem [11].

The meta-state, clique-generalized, HMM entails a clique-level factorization rather than the
standard HMM factorization (that describes the state transitions with no dependence on local sequence
information). This is described in the general formalism to follow, where specific implementations are
given for application to eukaryotic gene structure identification.

Observation and state dependencies in the generalized-clique HMM (see Figure 2) are
parameterized according to the following:

1) Non-negative integers L and R denoting left and right maximum extents of a substring, wn,
(with suitable truncation at the data boundaries, b0 and bN−1) are associated with the primitive
observation, bn , in the following way:

wn = bn−L+1, . . . , bn, . . . , bn+R
~
wn = bn−L+1, . . . , bn, . . . , bn+R−1
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2) Non-negative integers l and r are used to denote the left and right extents of the extended
(footprint) states, f. Here, we show the relationships among the primitive states λ, dimer states s,
and footprint states f:

δn = λnλn+1 (dimer state, length in λ’s = 2)
fn = δn−l+1, . . . , δn+r ∼= λn−l+1, . . . , λn, . . . , λn+r+1 (footprint state, length in δ’s = l + r)
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is known as the codon framing, where a gene’s coding length must be a multiple of 3 bases. The term 
frame position is used to denote one of the 3 possible positions—0, 1, or 2 by our convention—relative 
to the start of a codon. Introns may interrupt coding sequence after any frame position. In other 
words, introns can split the codon framing either at a codon boundary or one of the internal codon 
positions. To show this, denote the primitive states of the individual bases, described as exon, intron, 
or junk, by: 

Exon states = {e0, e1, e2}, where frame label is ‘real’, i.e., there are three emission tables; 
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Figure 2. Top Panel. Sliding-window association (clique) of observations and hidden states in
the meta-state hidden Markov model, where the clique-generalized HMM algorithm describes a
left-to-right traversal (as is typical) of the HMM graphical model with the specified clique window.
The first observation, b0, is included at the leading edge of the clique overlap at the HMM’s left
boundary. For the last clique’s window overlap we choose the trailing edge to include the last
observation bN–1. Bottom Panel. Graphical model of the clique-generalized HMM, where the
interconnectedness on full joint dependencies is only partly drawn. Reprinted with permission [11].

As in the 1st order HMM, the n-th base observation bn is aligned with the n-th hidden state λn.
Given the above, the clique-factorized HMM is as follows [11]:

P(B, Λ) = P(w−R, f−R) {Πn=−R+1
N+L−2 [P(wn, fn−1, fn)/P(

~
wn, fn−1)]}

The critical ratio of probabilities in the [ . . . ] term above retains the Martingale sequence
properties on the generalized Viterbi path, as with the standard HMM/Viterbi implementation,
and all of the elegant convergence and limit properties of Martingales are thereby inherited via the
backward martingale convergence theorem (as discussed in [36]). The sliding-window clique overlap
(see Figure 1) is much more significant than with the standard HMM, giving rise to many more table
look-ups on eij-transition tables.

A generalization to the Viterbi algorithm can now be directly implemented, using the above
form, to establish an efficient dynamic programming table construction. Generalized expressions
for the Baum-Welch algorithm are also possible. For further details on the generalized Viterbi and
Baum-Welch algorithms for the meta-state HMM see [11,36] (and see Supplementary Tables S1 and S2
for some performance results).

2.3. HMM States and Transitions for Gene-Structure Identification

The codon structure in exons is directly revealed in a mutual information analysis of gapped base
statistical linkages as shown in [28]. The partitioning of exon sequence into 3-base subsequences is
known as the codon framing, where a gene’s coding length must be a multiple of 3 bases. The term
frame position is used to denote one of the 3 possible positions—0, 1, or 2 by our convention—relative to



Informatics 2017, 4, 3 7 of 19

the start of a codon. Introns may interrupt coding sequence after any frame position. In other words,
introns can split the codon framing either at a codon boundary or one of the internal codon positions.
To show this, denote the primitive states of the individual bases, described as exon, intron, or junk, by:

Exon states = {e0, e1, e2}, where frame label is ‘real’, i.e., there are three emission tables;
Intron states = {i0, i1, i2}, where frame label is a convenient implementation artifact (so one em table);
Junk state = {j}, the non-coding (non-exonic) nucleotides in the intergenic regions, while the non-coding
nucleotides in the intragenic regions are the aforementioned introns.

