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Abstract: In recent years, the textile and fashion industries have witnessed an enormous amount of
growth in fast fashion. On e-commerce platforms, where numerous choices are available, an efficient
recommendation system is required to sort, order, and efficiently convey relevant product content or
information to users. Image-based fashion recommendation systems (FRSs) have attracted a huge
amount of attention from fast fashion retailers as they provide a personalized shopping experience
to consumers. With the technological advancements, this branch of artificial intelligence exhibits
a tremendous amount of potential in image processing, parsing, classification, and segmentation.
Despite its huge potential, the number of academic articles on this topic is limited. The available
studies do not provide a rigorous review of fashion recommendation systems and the corresponding
filtering techniques. To the best of the authors’ knowledge, this is the first scholarly article to review
the state-of-the-art fashion recommendation systems and the corresponding filtering techniques. In
addition, this review also explores various potential models that could be implemented to develop
fashion recommendation systems in the future. This paper will help researchers, academics, and
practitioners who are interested in machine learning, computer vision, and fashion retailing to
understand the characteristics of the different fashion recommendation systems.

Keywords: fashion recommendation system; e-commerce; filtering techniques; algorithmic models;
performance

1. Introduction

Clothing is a kind of symbol that represents people’s internal perceptions through their
outer appearance. It conveys information about their choices, faith, personality, profession,
social status, and attitude towards life. Therefore, clothing is believed to be a nonverbal way
of communicating and a major part of people’s outer appearance [1]. Recent technological
advancements have enabled consumers to track current fashion trends around the globe,
which influence their choices [2,3]. The fashion choices of consumers depend on many
factors, such as demographics, geographic location, individual preferences, interpersonal
influences, age, gender, season, and culture [4–8]. Moreover, previous fashion recommen-
dation research shows that fashion preferences vary not only from country to country but
also from city to city [9]. The combination of fashion preferences and the abovementioned
factors associated with clothing choices could transmit the image features for a better
understanding of consumers’ preferences [7]. Therefore, analyzing consumers’ choices and
recommendations is valuable to fashion designers and retailers [9–11]. Additionally, con-
sumers’ clothing choices and product preference data have become available on the Internet
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in the form of text or opinions and images or pictures. Since these images contain informa-
tion about people from all around the world, both online and offline fashion retailers are
using these platforms to reach billions of users who are active on the Internet [10,12,13].
Therefore, e-commerce has become the predominant channel for shopping in recent years.
The ability of recommendation systems to provide personalized recommendations and
respond quickly to the consumer’s choices has contributed significantly to the expansion
of e-commerce sales [14].

According to different studies, e-commerce retailers, such as Amazon, eBay, and Shop-
style, and social networking sites, such as Pinterest, Snapchat, Instagram, Facebook, Chic-
topia, and Lookbook, are now regarded as the most popular media for fashion advice and
recommendations [15–22]. Research on textual content, such as posts and comments [23],
emotion and information diffusion [24], and images has attracted the attention of modern-
day researchers, as it can help to predict fashion trends and facilitate the development of
effective recommendation systems [5,25–27]. An effective recommendation system is a
crucial tool for successfully conducting an e-commerce business. Fashion recommendation
systems (FRSs) generally provide specific recommendations to the consumer based on their
browsing and previous purchase history. Social-network-based FRSs consider the user’s
social circle, fashion product attributes, image parsing, fashion trends, and consistency
in fashion styles as important factors since they impact upon the user’s purchasing deci-
sions [28–38]. FRSs have the ability to reduce transaction costs for consumers and increase
revenue for retailers. With the exception of a single study from 2016 that focuses only on
apparel recommendation systems [10], no current research presents recent advances in
research on fashion recommendation systems. Therefore, the purpose of this paper is to
present an integrative review of the research related to fashion recommendation systems.
Moreover, Guan et al. cited research published until 2015. Therefore, the first objective of
this paper is to review the most recent research published on this topic from 2010 to 2020.
The previous study did not provide an in-depth analysis of the computational methods or
algorithms corresponding to the fashion recommendation systems. This review study aims
to fulfill this research gap and rigorously study the principles underlying, the methods
used by, and the performance of the state-of-the-art fashion recommendation systems. To
the best of our knowledge, this in-depth study is first of its kind. It includes research articles
related to image parsing, clothing and body shape identification, and fashion attribute
recognition, which are critical parts of fashion recommendation systems (FRSs). This review
paper also provides a guideline for a research methodology to be used by future researchers
in this field. The first section of this review discusses the history and background of FRSs.
The second section presents a concise history and overview of recommendation systems.
The third section aims to integrate the scholarly articles related to FRSs published in the
last decade. The fourth section defines the metrics that are used by researchers to present
and discuss recommendation results. The fifth section forms the major part of this review
and focuses on various FRSs followed by different computational algorithmic models and
recommendation filtering techniques used in fashion recommendation research. It will help
researchers to understand these crucial parts of a FRS. The final section highlighted the
existing challenges of using state-of-the-art recommendation systems followed by provid-
ing recommendations to overcome them and proposing a novel FRS based on the research
findings discussed in section five. The study of the existing literature revealed that fashion
recommendation systems have a huge impact on consumers’ buying decisions. Hence,
fashion retailers and researchers are exploring and developing state-of-the-art recommen-
dation models to improve the accessibility, navigability and consumers’ overall purchasing
experience. One of the prime elements that has been continuously researched in these
articles was the improvement of existing and the development of new algorithms relevant
to the filtering techniques [4,15,33,39–51]. This review paper has identified state-of-the
art algorithms and filtering techniques that have high potential to become more popular
in the future. The sections of this paper are arranged in the order of the important FRS
components, so that the reader can gain a substantial understanding of components such
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as algorithmic models before moving to other important components such as filtering
techniques. This review paper will guide future aspirants to conduct further in-depth and
innovative empirical research on fashion recommendation systems. The organizational
structure of this article is presented in Figure 1.

Figure 1. Organizational structure of the article.

2. History and Overview of Recommendation System

The era of recommendation systems originally started in the 1990s based on the
widespread research progress in Collective Intelligence. During this period, recommen-
dations were generally provided to consumers based on their rating structure [52]. The
first consumer-focused recommendation system was developed and commercialized by
Goldberg, Nichols, Oki and Terry in 1992. Tapestry, an electronic messaging system was
developed to allow users only to rate messages as either a good or bad product and ser-
vice [53]. However, now there are plenty of methods to obtain information about the
consumer’s liking for a product through the Internet. These data can be retrieved in the
forms of voting, tagging, reviewing and the number of likes or dislikes the user provides.
It may also include reviews written in blogs, videos uploaded on YouTube or messages
about a product. Regardless of communication and presentation, medium preferences
are expressed in the form of numerical values [52,54]. Table 1 presents the history of the
progress of fashion recommendation systems over the last few decades.

Table 1. History of recommendation systems; produced by the authors based on [52,55,56].

Year Recommendation System Approach Properties

Before 1992 Mafia, developed in 1990

• Content filtering.
• Mail filtering agent for providing a cognitive

intelligence-based service for document
processing.

1992 to 1998

Tapestry, developed in 1992

• Collaborative filtering.
• Developed by Palo Alto.
• Allowed users only to rate messages as either good

or bad product and service.

Grouplens, first used in 1994 • Rate data to form the recommendation.

Movielens, proposed in 1997 • Useful to construct a well-known dataset.
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Table 1. Cont.

Year Recommendation System Approach Properties

1999 to 2005 PLSA (Probabilistic Latent Semantic
Analysis), proposed in 1999

• Developed by Thomas Hofmann.
• Collaborative filtering.

2005 to 2009

Several Latent Factor Models such as
Singular Value Decompositions (SVD),
Robust Singular Value Decomposition
(RSVD), Normalized Singular Value

Deviation (NSVD).

• Collaborative filtering approach.
• Find out factors from rating patterns.

2010 to
onwards

Context-aware-based,
instant-personalization-based

• Combined techniques of content and collaborative
approach.

E-commerce retailers started implementing fashion recommendation systems in
the early 2000s. However, implementation was mostly in the development stage until
2007–2008 [10,52,55,57–59]. As with other products such as electronics and books, fashion
products were also recommended based on the user’s previous purchase history. With
the continuous progress in computer vision algorithms, personalized recommendations
utilizing personal factors and user reviews have become more popular today [10,58,60].