While ‘emitting’ the base sequence observed, the ‘real’ exon framing subscript ‘cycles’ over states
corresponding to the frame position as expected, while the intron framing info stays the same and
‘transmits’ framing information thereby to the end of the intronic region (purely for the convenience in
the HMM implementation). We thus have three possible intron ‘framings’ indicated in the following
state strings (with exon framing shown cycling):

jj...je0e1e2 . . . e0i0i0 . . . i0e1 . . . e0e1e2jj . . . j (intron follows exon base with frame 0)
jj...je0e1e2 . . . e1i1i1 . . . i1e2 . . . e0e1e2jj . . . j (intron follows exon base with frame 1)
jj...je0e1e2 . . . e2i2i2 . . . i2e0 . . . e0e1e2jj . . . j (intron follows exon base with frame 2)

Using the base-level state labeling, consider the ‘toy’ gene shown in Figure 3 that has only two
exons. The label information is shown consistent with this, and an ‘arrow’ notation is introduced in
the figure to show how the arrow demarks the boundary of the intragenic region that will be used in
the figures to follow.
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Figure 4. The standard two-pass gene predictor. A forward pass is used to catch forward reads, 
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Figure 3. The standard forward-read Gene Predictor with five state labels: j, i, 0, 1, 2; and 13
state transitions: jj, j0, 2j, 01, 12, 20, 0i, 1i, 2i, i0, i1, i2, ii. The arrow covers the extent of the exon
bounded region.

Although there is no notion of framing among introns, for convenience we associate framing with
the intron for use in code implementation, as indicated in Figure 3, as a tracking device in order to
ensure that the frame of the following intron-to-exon transition is constrained appropriately.

In [11], the 13 state transitions are not only extended to 15 to incorporate the above frame-tracking
across introns, but further extended to 17 states to incorporate stop codon recognition/validation
directly into the end-of-coding transition. The 17 two-label (dimer) forward transitions are: {jj, je0, e0e1,
e1e2, e2e0, e0i0, e1i1, e2i2, i0i0, i1i1, i2i2, i0e1, i1e2, i2e0, e2j_TAA, e2j_TAG, e2j_TGA}. See Supplementary
Section 2 for details on the 33-state model for the forward and reverse encoding together, to be
described next.

There is further complexity in that the encodings for proteins can be found in both directions
along the duplex DNA strand, where the forward and reverse encodings are found to be present in
approximately equal numbers. Furthermore, the differences in the base statistics in the forward and
reverse gene encodings are sufficiently negligible (or disjoint) that their counts can simply be merged
in the modeling (data not shown). To see the application, consider using the above 17 transition model
on dsDNA genomic data, a genome would then be analyzed by doing two passes on the genomic data
reference strand provided, a forward pass and a reverse pass (see Figure 4).
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Figure 4. The standard two-pass gene predictor. A forward pass is used to catch forward reads,
followed by a reverse complement pass to catch reverse reads.

The problem with the decoupling of parsing on forward reads and reverse reads is that a forward
read in a reverse coding region can encounter non-standard base statistics for ‘non-coding’ (since it’s
the statistics of a reverse coding region), which can lead to error (see Figure 5).
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In order to work directly with the above dimer states, or the footprint-state generalization, we 
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Supplementary Section 1). The standard HMM has emissions that only depend on the current state 
(e.g., we have P(bn−1|λn−1) terms). A simple HMM with single-base state representation has poor 
performance in modeling the anomalous statistics in the transition regions between exon, intron, or 
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transition ‘je0’ has occurred, for example, and we are looking at the base emission for the ‘e0’ state, 

Figure 5. The problem with the standard two-pass gene predictor. Confusion can result in the forward
pass across reverse read regions, as shown, that can obscure the true start of other, valid, forward reads.

One possible solution to this, for the case where the forward and reverse gene encodings do
not overlap is to capture both in a single pass involving state transitions describing both forward
transitions and reverse transitions. There are nine states: j, i, I, 0, 1, 2, A, B, C; where A, B, C are
the primitive labels on the reverse read coding bases, and I is for the reverse read intronic bases.
The reverse-read codon is ‘CBA’. Accordingly, there are 25 state transitions: jj, j0, jC, 2j, Aj; 01, 12,
20, BA, CB, AC, 0i, 1i, 2i, i0, i1, i2, AI, BI, CI, IA, IB, IC, ii, II. In Figure 6 is shown two forward gene
encodings on track 1 and one reverse encoding on track 2, where the forward and reverse encodings do
not overlap. In the bottom part of Figure 6 is shown the forward and reverse (non-overlap) encodings
on a single track using the arrow notation.
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Figure 6. The single-pass forward/reverse coding Gene Predictor with non-overlapping encoding.
Top: the forward and reverse reads shown on two separate tracks. Bottom: the forward and reverse
reads on a single forward-scan pass on an enlarged state and transition model (shown without
refinement involving intron frame-pass and end-of-coding stop codon validation states).