2.1. Recommendation System

Recommendation system (RS) is referred to as a decision-making approach for users
under a multidimensional information environment [61]. RS has also been defined as an
e-commerce tool, which helps consumers search based on knowledge that is related to a
consumer’s choices and preferences [59]. RS also assists in augmenting social processes by
using the recommendations of other users when there is no abundant personal information
or knowledge of the alternatives [52]. RS handles the complication of information overload
that consumers usually encounter by offering customized service, exclusive content, and
personalized recommendations [57].

There are multiple phases involved in the recommendation system that develop
the foundation of any state-of-the-art recommendation system. These are defined as the
information collection phase, the learning phase, and the recommendation phase. Figure 2
shows the interrelationship of these phases involved in the recommendation process. It
shows that information collection is the initial stage of RS, which is followed by the learning
phase and the recommendation phase. The recommendation provided in the last phase
can be generated based on information gathered during the information collection phase.

2.1.1. Information Collection Phase

In this phase a user’s relevant information is collected to develop a user profile or
model based on the user’s characteristics, behaviors, and the content of the resources they
have browsed, which are applicable in prediction phase tasks. The accurate functioning of
a recommendation agent depends on the proper construction of a user profile or model.
The system can offer a quick yet appropriate recommendation when it has all the required
information about the user. Thus, the success of a recommendation or recommender
system largely depends on the ability of the model to denote users’ current preferences or
choices [57,62,63].

The foundation of the recommendation system relies on three types of input such
as explicit feedback, implicit feedback, and hybrid feedback. Explicit feedback needs
to be of high quality as it encompasses users’ explicit input regarding their interest in
or choice of a product. The accuracy of the prediction or recommendation relies on
user ratings. Therefore, if the users do not provide enough information, it limits the
accuracy of the system. Despite this requirement, explicit feedback is still considered a



Informatics 2021, 8, 49 5 of 34

crucial information input process as it provides more reliable data and builds transparency
into the recommendation procedure [57,64,65]. Implicit feedback is also important in
understanding users’ preferences, which are inferred indirectly through observation of
user behavior. Although this method does not require the same effort from the users, it is
often seen as less accurate [57,66]. Hybrid feedback is considered a combination of explicit
and implicit feedback. It can be accomplished by utilizing the implicit feedback data as a
check on the explicit feedback rating or by providing users with the opportunity to give
feedback only if they choose to explicitly express their interest.

Figure 2. Phases of recommendation process.

2.1.2. Learning Phase

A learning algorithm is applied in this phase to filter and exploit the users’ features
based on the feedback collected in the information collection phase. The learning algo-
rithms used in this phase are helpful for drawing out the appropriate patterns relevant for
application during the recommendation stage [57,62,63].

2.1.3. Recommendation Phase

The recommendation phase recommends the types of items that a user or consumer
may prefer. Recommendations can be provided either directly based on the dataset col-
lected during the information collection phase (which might be memory- or model-based)
or through the browsing history of users observed by the system [57,62,63]. Recommenda-
tions can also be provided by combining the learned information with the rating matrix
to recommend learning resources [67]. Researchers reported improved recommendation
accuracy using hybrid models in comparison with product content-based or other user-
preference-based collaborative models [68].

3. Channels of Scholarly Dissemination Related to Fashion Recommendation
System (FRS)

Articles published from January 2010 to June 2020 have been considered for the review
purpose of this article. Various online literature resources or databases such as Scopus,
Web of Science, Science Direct, and Design and Applied Arts Index (DAAI) have been used
to find the literature. Boolean operator techniques i.e., “AND” or “OR” strategies were
used to search articles from these sources. Keywords grouped in three categories as listed
below were used to conduct the final search.
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Group 1: Fashion OR Style OR Apparel OR Clothing.
Group 2: Recommend*.
Group 3: Filtering Technique OR Algorithm OR Model OR Artificial Intelligence OR

Neural Network OR Deep Learning OR Meta-Learning OR Fuzzy Techniques OR Model
OR Image Processing OR Image Retrieval OR Image Feature extraction.

Final Search = Group 1 AND Group 2, Group 1 AND Group 2 AND Group 3.
Overall, 230 scholarly articles and 9 web sources have been reviewed. Among these,

214 scholarly articles were found containing the required keywords when using the search
strategy mentioned above. Among these, 132 articles are indexed in Scopus, 26 in Web of
Science, 3 in Science Direct and 1 in the Design and Applied Arts Index (DAAI) database.
In addition, 50 articles and 2 patents were found in Google Scholar, published in different
peer-reviewed journals and conferences.

4. Metrics Used in Fashion Recommendation System Evaluation

The performance of a recommendation algorithm is evaluated by using some specific
metrics that indicate the accuracy of the system. The type of metric used depends on
the type of filtering technique. Root Mean Square Error (RMSE), Receiver Operating
Characteristics (ROC), Area Under Cover (AUC), Precision, Recall and F1 score is generally
used to evaluate the performance or accuracy of the recommendation algorithms.

Root-mean square error (RMSE). RMSE is widely used in evaluating and comparing
the performance of a recommendation system model compared to other models. A lower
RMSE value indicates higher performance by the recommendation model. RMSE, as
mentioned by [69], can be as represented as follows:

RMSE =

√
1

Np
∑
u,i

(pui − rui)
2 (1)

where, Np is the total number of predictions, pui is the predicted rating that a user u will
select an item i and rui is the real rating.

Precision. Precision can be defined as the fraction of correct recommendations or
predictions (known as True Positive) to the total number of recommendations provided,
which can be as represented as follows:

Precision =
True Positive (TP)

True Positive(TP) + False Positive (FP)
(2)

It is also defined as the ratio of the number of relevant recommended items to the
number of recommended items expressed as percentages.

Recall. Recall can be defined as the fraction of correct recommendations or predictions
(known as True Positive) to the total number of correct relevant recommendations provided,
which can be as represented as follows:

Recall =
True Positive (TP)

True Positive(TP) + False Negative (FN)
(3)

It is also defined as the ratio of the number of relevant recommended items to the total
number of relevant items expressed as percentages.

F1 Score. F1 score is an indicator of the accuracy of the model and ranges from 0 to
1, where a value close to 1 represents higher recommendation or prediction accuracy. It
represents precision and recall as a single metric and can be as represented as follows:

F1 score = 2× Precision ∗ Recall
Precision + Recall

(4)

Coverage. Coverage is used to measure the percentage of items which are recom-
mended by the algorithm among all of the items.
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Accuracy. Accuracy can be defined as the ratio of the number of total correct recom-
mendations to the total recommendations provided, which can be as represented as follows:

Accuracy =
TP + FN

TP + FN + TN + FP
(5)

Intersection over union (IoU). It represents the accuracy of an object detector used on
a specific dataset [70].

IoU =
TP

TP + FN + FP
(6)

ROC. ROC curve is used to conduct a comprehensive assessment of the algorithm’s
performance [57].

AUC. AUC measures the performance of recommendation and its baselines as well as
the quality of the ranking based on pairwise comparisons [5].

Rank aware top-N metrics. The rank aware top-N recommendation metric finds some of
the interesting and unknown items that are presumed to be most attractive to a user [71].
Mean reciprocal rank (MRR), mean average precision (MAP) and normalized discounted
cumulative gain (NDCG) are three most popular rank aware metrics.

MRR. MRR is calculated as a mean of the reciprocal of the position or rank of first rele-
vant recommendation [72,73]. MRR as mentioned by [72,73] can be expressed as follows:

MRR =
1

Nu
∑

u∈Nu

1
Ln

u[k] ∈ Ru
(7)

where u, Nu and Ru indicate specific user, total number of users and the set of items rated
by the user, respectively. L indicates list of ranking length (n) for user (u) and k represents
the position of the item found in the he lists L.

MAP: MAP is calculated by determining the mean of average precision at the points
where relevant products or items are found. MAP as mentioned by [73] can be expressed
as follows.

MAP =
1

Nu|Ru|

n

∑
k=1

1(Ln
u[k] ∈ Ru)Pu@k (8)

where Pu represents precision in selecting relevant item for the user.
NDCG: NDCG is calculated by determining the graded relevance and positional

information of the recommended items, which can be expressed as follows [73].

NDCGu =
∑n

k=1 G(u, n, k)D(k)
∑n

k=1 G∗(u, n, k)D(k)
(9)

where D (k) is a discounting function, G (u, n, k) is the gain obtained recommending an
item found at k-th position from the list L and G* (u, n, k) is the gain related to k-th item in
the ideal ranking of n size for u user.

5. Fashion Recommendation System (FRS), Algorithmic Models and Filtering Techniques

FRS can be defined as a means of feature matching between fashion products and
users or consumers under specific matching criteria. Different research addressed apparel
attributes such as the formulation of colors, clothing shapes, outfit or styles, patterns or
prints and fabric structures or textures [10,58,74,75]. Guan et al. studied these features
using image recognition, product attribute extraction and feature encoding. Researchers
have also considered user features such as facial features, body shapes, personal choice or
preference, locations and wearing occasions in predicting users’ fashion interests [31,75–78].
A well-defined user profile can differentiate a more personalized or customized recommen-
dation system from a conventional system [28,79]. Various research projects on apparel
recommendation systems with personalized styling guideline and intelligent recommenda-
tion engines have been conducted based on similarity recommendation and expert advisor
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recommendation systems [10,58,61]. Image processing, image parsing, sensory engineer-
ing, computational algorithms, and computer vision techniques have been extensively
employed to support these systems [32,80–84].

5.1. Classification of Fashion Recommendation System (FRS)

Fashion recommendation systems (FRS) proposed by researchers vary from each other
based on the filtering techniques used, information collection and learning procedures,
feature extraction methods and types of recommendations provided to users or consumers.
The paper has categorized the recommendation systems into five classes such as fashion
image retrieval, a personal wardrobe recommendation system, a knowledge-based recom-
mendation system, smart or intelligent recommendation systems and a social-network-
based recommendation system based on previous research and academic articles. These
recommendation systems or approaches have been discussed briefly in Table 2

A fashion image retrieval system is formulated based on clusters of fashion products
and their feature similarity as well as correlation analysis based on individual historical
data [85,86]. Personal wardrobe recommendation systems explore similar fashion styles
based on wardrobe usage history [10,87]. Fashion pairing recommendation systems, also
referred to as fashion coordination systems, are based on the rules of matching different
types of clothing items with styling knowledge [4,10,51]. A smart or intelligent recom-
mendation approach uses features or attributes of the clothing and user in terms of users’
body shapes, contextual information of wear, outfit type and genre characteristics [88–90].
A social-network-based recommendation approach offers recommendations to many social-
media-based information discovery and social collaborations among potential collaborators
using social networking features. Sachdeva and Pandey (2020) focused on the analysis
of patterns for different consumer groups with finely grained fashion elements using a
large-scale fashion trend dataset (FIT) compiled from Instagram reports. The usage details
were provided to the Knowledge Enhanced Recurrent Network model (KERN), which
takes advantage of the capacity of deep recurrent neural networks to model time series
of fashion elements, considering very complex patterns effectively. It can reinforce the
prediction of styles. These recommendation systems or approaches have been discussed
briefly in Table 2.

Table 2. Classification of fashion recommendation systems (FRS).

Recommendation
System References Features and Implementation

Fashion image
retrieval

[7,10,11,25,34,85,
86,91–99]

• Offers recommendations based on previous sales, clothes purchase
records, eye movement records and item click rate.

• Provides clothing suggestions using analytical hierarchy procedure of
use’s choice and interest.

• CNN can be used for feature extraction and image classification in
conjunction with RNN, which helps in the retrieval of similar image
products.

Personal wardrobe
recommendation

[10,31,88,90,93,
100–108]

• Offers clothing recommendations by matching wardrobe management
profile with explicit input of time, location, weather conditions and
typical schedule provided by user.

• Smart closet system can suggest appropriate fashion items estimating
the information related to weather and events.

• Bayesian network can be employed to offer personalized fashion
recommendation system developed based on the history of wardrobe
items usage.
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Table 2. Cont.

Recommendation
System References Features and Implementation

Fashion pairing
recommendation

system

[4,10,15,22,36,45–
49,109–124]

• Adoption of this system helps in the representation of different style
genres based on the knowledge of fashion coordination and image
recognition.

• Implementation of this approach combines both visual and textual
information to express a knowledge-based fashion coordination
system and use image detection technology for extracting fashion
styles with similar features.

• It can recommend design scheme via a searching method using genetic
algorithms (GA) and artificial neural networks.

Smart or
intelligent

recommendation

[33,39–
44,50,74,88,89,

112,123,125–137]

• Its domain expertise knowledge of mixing and matching criteria
facilitates exploring the interrelationship between the fashion and the
user using intelligent algorithms.

• Use of decision tree, analytical hierarchy process, sensory engineering,
fuzzy mathematics, genetic algorithms, neural networks and support
vector machines to learn the skill of clothing attribute evaluation.

• Implementation of expert rules to propose an intelligent fashion
recommendation system of expert information collection based on eye
gaze tracking and the application of interactive evolutionary
algorithms to predict users’ style preferences.

Social-network-
based

recommendation

[7,8,31,43,92,133,
138–152]

• Personalized clothing recommendation built using three types of data:
(1) user social circles that show the relationships among users; (2) user
clothing records that indicate the interest and preferences of users for
certain fashion items; and (3) matching of pairs of fashion items that
represent style consistency among different items.

• Combination with wardrobe recommendations provides more
information about users to retailers, which can create an interactive
online shopping experience.

• Peer recommendations functioning through social shopping sites can
increase the accuracy of predictions based on the sharing of lifestyles
or experiences with friends, family members and colleagues, who
understand the users.

5.2. Algorithmic Models Used in Fashion Recommendation Systems

The models most used in developing fashion recommendation systems are multilayer
perceptron (MLP), recurrent neural network (RNN), k-nearest neighbor (kNN), convolu-
tional neural networks (CNN), Bayesian networks, generative adversarial network (GAN)
and autoencoder (AE) [8,12,31,51,86,103,153–158]. Researchers modified the algorithms
and tuned the hyperparameters to different extents to increase the prediction accuracy. The
rest of this section provides an overview of the main methodologies used.

5.2.1. Convolutional Neural Network (CNN)

A convolutional neural network (CNN) is constructed of multiple convolutional
layers, where the number of layers is customized based on the desired recommendation
system outcome. These layers can vary in terms of convolutional layers, filter size and fully
connected layers. Researchers increase or decrease the depth of the network to achieve
better results with the highest accuracy. Kernel and batch sizes are fixed depending on
the desired input/output of the layer. There is an optional pooling layer to reduce the
dimensionality of the data. The most common form of pooling layer is max pooling,
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which often ranges between 2 × 2 and 4 × 4. Softmax, Sigmoid, ReLU and TanH are
the most common activation functions for CNN, which can be used either separately or
in stacked form. Adam and stochastic gradient (SGD) are two popular optimizers used
in tuning hyperparameters of CNN models. CNN is very popular in recommendation
systems for its strong feature extraction and image classification capabilities. Yu et al
proposed a combined matrix and tensor factorization model using CNNs for an aesthetic-
based clothing recommendation to learn the images and their aesthetic features [159].
Nguyen et al. utilized the convolutional and max-pooling layer to obtain visual features
from different patches of images [120].

5.2.2. Recurrent Neural Network (RNN)

Recurrent neural network (RNN) is a generalization of feed forward neural network
that has an internal memory. RNN can use the internal state (memory) to process sequences
of inputs. There can be one to many input vectors as well as output nodes depending on the
type of research and goal, where these are not co-dependent. The dimension of the input
vectors can be of any size. The hidden states vary from the number of input vectors to the
number of states for the next cell. The most common activation function used in RNN is
ReLU. Long Short Term memory (LSTM) networks are a modified version of RNNs, which
can remember past data in memory more effectively. The vanishing gradient problem of
RNN is resolved in LSTM and so it is highly used to classify, process, and predict time
series data. Wu et al. designed a session-based recommendation model for a fashion
e-commerce website by utilizing the basic recurrent neural network (RNN) to predict what
a user will buy next based on the click history [154]. Quadrana et al. proposed a similar
hierarchical RNN for session-based recommendation, which deals with both session-aware
recommendations when user identifiers are present [160]. However, to inject context
information into input and output layers, Smirnova and Vasil proposed a context-aware
and session-based recommendation system based on conditional RNNs [161]. Han et al.
studied two distinct fashion recommendation techniques in their research, where they
trained a bidirectional LSTM model to predict an item conditioned on previous items to
facilitate the learning of compatibility relationships among the items [162]. They used
Polyvore dataset to perform extensive experiments to evaluate the performance of their
proposed model compared to different state-of-the-art recommendation models.