Using a single-pass forward/reverse coding Gene Predictor, and using the previously mentioned
refinements involving intron frame-pass and end-of-coding stop codon validation states, it is possible
to work directly with both forward and reverse states. This type of HMM implementation has been
done in [11] and results in a 33-element transition model (see Supplementary Section 2 for details).
The 33 transitions can be taken as the states themselves (two-element meta-states, or ‘dimer’ states, or
length 2 footprint states according to the terminology in [11] and in what follows).
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In order to work directly with the above dimer states, or the footprint-state generalization, we
need to generalize to a higher order HMM model (see Figures 1 and 2, and performance results
in Supplementary Section 1). The standard HMM has emissions that only depend on the current
state (e.g., we have P(bn−1|λn−1) terms). A simple HMM with single-base state representation
has poor performance in modeling the anomalous statistics in the transition regions between exon,
intron, or junk regions without additional side-rules that break with a purely HMM implementation.
If a transition ‘je0’ has occurred, for example, and we are looking at the base emission for the ‘e0’ state,
we cannot account for the prior state with the simple P(bn−1|λn−1) conditional probabilities in the
standard bare-bones HMM modeling, we minimally need P(bn−1|λn−2, λn−1), i.e., state modeling at
the dimer-level or higher.

Even with the 33-state dimer footprint model above we still cannot handle overlapping encodings
(alternative splicing or overlap with a reverse coding region). This was not a significant problem in the
C. elegans genome analysis in [11], but when moving to human, where alternative-splicing is much
more common (see Figure 7), the resulting HMM modeling will not perform as well as desired.
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Adding further complication is the fact that it is possible to have higher order overlaps requiring
more tracks than two. Fortunately for the alt-splice gene prediction (AGP) modeling sought here this is
much less common. Two tracks will be shown to not only provide an excellent statistical representation
of the forward/reverse overlap encodings, but also alternative splicing alternate encodings where
the same issue of occasional very highly alternatively splices section of genomes are known to exist
(but are very rare, with typical alternative splicing giving one alternative). Thus, there is the use of
‘two tracks’ only in what follows, not three, or more.

In the genome annotations studied, forward and reverse transcripts often overlap, but often with
their coding regions (exons) in the other transcript’s intronic regions (Figure 8). With the two-track
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For alt-splice annotation representation with two tracks we have both reads in the same direction
and the exon overlap with an intron region represents alternatively spliced transcripts where the exon
has been, alternatively, spliced out (see Figure 9 and Supplementary Figure S1 for the two cases of
exon/intron overlap, with the alt-spliced exon present on track 1, not track 2, in Figure 9, and vice
versa in Supplementary Figure S1).
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(other 5-prime ei overlap V-transitions include ‘1iii’ and 2iii’).

Less common than exon overlap with intron is partial exon overlap with intron/exon as shown
in Supplementary Figure S2, where a 3-prime splice site overlap with alternative splice intron region
is shown, denoted (3’|i). The total count on the 12 (3’|i) types will be shown for four genomes in
the comparative analysis that follows (the genome data used is shown in Table 1). Also shown in
Supplementary Figure S2 is a 5-prime splice site overlap with alternative splice intron region, denoted
(5’|i). The total count on the 12 (5’|i) types will also be shown for four genomes in the comparative
analysis that follows.

3. Experimental Section—Methods

3.1. Genome Versions Used in Data Analysis (All from www.ensembl.org)

Table 1. Genome versions.