Li et al. presented an attention-based LSTM (Long Short-term Memory) model for
hash tag recommendation, which can capture the sequential property and also recognize
the informative words from micro blog posts by taking advantage of both RNNs and
attention mechanism [92]. The predicted rating (r̂) of item j given by user i at time t is
defined as:

r̂ui|t = f (uut, vit, uu, vi) (10)

Here, in Equation (7), uu and vi are the stationary latent attributes of user and item.
Besides, uut, and vit are learned from LSTM, uu and vi are learned by standard matrix
factorization.

5.2.3. Multilayer Perceptron (MLP)

A multilayer perceptron (MLP) is a form of artificial neural network architecture
that contains a series of layers, which are composed of neurons and their connections.
The neurons have the ability to calculate the weighted sum of its inputs and apply an
activation function to obtain a signal, which is transmitted to the next neuron. The number
of layers can be from 2 to infinity as more and more deep neural networks are introduced
depending on the project goal. The batch value and neurons vary but not limited from 8 to
64 and 128 to 512, respectively. Usually, the input and output layers have linear activation
function, and the hidden layers commonly have Sigmoid, ReLU, Softmax, tanh, etc. The
common optimizers used in MLP are Adam, Adadelta, Adagrad, Adamax, Nadam, SGD,
RMSprop, etc.
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A multilayer perceptron (MLP) model has been applied io different recommenda-
tion systems including for fashion clothing [163] and makeup recommendations [164].
Cheng et al. proposed an advanced model of MLP, which can solve both regression and
classification problems [165]. Here, the wide learning component is a single layer percep-
tron, and the deep learning component is a multilayer perceptron. Combining these two
(wide learning component: single layer perceptron and the deep learning component: mul-
tilayer perceptron) learning techniques enabled the model to capture both memorization
and generalization, which helps the model to catch direct features from historic data as
well as generalizing it, which can improve both the accuracy and diversity of the recom-
mendation. Chen et al. extended the model to decrease the running time for large-scale
industrial-level recommendation tasks by replacing the deep learning component with an
efficient locally connected network [15].

5.2.4. Generative Adversarial Network (GAN)

Generative adversarial networks (GAN) are deep-learning-based generative models
in which two neural networks (generator and discriminator) compete to become more
accurate in their predictions. The goal of the generator is to artificially manufacture (fake)
outputs that could easily be mistaken for real data and the discriminator tries to identify
which output is not real.

Among the two major components of GAN: the generator network is a simple feed-
forward neural network (i.e., five layers) and the discriminator network is a classifier, which
is slightly different from the generator network. The discriminator network processes the
image and gives a probability of a class for that image. Calculation of a GAN’s accuracy is
performed using a scoring algorithm such as using pre-trained inception V3 network by
comparing extracted features of both the generated and real image.

The objective functions of the GAN’s discriminator and generator are defined as:

DminV(D) = Ex,c∼pdata(x,c)Lreal(x, c) + Ec∼p(c),z∼p(z)L f ake(G(z, c), c), GminV(G)DminV(D) = Ec∼p(c),z∼p(z)L f ake (11)

Here, in Equation (11), Lreal(x, c) = [D(x, c)− 1]2 and L f ake(x, c) = [D(x, c)]2, which
means the discriminator D tries to predict ‘1’ for the real image and ‘0′ for fake images and
the generator G tries to generate ‘realistic’ images to fool discriminator D until the quality
of the generated images is acceptable.

Kang et al. proposed a generative adversarial network: an unsupervised learning
framework-based recommendation system that can generate new clothing in order to
provide more accurate recommendations to users [5]. They used the Bayesian personalized
ranking (BPR) optimization framework for implicit feedback, which optimizes rankings by
considering triplets (u, i, j) ε D.

D =
{
(u, i, j)

∣∣ uεU ∧ iεI+u ∧ jεI\I+u
}

(12)

Here, in Equation (12), iεI+u is an item about which the user u has expressed interest,
and jεI\I+u is the one about which they have not.

5.2.5. k-Nearest Neighbor (kNN)

The k-nearest neighbor (kNN) algorithm is a simple supervised learning algorithm
which can be used to solve both classification and regression problems. It depends on
labeled input data to produce output when given new unlabeled data. It is a non-parametric
algorithm, so it does not make any assumptions on any underlying data distribution and
does not use the training data points to perform any generalization. The output of the
algorithm is based on the feature similarity.
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In the KNN algorithm, the k most similar items are obtained by using different
similarity measures such as Cosine, Euclidean, etc. The formula can be derived using
simple Euclidean Distance as:

d(p, q) = d(q, p) =
√
(q1 − p1)

2 + (q2 − p2)
2 + . . . + (qn − pn)

2 =

√
n

∑
i=1

(qi − pi)
2 (13)

Here, in Equation (13), n is the number of dimensions or features. The data point
located at the minimum distance from the test point is assumed to belong to the same class.

Viriato De Melo et al. proposed a content-based approach for clothing recommenda-
tion by combining textual attributes, visual features, and human visual attention in order
to compose the clothes’ profile, which outperformed their baseline approaches [158]. The
kNN algorithm is used for the item rating considering the past behavior of the user and
the similarity between items.

5.2.6. Autoencoder (AE)

An autoencoder is an unsupervised learning technique for neural networks that can
learn efficient data representations or encoding by training the network to ignore signal
noise. It consists of an encoder, code, and decoder where the encoder and decoder are both
fully connected to, and feed forward neural networks and the code is a single layer of an
artificial neural network user for reducing dimensionality. Here, the input passes through
the encoder to produce the code and then output is produced at the decoder using only the
code as the input where the dimensionality of the input and output needs to be the same.
The number of layers of code determines the rate of compression, the lower the number,
the higher the compression ratio. An autoencoder can be as deep as we want and can be
any number between 2 and infinity depending on the research goal. Besides, the most
common loss functions used in these kinds of models are mean squared error (MSE) and
binary cross-entropy.

The two general reasons for using an autoencoder in a recommendation system are
either to learn about lower-dimensional feature representations or to fill the blanks in the
interaction matrix. Collaborative denoising autoencoder (CDAE) is one of the most highly
used autoencoders, which is principally used for ranking prediction. The reconstruction is
defined as:

h
(

r̂(u)pre f

)
= f

(
W2 · g

(
W1· r̂

(u)
pre f + Vu + b1

)
+ b2

)
(14)

Here, in Equation (14), r̂(u)pre f is user observed implicit feedback; Vu ∈ Rk denotes the
weight matrix for the user node. Gao et al. developed a F clothes matching scheme based
on Siamese network and autoencoder [12]. They used triple autoencoder and Bayesian
personalized ranking to map three kinds of features into the same latent space to learn the
compatibility between tops and bottoms.

5.2.7. Bayesian Networks

Bayesian networks are a kind of probabilistic graphical model, which are usually
used for prediction, anomaly detection, diagnostics, time series prediction, reasoning, and
decision-making. This kind of network is a graph, which is made of nodes and directed
links. Each node represents a variable, where the number of variables in a node can be one
to any number, and in that case, they are called multivariable nodes. The variables can be
both discrete and continuous. The required links are automatically determined from data
using the structural learning algorithm.

Bayesian networks can be used to model the joint probability distribution of mul-
tiple random variables where a random variable is represented as a node and the links
represent dependencies between the variables. Ono et al. constructed a user recommenda-
tion model using Bayesian networks considering the users’ contexts in addition to their
personalities [156]. They selected effective variables from many observed attributes and
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determined local network structures and estimated conditional probability tables. For this,
the pseud product attributes were calculated from impression attributes whose scores were
defined as:

score =
I(r, CID)

H(r|CID)
(15)

Here, in Equation (15), I(r, CID) is the mutual information between the attribute
value r and the content ID, H(r|CID) is the conditional entropy of r.

Researchers also used the naïve Bayes algorithm to develop recommendation sys-
tem [166,167]. It is a classification algorithm, which uses Bayes’ theorem for classification.
This algorithm performs equally well with the problems above irrespective of their linear
or non-linear separation [166]. Wei, et. al. (2020) used a naïve Bayes classifier to predict
and investigate users’ emotions followed by the determination of users’ sentiments toward
specific items and calculating the product-to-product similarity based on collaborative
filtering [167].

Table 3 presents the machine-learning algorithms that are most used in fashion recom-
mendation system research. It exemplifies the research that used these algorithmic models
to develop recommendation systems and highlights the performance of these models for
the benefit of the researchers and retailers.

Table 3. Popular algorithmic models used in fashion recommendation systems.

Algorithm/Model Recommendation System Used Performance

Convolutional Neural
Networks (CNN)

• Guan, et al. and Liu, et al. used CNN to
develop content-based filtering
technique [10,168].

• The recommendation system showed
weather-oriented clothing pairing results
as output based on the image attributes.

The proposed CNN model achieved a
maximum of Normalized Discounted

Cumulative Gain (NDCG) ranking score
of 0.50, which outperformed support
vector machine (SVM), because SVM

achieved an NDCG score of 0.45.

Recurrent Neural
Network (RNN)

• Heinz et al. used RNN to build a
recommendation system utilizing
dynamic collaborative filtering
technique [50].

• The RNN-based recommendation
system recognized individual style
preferences from a modest number of
purchases by combining sales events.

The proposed RNN model achieved a
higher AUC value of 88.5% compared to

the AUC value of 80.2% achieved by a
popularity ranking baseline approach.

Multilayer Perceptron
(MLP)

• Alashkar et al. used MLP to build a fully
automatic makeup recommendation
system utilizing content-based filtering
techniques [164].

• The model recommended homogeneous
makeup style according to its
automatically classified facial traits and
synthesized the makeup style as well.

The proposed MLP model achieved a
minimal squared loss function value,

which was 48% lower than distance-based
similarity recommendation model.
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Table 3. Cont.

Algorithm/Model Recommendation System Used Performance

Generative adversarial
network (GAN)

• Kang et al. used GAN to develop a
personalized recommendation system
utilizing collaborative filtering
techniques [5].

• The models learnt the distribution of
fashion images and generated novel
fashion items, which maximized users’
preferences.

The proposed method outperformed the
strongest content unaware method
(Bayesian Personalized Ranking)

substantially by around 5.13% in terms of
accuracy and achieved a 6.8%

improvement over a retrieval-based
method in terms of preference score.

kNN (k-nearest
neighbor)

• Leininger et al. proposed an advanced
retail recommendation system using
kNN and collaborative filtering
techniques [169].

• The model computed the distance to
similar items by using cosine similarity
followed by individual clustering of the
products.

The model achieved a higher accuracy in
terms of AUC (91%) than that of the AUC

(85%) of the baseline model.

Autoencoder

• Gao et al. developed clothes matching
scheme based on Siamese network and
autoencoder utilizing content-based
filtering techniques [12].

• The model extracted visual and textual
features followed by recommending
clothing based on the input image
(top/bottom part clothing) of the user.

The proposed model achieved an AUC
value 0.884 compared to the AUC value of

0.762 achieved by the probabilistic
knowledge distillation (PKD) method.

Bayesian Networks

• Yu-Chu et al. used a Bayesian network
to develop a personalized
clothing-recommendation system
utilizing content-based filtering
techniques [103].

• The model recommended a clothing
combination or selected personal items
based on personal preferences rather
than other users’ behavior.

The proposed model outperformed the
basic Bayesian model by 50% in terms of
frequency of selection (of the same cloth)

and by 90% in terms of recommended
combinations

5.2.8. Other Methodologies

The study of algorithmic models revealed that researchers achieved better recommen-
dation accuracy when combining multiple algorithms and techniques together rather than
using a single algorithm-based baseline model. Apart from the abovementioned algorith-
mic models, researchers have also proposed various other potential algorithms, such as
the cosine similarity-based algorithm [51,169] and fuzzy logic techniques [33,132,170] and
multicriteria-based methods [77,137,171–173] have gained popularity in recent times.

Hu et al. proposed three cosine-based similarity algorithms for aesthetic-based col-
laborative clothing recommendation systems to provide recommendations to users using
frequency similarity [51]. These were: cosine-based similarity (COS); adjusted cosine-based
similarity (ACOS); and COS-based inverse user frequency (IUF).
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SCOS(i, j) =
|N(i) ∩ N(j)|√
|N(i)| · |N(j)|

(16)

SACOS(i, j) =
∑u∈U

(
C(u, i)− C(i)

)
·
(
C(u, j)− C(j)

)√
∑u∈U

(
C(u, i)− C(i)

)
·
√

∑u∈U
(
C(u, j)− C(j)

) (17)

SIUF(i, j) =
|N(i) ∩ N(j)| · ∑u∈N(i)∩N(j)

1
log
(

1+|Θ(u)|λ
)√

|N(i)| · |N(j)|
(18)

Here, in Equations (16)–(18), N(i) and N(j) are two sets of consumers who pur-
chased goods i and j individually. |N| is the size of the set, C(u, i) is the co-occurrence
matrix, C(j) is used to represent the average times consumers purchase goods j. Further,

1
loglog

(
1+|Θ(u)|λ

) is used to control the impact of the active consumers.

Researchers also used fuzzy theory and the analytic hierarchy process (AHP) to
develop a consumer-oriented fashion recommendation system to facilitate using online
shopping experience as a virtual sales advisor [33,132,170]. The initial stage of fuzzy logic
application establishes the fuzzy membership functions of fuzzy sets. These membership
functions are important for reflecting the features of fuzzy concepts as well as attaining
mathematical tasks and processing [170]. Researchers have also used fuzzy comprehensive
evaluation to assess objects influenced by multifactor criteria [174].

Researchers have frequently used multicriteria decision-based models to develop
fashion recommendation systems [77,100,130–132,137,171–173,175]. Adewumi et al. used
unified modeling language (UML) to develop a unified framework for outfit recommenda-
tions, where users specified the date as an input parameter through a weather API that was
afterwards passed through an inference engine, a multicriteria decision making module
and hybrid artificial intelligence techniques to provide a suitable recommendation [171].
Zeng et al. recommended a perception-based recommender system comprised of two
distinct models, where these two models worked together to provide recommendations
by characterizing human body measurements and their perceptions of different body
shapes [135].

5.3. Recommendation Filtering Techniques

The selection of an effective and accurate filtering technique is crucial for developing
a successful recommendation system. Therefore, an elaborate understanding of these tech-
niques is required before implementing them in a commercial platform. Figure 3 presents
a classification tree containing four widely used recommendation-filtering techniques.

5.3.1. Content-Based Filtering (CBF) Technique

The content-based filtering (CBF) technique examines the features of a recommended
item by classifying users’ (or consumers’) and products’ profile data based on the products’
features [10]. The use of domain-dependent algorithms emphasizes the analysis of the
products’ features, which are utilized to generate predictions. Although the applications of
content-based filtering techniques have been more successful in recommending web pages,
publications and news articles, researchers have implemented this technique to develop
fashion recommendation system as well [93,111,119,123,143,176–178]. In this technique,
user profiles are matched with the features extracted from the product content, which pro-
vides the recommendation where the user has evaluated a specific product in the past [56].
The products that have the highest relation with the positively scored or rated items are
generally recommended to users. The content-based technique uses different kinds of
models to explore the similarity between items to generate a meaningful recommendation,
which is the main distinctive feature between content-based and collaborative filtering
techniques [179,180]. These machine-learning techniques propose recommendations by
learning the core or foundations of the underlying model. In this type of filtering the
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rating of an item is calculated based on the other ratings. Figure 4 shows a bipartite graph
generated from the user interaction, where the orange shirt will receive a rating for user 1
because the other 2 reviews about that shirt both gave it 5 stars. This method of filtering is
used when the target user is not known and much about the apparel to be sold is known.
Here, the directed edges from the users to the items represent users’ interaction with the
items through likes, comments, retweets, etc.

Figure 3. Classification of filtering techniques for recommendation systems.