Species Release GTF File

Human (Homo sapiens) 75 Homo_sapiens.GRCh37.75.gtf
Mouse (Mus musculus) 81 Mus_musculus.GRCm38.81.gtf

Worm (Caenhorhabditis elegans) 83 Caenhorhabditis_elegans.WBcel235.83.gtf
Fly (Drosophila melanogaster) 75 Drosophila_melanogaster.BDGP5.75.gtf

3.2. Pre-Partitioning Training Data for Massively Parallel/Distributed Solutions

Starting with the ensemble general transfer format (GTF) file of a particular organism, we run
a script to identify the number of chromosomes, and any other discrete genomic elements present,
according to the annotation listings, and these genomic elements are listed in a log file. The user is
then allowed to edit this log file before further processing to delete out entries for chromosomes or
other genomic elements on the list, and thereby exclude those deleted entries from the analysis that
follows. If nothing is deleted (the file isn’t modified), then all of the chromosomes in the genome are
used in the analysis, as was the case for the genomes examined here.

www.ensembl.org
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Each chromosome that is examined is modelled with a two-label-track annotation scheme that
is derived from the (‘single-track’) GTF file annotations, where the two-track conversion scheme is
described in Figures 10 and 11. The general implementation of the HMM modelling software allows for
arbitrarily many tracks, so three or more tracks could have been accommodated if necessary, but this
turns out to not be the case for the genomes examined (fortunately, as there is then sufficient support
from an ab initio analysis of the genomes examined for a two-track label scheme, but only barely for
the rarest transition states, as will be shown in the Results). Due to the potentially high overhead of
multi-track labeling, and for the speedup on distributed processing regardless, the implementation
is developed for pre-processing of the chromosome training data into chunks. A naïve training data
partitioning could easily result in a chunk partition cutting a gene region, so the partition algorithm is
designed to offer chunks of approximately the indicated size, but with boundaries moved such that
they do not result in a chunking that cuts a gene. This is a non-trivial partitioning task in organisms
with dense or extended (operon or many exon) gene structures.
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On each chunk of a given Chromosome being processed, two-track feature counts are then done
in order to design the HMM, e.g., identify good states and transitions, or train the HMM, e.g., obtain
prior probabilities on the various states and transitions, and profile HMMs for the bases emitted by
those states and transitions. The pseudocode for counting on the different states and transitions found
in the chunk under analysis is shown in Figure 10.

3.3. Two-Track Annotation and Counting—Order of Annotation Governs Track Placement

Figure 11 shows the two-track annotation conventions, where placement on track 1 is for the
entirety of the first transcript from the GTF annotation file, and if another transcript has overlap with
the first transcript it is placed on track 2. If further overlap occurs (requiring a third track) there are two
conventions: (i) ignore third and higher overlapping transcript annotations, but record the location
of the higher than 2nd order alt-splicing region; and (ii) mask the transcripts that have more than
two overlaps and exclude from the counting analysis entirely. Since the occurrence of higher overlap
order than two transcripts is rare (generally less than 5% in general, typically less than 1%), either
convention works about the same insofar as the meta-state counts are concerned. In what follows,
convention (i) is used.
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Track placement info taken by itself cannot be used without trivial artifacts resulting from the
ordering of the annotation information. Thus the need to pool counts with transitions from both
track 1 and track 2. In other words, the V-transition counts on ‘ieii’ and ‘iiie’ (where ‘e’ is 0, 1, or 2),
both describe ie overlap with ii and are pooled. Similarly for reverse reads, there is a further doubling
of transitions when considering the reverse complement versions of the 3-prime-splice-site (ie
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4. Results

In Table 2 and Figure 12 are shown the results for the different types of alternative splicing
described, along with the counts on start-of-coding, with extent of alternative splicing in the genome
captured in terms of the ratio of alternative splicing events to the number start-of-coding events (the
latter being the approximate number of genes). In Table 2, the V-transitions contributing to the counts
on the different splice types are grouped as follows:

(3′|i) V-transitions: i0ii, i1ii, i2ii, iii0, iii1, iii2, AIII, BIII, CIII, IIAI, IIBI, IICI.
(5′|i) V-transitions: 0iii, 1iii, 2iii, ii0i, ii1i, ii2i, IAII, IBII, ICII, IIIA, IIIB, IIIC.
(3′|e) V-transitions: 01i1, 12i2, 20i0, i020, i101, i202, AIAC, BIBA, CICB, BABI, CBCI, ACAI.
(5′|e) V-transitions: 0i01, 1i12, 2i20, 010i, 121i, 202i, IABA, IBCB, ICAC, BAIA, CBIB, ACIC.