Figure 4. Content-based filtering process.

Researchers have used probabilistic models such as the Bayesian classifier [176], deci-
sion tree [181] and neural network model [123] to develop content-based recommendation
systems. CBF does not require profiles of other users as it can adjust its recommendations
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within a short period even if the user’s profile changes. Viriato de developed a recom-
mendation system based on a combination of textual features, visual attributes and visual
attention using a content-based filtering technique [158]. Their proposed model, named
CRESA (Clothing Recommendation System developed using Attributes such as textual
attributes, visual features, and visual attention), outperformed standard models such as
the k-nearest neighbor (kNN) model. It achieved an average precision of 74.8%, which
was better than the other standard models. Wu et al. also adopted a similar approach of
providing fashion recommendations based on the visual and textual information provided
by the users [153].

5.3.2. Collaborative Filtering (CF) Technique

The collaborative filtering (CF) algorithm is one of the most successful techniques
among all of the filtering techniques available for the recommendation system [182]. CF
is a domain-independent prediction technique for analyzing hard-to-describe content by
observing metadata [97,159,183]. This filtering technique is formed by using a dataset of
the preferences of a group of users to make a recommendation to another group of users
who show similar types of behavior. The fundamental assumption of CF is based on the
similarities of users, which build a neighborhood group. Therefore, this technique is called
user-based collaborative filtering [159,179,184,185]. In collaborative filtering, automatic
predictions are made based on the reviews given by other people. Therefore, the major
assumption is that if two people have similar interests in a common dataset then their
interests would be similar for the rest as well [159,185]. Figure 5 represents an interaction
matrix, where each row represents users, and each column represents product or item. This
utility matrix contains partial data, where likeliness or interaction needs to be predicted
based on the rating (i.e., 1 to 5) given by other users to a specific item. In this figure, rating
5 represents the highest interaction and rating 1 represents the lowest interaction. When
a new item or user is added to the platform, the cosine similarity algorithm or k-nearest
neighbor can be used while calculating the predicted value [186]. The figure also shows
that as user 2 and user 3 have similar choices for item 3 and item 4, the CF method would
predict that for item 2 (the yellow shirt) user 3 will have a similar interaction as user 2,
i.e., 1 star. Additionally, that is how the rest of the selections would be filled in.

Figure 5. Collaborative filtering process.

Although the CF technique is critical and has some issues, such as data sparseness and
the cold-start problem, recommendation systems based on CF techniques have successfully
worked for many renowned business stores and services [179,184,187,188]. Yu et al. pro-
posed a collaborative clothing recommendation system that overcomes the problem of cap-
turing the aesthetic preferences of users by using a novel tensor factorization model [159].
They used the Amazon dataset and the Aesthetic Visual Analysis (AVA) dataset to train
the recommendation models and the aesthetic network, respectively. The Amazon dataset
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contains records of 39,371 users and 23,022 items. The AVA dataset contains over 250,000
images with aesthetic ratings from 1 to 10 and 14 photographic styles representing com-
plementary colors, duotones, light on white, long exposure, high dynamic range, motion
blur, negative image, silhouettes, soft focus, vanishing point and image grain. They pro-
posed a dynamic collaborative filtering model using both aesthetic features and CNN
features (DCFA) and compared it with baseline models such as the matrix factorization
(MF) method, state-of-the-art visual-based recommendation method (VBPR) and state-
of-the-art context-aware recommendation method (CMTF). DCFA and VBPR performed
better on the test dataset compared to other models. However, the proposed DCFA model
outperforms VBPR by 8.53% in terms of higher recall and 8.73% in terms of higher normal-
ized discounted cumulative gain. Song et al. developed a personalized compatibility-based
recommendation model (GP-BPR) using collaborative filtering [189]. The model is com-
prised of two key modeling elements: general compatibility and personal preference, which
illustrate the interaction between items as well as the interaction between user and item.
Their proposed personal preference modeling technique can facilitate delivering vital clues
regarding user’s personal preference. They also developed a large-scale dataset, named
IQON3000, using the images available in the online fashion community IQON for the per-
formance evaluation of the recommendation model. De Divitiis et al. also adopted a similar
approach to propose a garment recommender system by combining memory augmented
neural network (MANN) and matrix factorization (MF) techniques [190]. They considered
personalized suggestions as an additional element to user preferences and purchase his-
tories. They also used IQON3000 for their experiment and reported better performance
compared to GP-BPR. The MANN+MF and GP-BPR obtain mean average precision of
0.15 and 0.13, respectively, while retrieving the same number of items (~20 items). Addi-
tionally, Sagar et al. introduced PAI-BPR (Personalized Attributewise Interpretable—BPR)
as an outfit compatibility model that can capture user–item interaction along with gen-
eral item–item interaction based on the user’s personal preferences and identifying the
discordant and harmonious attributes between fashion items [191]. They used multilayer
perceptron (MLP) to learn the non-linear interactions and leverage both the textual and
visual modalities in the context of item description and image, respectively. They also
used matrix factorization to incorporate the latent content-based preference factors for the
personal preference modeling of an item. They also used IQON3000 for their experiment
and reported better performance in terms of AUC (0.8502) compared to Bi-LSTM (0.66110,
BPR-MF (0.7867), VBPR (0.8088) and GP-BPR (0.8321).

Model-Based Collaborative Filtering Technique

The model-based CF algorithm works by constructing a model for the prediction of
ratings on the unseen items of users based on the past ratings of the users [97,183]. Machine
learning or data mining approaches can be used to build the model-based CF technique.
To do so, this model may categorize users into single or multiple clusters. However, single
cluster categorization is often problematic for prediction or recommendation as the user
may have a variation of tastes with the different items [42,192]. Therefore, most of the
model-based CF algorithms categorize the user into multiple clusters [184]. With the
evolution of the use of learning algorithms, model-based recommendation systems have
begun to use some algorithms such as association rules, clustering, decision tree, artificial
neural network, link analysis, regression and Bayesian classifiers [57,193,194].

Memory-Based Collaborative Filtering Technique

Unlike the model-based CF filtering technique, a memory-based CF algorithm predicts
the user’s seen items based on the users’ past ratings. This technique of CF filtering is
simple and straightforward, and that is why it has been broadly accepted for real-life
application [195]. This model can quickly incorporate the most up-to-date information
for the prediction, which is considered one of the advantages of this model. However,
making the memory-based algorithm scalable is one of the biggest challenges of this
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technique [196]. A memory-based CF recommendation system can be built on either a
user-based or an item-based technique. In the case of a user-based technique, this involves
calculating the similarities of the user ratings on the same items forms the model. On the
contrary, the item-based technique is constructed by calculating the similarities between
the items [57,187,197].

Hybrid Collaborative Filtering Technique

The hybrid collaborative filtering (CF) technique is a combination of the memory-
and model-based CF filtering techniques. This technique has been developed to utilize
the advantages of memory and model-based CF techniques and to mitigate the issues
CF technique has, such as sparsity and diversity [188]. Wang et al. proposed a hybrid
collaborative filtering technique-based recommendation model, which combines a fashion
theme-based model with user’s body attributes as well as clothing features [173]. They
developed the dataset using both real world data and a 3D scanned body image dataset.
Their model achieved 80% accuracy, which is higher than existing fashion recommendation
systems used in the research conducted by [41,94,131,198].

5.3.3. Hybrid Filtering Technique

The hybrid filtering (HF) technique combines multiple recommendation techniques
to achieve better system optimization and avoid different limitations and challenges of a
basic recommendation system. The concept behind implementing the hybrid technique is
that the combination of algorithms would provide more appropriate and effective recom-
mendations to users than a single algorithm. Hence, this is the disadvantage of using one
algorithm-based recommendation system [179,199]. This construction is beneficial when
the dataset lacks user preferences; information about such preferences builds the founda-
tion of collaborative recommendations. By assuming the result of content-based filtering
(R1) and result of collaborative filtering (R2), the hybrid filtering technique calculates the
weights of these results as R3 and then, depending on the weights, it combines the results
by influencing the higher weighted result and recommends the final product R4, which
resembles the results R1 and R2, as shown in Figure 6.

Qian et al. proposed a hybrid visual recommendation system by combining condi-
tional random fields with deep lab multiscale (MSc) and large field-of-view (large FOV)-
based neural networks [143]. Their recommendation system has two properties. Firstly,
it is knowledge-based, which helps it learn a pairwise preference or occurrence matrix
based on the knowledge learnt from examples such as images uploaded to fashion blogs.
Secondly, it has features of content-based filtering as it uses a deep learning network for
learning the feature representation. They used 10,000 street-style images for image seg-
mentation, 45,645 street-style images for product localization and 14,000 online fashion
images for texture classification. Their proposed DeepLab-MSc-LargeFOV + CRF for image
segmentation outperformed other baseline models such as fully convolutional networks
(FCN), combination of convolutional networks (FCN) and the conditional random field
(CRF) network model. The proposed model achieved 73.99% mean intersection over union
(IoU), which was higher than the other baseline models. Their proposed recurrent fully
convolutional networks (R-FCN) achieved an average mean precision (m-AP) of 83.4%,
which was higher than that of the baseline models single shot multibox detector and
recurrent convolutional neural network (R-CNN).

Hybrid filtering techniques can be classified into seven categories: weighted hybridiza-
tion; switching hybridization; cascade hybridization mixed hybrids; feature-combination;
feature-augmentation; and metalevel hybridization [200]. Weighted hybridization gen-
erates a recommendation or prediction list by combining the results of multiple recom-
mendation systems based on the integration of the scores derived from all of the filtering
techniques using a linear formula [201]. Switching hybridization switches to one of the
used recommendation techniques based on a heuristic, which reflects the system’s ability
to generate a good rating [202]. Cascade hybridization employs an iterative refinement
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process to construct an order of preferences or choices of different items. A mixed hybrid
recommendation combines the prediction results of different recommendation techniques
simultaneously instead of having a single recommendation per item [201]. In the feature-
combination hybrid technique the features generated by a particular recommendation tech-
nique are supplied to another recommendation technique [200]. The feature-augmentation
technique uses the ratings and other relevant information produced by a previous recom-
mendation system as an input for another recommender, which results in the generation of
a model that is always richer in terms of information usage in comparison with a single
rating [57]. The metalevel hybrid technique uses an entire model as an input for a second
recommendation algorithm, which was previously learned by a first algorithm [202].

Figure 6. Hybrid filtering process.

5.3.4. Hyperpersonalization Filtering Technique

Personalization is a system that uses the profiling of customers to make certain as-
sumptions about the users. These assumptions are based on certain specific features and
traits gathered from the profiling. For example, suggesting ads to buyers since they have
ordered or searched for a similar product online is a very common strategy used these
days. This technique of personalization can bring a huge boom in sales for companies
according to their sales reports. Hyperpersonalization uses the same strategy and works
more on it. Hyperpersonalization is an advanced technique built over the concept of
personalization, in which the model not only investigates the item or product that was
bought, but also looks into other details such as location of purchase, mode of purchase,
cost of purchase, keywords inserted during purchase, demographics of the person who
purchased, etc. [34,124,130,135,139,203,204]. Hyperpersonalization delves into the intricate
details and thereby produces much better and effective personalization, which has made it
popular in recent times [5,29,146,205,206]. The implementation of this filtering technique
with virtual try-on facilities can develop a recommendation system that offers instant
image generation of a user wearing the selected fashion item [207,208]. The use of a gen-
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erative adversarial network (GAN) in developing a state-of-the-art hyperpersonalization
recommendation system can facilitate an apparel type recommendation or clothing fit
recommendation with a real time image generation [157,206,209]. Kang et al. proposed a
visually aware deep Bayesian personalized ranking method (DVBPR) recommendation
system that can generate new clothing given a user profile and a product category, which
is designed with more customization in order to provide more accurate recommendations
to users or consumers [5]. Their system achieves an area-under-curve or AUC value of
79.64% on provided dataset, which is higher than that of baseline models such as random
ranking, popularity ranking (PopRank), weighted approximated ranking pairwise (WARP),
Bayesian personalized ranking combined with matrix factorization method (BPR-MF),
visual similarity-based raking method (VisRank), factorization machines (FM) and visually
aware personalized ranking (VBPR). There has not been rigorous research on hyperperson-
alized filtering-based recommendation models, as it is comparatively new compared to the
other three filtering techniques mentioned above. Therefore, this paper proposes a novel
hyperpersonalized filtering-based recommendation model in Section 6 below, which can
be used by future researchers in this field.

5.4. Strengths and Weakness of Filtering Techniques

The successful outcome of the recommendation system depends on the relevance
of the filtering technique and its compatibility with the proposed model. Therefore, re-
searchers should consider the strengths and weaknesses of the corresponding filtering tech-
niques while conducting research on fashion recommendation systems. Table 4 presents
the strengths and weakness of the each of the recommendation filtering techniques dis-
cussed above.

Table 4. Strengths and weakness of recommendation filtering techniques.

Filtering Techniques Strength Weakness

Content-based

• Products recommended based on the
evaluation of experienced users.

• CBF does not need any information from
other users, which makes this technique
more feasible and less time consuming.

• CBF can attain the specific interest of a
user and make recommendations
accordingly.

• Provides a valuable explanation, which
motivates users to make decisions.

• As it is CBF domain-dependent,
rigorous domain knowledge is
required to make precise
recommendations.

• The model only recommends products
based on an existing database of
previous users’ interest, which restricts
its expansion.

• Due to cold start problem, cannot be
applied to make recommendations to
new users.

• This method suffers limited content
analysis issues, meaning users are
restricted to the items already
recommended.

Collaborative

• CF does not depend on domain
knowledge.

• It does not require contextual attributes.
This technique can be applied to one of
the multiple users’ generators.

• This method can allow users to discover
new interests despite the absence of
content in the user’s profile.

• Not applicable for new users, similar to
content-based methods.

• Difficult to include side features for
query/items.

• Single-rating CF was successful
whereas multicriteria rating is still
under optimization.
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Table 4. Cont.

Filtering Techniques Strength Weakness

Hybrid

• Proposed multicriteria rating over
CF-based recommendation.

• Solved cold start problem.
• Hybrid algorithm overcame the single

algorithms’ shortcomings.
• Cascade hybridization, one of the HF

methods, exhibited high sensitivity,
resulting in efficient recommendations.

• HF does not exclusively depend on
collaborative data.

• Solved sparsity issue of CF method
using metalevel technique.

• Hybrid nature made this method
complex because of the necessity of
applying numerous recommendation
parameters for analysis.

Hyperpersonalization

• Yields better results when it comes to
customer satisfaction and needs.

• Enhanced customer experiences.
• Higher return on investment (ROI).
• Highly engaging social campaigns.

• Involves taking additional data, which
makes the process a bit more
expensive.

• Privacy invasion can be a concern, as
when more than the required data are
collected it can lead to a privacy issue.

6. Prospects, Challenges and Recommendations for Future Research

There has been significant progress recently in fashion recommendation system re-
search, which will benefit both consumers and retailers soon. The use of product and
user images, textual content, demographic history, and cultural information is crucial in
developing recommendation frameworks. Product attributes and clothing style matching
are common features of collaborative and content-based filtering techniques. Researchers
can develop more sophisticated hyperpersonalized filtering techniques considering the
correlation between consumers’ clothing styles and personalities. The methods based
on employing a scoring system for quantifying each product attribute will be helpful
in increasing the precision of the model. The use of virtual sales advisers in an online
shopping portal would provide consumers with a real time offline shopping experience.
Retailers can collect the data on users’ purchase history and product reviews from the
recommendation system and subsequently use them in style prediction for the upcoming
seasons. The integration of different domain information strengthens the deep learning
paradigm by enabling the detection of design component variation, which improves the
performance of the recommendation system in the long run. Deep learning approaches
should be more frequently used to quickly explore fashion items from different online
databases to provide prompt recommendations to users or consumers.