Table 2 also summarizes the fraction of gene transcripts that have alternative splicing in the
‘Alt/j0’ column, where the # transcripts with alt-splicing is given in relation to the # transcripts total.
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Table 2. Counts on start-of-coding (j0 and Aj dimers) and on the different splice-sites. Altsum is the
sum total of the different splice types (5′|i, 5′|e, 3′|i, and 3′|e). The last column ‘Alt/j0’ is the ratio of
altsum to the {j0 + Aj} counts.

Species j0+Aj 5’|i 5’|e 3’|i 3’|e altsum Alt/j0

Worm 25,462 809 809 1,438 653 4,283 0.175
Fly 18,730 768 768 1,501 699 4,385 0.234

Mouse 33,561 2,260 2,260 7,922 1,540 18,473 0.550
Human 36,620 12,075 3,186 14,317 2,002 31,580 0.862Informatics 2017, 4, 3 13 of 19 
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Figure 12. The relative number of counts on start-of-coding (j0 and Aj dimers) and on the different
splice-sites are shown in relation to each other. The charts, from left-to-right, are for the human, mouse,
fly, and worm genomes.

In Table 3 and Figure 13 are shown the counts for the different types of alternative splicing at
the start of coding. Further discussion of the notation and results is in the Discussion section. In the
table, {j0jj + jjj0}/j0 is the ratio of non-alt-splice starts to all starts. This partly captures the increased
overall occurrence of alternative splicing since this would lead to more j0j0 counts and fewer j0jj. The
start V-transitions marked with an ‘*’ have encumbered base-profiles in that the base statistics must be
consistent with two types of consensus sequence, especially in the case of ‘j0i0’. Unencumbered starts
would be: j0jj, j0j0 (overlapping starts, but both have same consensus), j0ii, j0II.

Table 3. Counts on alternative splicing at the start-of-coding.

V-trans Human Mouse Fly Worm

H-trans j0 18,911 16,899 9,389 12,938
{j0jj + jjj0} 4,208 6,112 4,334 8,323

j0j0 5,892 4,623 2,178 1,750
{j001 + 01j0}* 106 32 10 4
{j012 + 12j0}* 65 14 0 2
{j020 + 20j0}* 1,695 888 251 686
{j0i0 + i0j0}* 88 55 6 32
{j0ii + iij0} 873 490 237 204
{j0II + IIj0} 118 59 193 181

{j0jj + jjj0}/j0 0.223 0.362 0.462 0.643
*/non-* 0.176 0.088 0.038 0.069
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In Table 4 and Figure 14 are shown the counts for the different types of alternative splicing at
the end of coding. Further discussion of the notation and results is in the Discussion section. In the
table, {2jjj + jj2j}/2j is the ratio of non-alt-splice ends to all ends. This partly captures the increased
overall occurrence of alternative splicing since this would lead to more 2j2j counts and fewer 2jjj.
The start V-transitions marked with an ‘*’ have encumbered base-profiles in that the base statistics
must be consistent with two types of consensus sequence, as before. Now see spliceosome mediated
end variation as very common ({2jii + ii2j} = 2749 vs. 2j2j = 3442, so almost half of the alternative
spliced genes in human have different ends).

Table 4. Counts on alternative splicing at the end-of-coding.

V-trans Human Mouse Fly Worm

H-trans 2j 19,040 16,727 9,409 12,955
{2jjj + jj2j} 6,641 7,347 4,355 7,843

2j2j 3,442 3,359 2,163 2,249
{2j01 + 012j}* 926 383 48 46
{2j12 + 122j}* 908 406 39 79
{2j20 + 202j}* 704 339 70 5
{2j2i + 2i2j}* 51 55 0 3
{2jii + ii2j} 2,749 1,371 378 306
{2jII + II2j} 156 117 192 175

{2jjj + jj2j}/2j 0.349 0.439 0.463 0.605
*/non-* 0.199 0.097 0.022 0.013
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5. Discussion

5.1. V–Transition Rules

In the counting on states shown in the Results, and discussed in what follows, we are working
with the 25-transition (dimer state) model based off of the nine ‘primitive’ state model: j, i, I, 0, 1, 2,
A, B, C. The 25 transitions that then follow are: jj, j0, jC, 2j, Aj; 01, 12, 20, BA, CB, AC, 0i, 1i, 2i, i0, i1,
i2, AI, BI, CI, IA, IB, IC, ii, II. For vertical transitions (V-transitions) across tracks 1 and 2 there are
thus 25 × 25 = 625 possible meta-states since there is no explicit constraint between tracks. Far fewer
are seen in practice, however, due to the consistency constraints on overlapping splice-site signals,
etc. Transitions overlapping with junk or intron are clearly allowed, so (25)jj, jj(25), ii(25), (25)ii, II(25),
and (25)II, states are allowed (150 total) and the 4 × 12 = 48 transitions described in what follows for
alt-splices overlapping with exon or intron, denoted (5′|e), (3′|e), (5′|i), and (3′|i) previously, are
allowed, so expect to see at least 198 V-transitions. Of the 625 possible V-transitions many are never
seen, however, and others are seen extremely rarely. This gives rise to 5 rules on allowed V-transitions
involving splice sites, three rules on allowed V-transitions involving start-of-coding transitions, and
two rules for the allowed V-transitions involving end-of-coding transitions:
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(1) Approximate frame agreement rule: j0 on track 1 cannot overlap 2j, 0i, 1i, i1, i2 on track 2,
and only rarely overlap with 01 or 12 on track 2 (a consensus agreement rule). {j0, jC, 2j, Aj}
similar, so excluding 4 × 5 = 20. Similarly with 01 track 1 not overlapping with 12, 20, 1i, 2i,
i0, i2 on track 2 (rarely with j0 and 2j as noted). {10.12.20.BA, CB, AC} similar, so excluding
6 × 6 = 36 V–transitions. Similarly 0i on track 1 cannot overlap with j0, 2j, 12, 20, 1i, 2i, i0, i2 on
track 2. {0i, 1i, 2i, i0, i1, i2, AI, BI, CI, IA, IB, IC} similar, so excluding 12 × 8 = 96 V-transitions.

(2) No ‘eiie’ or ‘ieei’ rule (a consensus agreement rule): 0i on track 1 cannot overlap with i1.
{0i, 1i, 2i, i0, i1, i2, AI, BI, CI, IA, IB, IC} similar, so excluding 12 × 1 = 12 V-transitions.

(3) No exon boundary overlap with reverse coding region rule, where j0 cannot overlap BA, CB,
AC, for example. {j0, jC, 2j, Aj} similar, so excluding 4 × 3 =12. Similarly 0i cannot overlap BA,
CB, AC, and there are 12 splice types, so excluding 12 × 3 = 36. And, 01 cannot overlap jC, Aj,
AI, BI, CI, IA, IB, IC, so 6 × 8 = 48 more exclusions. This appears to be a rule that shows that
a coevolutionary linkage between cis or trans regulatory regions and reverse coding regions is
highly unfavorable.

Of the 625 V-transitions possible, rules (1)–(3) reduce the types of V-transitions seen by
20 + 36 + 96 + 12 + 12 + 36 + 48 = 260, so down to 625 − 260 = 365 V-transitions thus far.

Since consensus agreement on overlapping signal types is a strong constraint, the question
naturally arises as to when there is consensus agreement. Figure 15 shows examples of how eij0
and ie2j types of V-transitions can have consistent consensus sequences, thus giving rise to allowed
V-transitions for these types of overlaps (and similarly for the reverse-read state transitions).

(4) Start/End consensus disagreement rule: Figure 15 shows how consensus agreement is possible
for ‘eij0’ and ‘ie2j’, but not for flipped consensus EIj0 or IEj0 or IE2j or EI2j (so twelve cases).
When treating Aj and jC similarly to j0 and 2j, get another 12, for 24 V-transition exclusions total.

(5) Avoid forward/reverse splice signal overlap. ‘0i’ cannot overlap AI, BI, CI; and would generally
not favor overlap with IA, IB, IC. There are 12 × 6 = 72 similar exclusions.
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Starting from the 625 V-transitions possible, rules (1)–(5) reduce to 269 ‘likely’ V-transitions
(although many are very rare, possibly with zero counts, as will be seen). Focusing on the
start-of-coding and the end-of-coding allowed V-transitions as seen in the count data, further
elaboration on the allowed V-transitions can be given. The start-of-coding (‘j0’) consensus rules,
as seen in count data, appear to occur in three forms:

(i) Zero counts found for: j0jC, j02j, j0Aj, jCj0, 2jj0, Ajj0
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(iii) Zero counts found for j0 overlaps with forward splice unless 3’ (dominated by base-frame 0 to be
in agreement with 0 frame in ‘j0’).