Image quality has always been a critical issue for recommendation systems. Product
images taken under controlled environments give higher accuracy in product retrieval and
prediction. However, photos taken in a random environment, such as selfies and street
style photos, create challenges for the model and lead to inaccurate predictions. Therefore,
there should be more research on image parsing, as it is crucial to understand product
attributes and human postures, which are applied to predict consumers’ fashion preferences.
Besides, the development of new state-of-the-art algorithms to analyze randomly captured
social media or street photos would be helpful to overcome different obstacles related to
image resolution, background, and other technical features. Database generation is always
challenging for researchers, particularly when the model is designed to identify new
factors and product contents from images that were not identified earlier. The annotation
or labeling of such a database is a tedious, time consuming and costly process. The
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combination of different databases such as runway images, street photos, look-book images,
photos from photo sharing sites and social media images will make it easier to train the
model on various fashion categories. Hence, it will increase the robustness of the model.
The integration of product images available in online shops with street snapshots will create
a large dataset that can be used to parse body and clothing images and distinguish attributes
of clothes such as textures and clothing types. There has been limited in-depth research on
developing recommendation systems using text (review and comments), product images
and user photos together. Therefore, there should be more novel research on developing
recommendation models by combining sentiment analysis with user images to provide
intelligent and social-network-based hyperpersonalized recommendations. This can be
achieved by using hybrid and hyperpersonalized filtering techniques together to develop
the recommendation system. The use of social media is rapidly increasing around the
world. Nevertheless, retailers and researchers have not widely explored the potentiality of
using social media images for clothing recommendation. Moreover, there is still limited
research on using image analysis for online fashion recommendation. Therefore, future
research on social media should include a holistic analysis of users’ images, texts and facial
expressions to make the recommendation system more effective.

Researchers should also explore the potential of some widely used statistical tests, such
as the sign test and the Friedman test, as a metric of testing the significance of performance
evaluation or recommendation accuracy. The sign test is a simple test of significance
used to measure the performance of one system over another based on the probability
distribution [210]. The Friedman test is a non-parametric test identical to the repeated-
measures ANOVA. It ranks the algorithms individually for each dataset, where the best
performing algorithm is assigned the 1st rank, the second-best algorithm is assigned the
2nd rank, etc. [211].

6.1. Potential Algorithmic Models for the Future
6.1.1. Multi View Deep Neural Network

Multi view deep neural network (MV-DNN) is a cross-domain recommendation
system which treats users as the pivot view and each domain as an auxiliary view. The
primary model is based on the hypothesis that if the users have similar tastes in one
domain, they should have similar tastes in other domains as well [212]. Therefore, this
model can be inefficient in some cases for which it must have some preliminary knowledge
on the correlations across different domains. A MV-DNN or MV-CNN can be used in a FRS
along with a MLP, which could potentially learn from features of items from cross-domains
and user features as well as map users and items to a latent space where the similarity
between users and their preferred items can be maximized. Moreover, it can be a great
addition to a highly scalable fashion recommendation system to attain rich, feature-based
user representation by reducing the dimension of the inputs and the amount of training
data required.

6.1.2. Neural Collaborative Filtering

There was an idea to develop a two-way interaction between users’ preferences
and item features to pinpoint the recommendation system. A dual neural network was
proposed to model the two-way interaction between users and items. Fusing the neural
interpretation of matrix factorization (MF) with multilayer perceptron (MLP) to develop
a new generalized model by making use of both linearity of MF and non-linearity of
MLP could enhance the recommendation quality. Xue et al. and Zhang et al. proposed
replacing one-shot identifiers with columns or rows of the interaction matrix to retain the
user–item interaction patterns [213,214]. In general fashion recommendation systems, the
user satisfaction is not observed and there is an inherent scarcity of negative feedback.
Using a neural collaborative network in the final part of the system can reduce this by
using the output of one layer as the input of the next one to generate feedback for the
predicted recommendation. Moreover, it can increase the performance and quality of any
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fashion recommendation system, for example color and style selection confidence, for any
specific user based on accurate feedback related to the product.

6.1.3. Neural Autoregressive-Based Recommendation

The neural autoregressive distribution estimator (NADE) is a tractable distribution
estimator, which provides a desirable alternative to the restricted Boltzmann machine
(RBM), which is not tractable. Zheng et al. proposed a NADE-based collaborative filtering
model (CF-NADE) by modeling the distribution of user ratings [215]. Later, Du et al.
improved the model using a user–item co-autoregressive approach and achieved better
performance in both rating estimation and personalized ranking tasks, which gives the
model high potential to be used in fashion recommendation systems [216]. Moreover, the
model can be further extended to a deep model by combining it with MLP or autoencoder
and can potentially use the implicit feedback to overcome the sparsity problem of the rating
matrix. The increased performance in rating estimation and personalized ranking tasks
can make the cross-matching of the products of the fashion recommendation system much
more accurate and time efficient.

6.1.4. Neural Graph Filtering

Liu, X. et al. developed a recommendation system applying neural graph filtering,
where they used the Polyvore dataset, the Polyvore-D dataset, and the Amazon Fashion
dataset for their experiment [217]. Neural graph filtering is based on graph structures with
nodes represented as visual embeddings of the apparel images and edges modeled by the
interrelationship among the apparel items. The edge information is accumulated and then
circulated through forward propagation to evaluate a compatibility score for a given set of
apparel or garment item. It describes the suitability of all the products within the set that
match each other. While determining the compatibility score, the inter-relationships among
all garment items are considered. Then, the garment set with the highest compatibility
score is confidently recommended to the user [217].

6.1.5. Hybrid Model

Zhang et al. combined CNNs with autoencoders for image feature extraction lever-
aging structural content, textual content and visual content with different embedding
techniques, which relates the products’ attributes with users’ preferences [218]. It combines
a heterogeneous network embedding method for interpreting structural information, a
stacked denoising autoencoder to learn feature representations from textual information
and stacked convolutional autoencoders for visual representation and finally completes
the recommendation process in a probabilistic form. Therefore, it could add great value
to a fashion recommendation system by generating new and high-quality visual clothing
recommendations for the users by combining the confidence scores with the structural
information. Vasileva et al. combined conditional similarity networks, visual-semantic
embedding, SiameseNet and metric approaches to develop a fashion recommendation
model [219]. They conducted extensive experiments on the Maryland Polyvore, Polyvore
Outfits-D and Polyvore Outfits datasets and found that their approach outperformed other
state-of-the-art recommendation techniques.

7. Discussion

This scholarly article has provided a comprehensive review of the methods, algorith-
mic models and filtering techniques used in the recent fashion recommendation-based
research papers. However, this review paper has some limitations too. Primarily, the
focus of this comprehensive review paper was to explore fashion recommendation-based
articles published in last decade that explicitly described their frameworks, algorithms,
and filtering techniques. To achieve this goal, the articles were searched using keywords
relevant to the topic title instead of using the PRISMA technique. However, it did not
affect the article extraction methodology, because the authors included and studied all the
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research papers relevant to the research focus. However, future researchers could conduct
a systematic literature review on the same topic. The initial keyword searching did not
include “garment” and “outfit”; however, this did not influence the search results because
we also studied the fashion recommendation articles that contained these keywords. The
future research can also conduct a review of the datasets that have been used in fashion
recommendation-based research articles. Additionally, further reviews of fashion recom-
mendation systems can apply our proposed potential algorithms to any of the available
fashion image datasets to evaluate the performance of the recommender systems.

8. Conclusions

Recommendation systems have the potential to explore new opportunities for retailers
by enabling them to provide customized recommendations to consumers based on infor-
mation retrieved from the Internet. They help consumers to instantly find the products and
services that closely match with their choices. Moreover, different stat-of-the-art algorithms
have been developed to recommend products based on users’ interactions with their social
groups. Therefore, research on embedding social media images within fashion recommen-
dation systems has gained huge popularity in recent times. This paper presented a review
of the fashion recommendation systems, algorithmic models and filtering techniques based
on the academic articles related to this topic. The technical aspects, strengths and weak-
nesses of the filtering techniques have been discussed elaborately, which will help future
researchers gain an in-depth understanding of fashion recommender systems. However,
the proposed prototypes should be tested in commercial applications to understand their
feasibility and accuracy in the retail market, because inaccurate recommendations can
produce a negative impact on a customer. Moreover, future research should concentrate on
including time series analysis and accurate categorization of product images based on the
variation in color, trend and clothing style in order to develop an effective recommendation
system. The proposed model will follow brand-specific personalization campaigns and
hence it will ensure highly curated and tailored offerings for users. Hence, this research
will be highly beneficial for researchers interested in using augmented and virtual reality
features to develop recommendation systems.
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