As alternative splicing increases in usage across the genomes, expect both unencumbered
alternative splicing (j0j0) and encumbered splicing (such as j0i0 and j020) to increase. Notably,
the increase in j0i0 and j020 in more complex mammalian genomes, like mouse and human, indicates
gene-growth that is probably spliceosome mediated by way of new first exon recruitment, as shown in
Figure 16.Informatics 2017, 4, 3 16 of 19 
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Figure 16. Possible gene growth by way of new first exon recruitment.

The end-of-coding (‘2j’) consensus rules, as seen in count data, appear to occur in two forms:

(I) Zero counts found for: j2j0, j20i, j21i, j2i0, j2i1, j2i2, indicating a non-overlap with other start/end
or splice rule, except for 2j2i (end overlap with 5’splice appearing in more spliced genomes,
and only in-frame, showing a slower growth in encumbered 2j versus encumbered j0, as with j0,
have indications of spliceosomally driven alt-splice gene extension via exon recruitment from the
trans-side of the gene).

(II) Zero counts found for 2j overlap with reverse transitions except for II.

To a much smaller extent than seen at the start-of-coding cis region, spliceosome mediated growth
also appears to occur directly via new terminus exon recruitment (shown as the alt-splice variant in
the bottom-most annotation sequence shown in Figure 17).
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Figure 17. End-of-coding alternative splicing, with the last case shown (bottom track) indicative of a
process (possibly spliceosome mediated) for gene growth by way of new last exon recruitment.

5.2. Impact of Annotation Errors

In practice we see a small number of annotation errors, for example, in worm, the number of
(normal) transition types seen is 31 (not the 25 theoretically possible), with the extra six (annotation
error) transitions having very low counts: 1j = 7, ij = 14, 0j = 4, j1 = 4, ji = 28, j2 = 7 (where the smallest
count on valid 25-group transitions is for Aj = 12,524 = jC). For worm, 251 non-zero count V-trans
are seen, where the 31 base-state transitions are observed. Similarly, for fly 230 V-transitions are seen,
with 33 base-state transitions; for mouse 324 V-transitions are seen, with 35 base-state transitions;
and for human 351 V-transitions are seen, with 36 base-state transitions.
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Of the 251 non-zero count V-transitions seen for worm, 61 are in the exclusion categories
mentioned or involving non-25 transitions, all with extremely low counts, corresponding to annotation
errors at a rate ~1/100,000. So only 190 ‘valid’ or non-exclusion V-transitions are seen for worm,
some with very low counts, and some, evidently, zero due to ‘small’ sample size (e.g., 79 of the allowed,
but very rare, 269 V-trans have 0 counts for worm). The larger genome sizes for mouse and human,
on the other hand, appear to complete the sampling over likely transitions. If all 269 likely transitions
are found in the human genome, this leaves 82 non-zero (but very low) counts in exclusion and
annotation error categories.

6. Conclusions

A meta-state HMM implementation with 269 Vertical transitions, or two-track dimer states, is
shown to suffice for performing a single-pass gene-structure identification that would capture (predict)
almost all alternative splicing variants. Since roughly 70 of the possible V-transitions typically have
either zero counts, or very low counts, modeling appears possible with only 200 two-track dimer
states. The meta-HMM implementation described in [11] explored implementations with more states
than this when working with larger footprint states, and did so using only a single workstation or
laptop. Thus it is shown to be feasible to implement a meta-state HMM for alternative-splice gene
structure identification without special computational requirements, and with sufficient statistical
support (using roughly 200 two-track dimer states) for a strong model.

An analysis of the alternative splicing in a comparative genomics context reveals the expected
increase in alternative splicing complexity as the organism becomes more complex, with the percentage
of genes with alt-splice variants increasing from worm to fly to the mammalian genomes (mouse and
human). Of particular note is an increase in alternative splicing variants at the start and end of coding
with the mammalian genomes studied (mouse and human), allowing for new first exon and new
last exon recruitment that is possibly spliceosome mediated. This suggests a possible mechanism for
accelerated gene structure variation and selection in the mammals that is spliceosome mediated.

In future work we intend to implement the meta-HMM with the approximately 200 two-track
dimer model using profile HMMs trained on base statistics for each of the dimer states. We will then
use this tool in identifying genes shorter in length than allowed with the current cutoffs, as well as in
identifying any regulatory motifs specific to particular types of alt-splice transitions, especially those
that might be involved in exon recruitment.

Supplementary Materials: The following are available online at www.mdpi.com/2227-9709/4/1/3/s1.
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