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Abstract: Machine learning has become an increasingly ubiquitous technology, as big data continues
to inform and influence everyday life and decision-making. Currently, in medicine and healthcare, as
well as in most other industries, the two most prevalent machine learning paradigms are supervised
learning and transfer learning. Both practices rely on large-scale, manually annotated datasets
to train increasingly complex models. However, the requirement of data to be manually labeled
leaves an excess of unused, unlabeled data available in both public and private data repositories.
Self-supervised learning (SSL) is a growing area of machine learning that can take advantage of
unlabeled data. Contrary to other machine learning paradigms, SSL algorithms create artificial
supervisory signals from unlabeled data and pretrain algorithms on these signals. The aim of this
review is two-fold: firstly, we provide a formal definition of SSL, divide SSL algorithms into their
four unique subsets, and review the state of the art published in each of those subsets between the
years of 2014 and 2020. Second, this work surveys recent SSL algorithms published in healthcare,
in order to provide medical experts with a clearer picture of how they can integrate SSL into their
research, with the objective of leveraging unlabeled data.

Keywords: self-supervised learning; healthcare; representation learning; medicine; computer vision;
pathology; machine learning

1. Introduction

Computer vision (CV) is an interdisciplinary subfield of artificial intelligence deal-
ing with the design of algorithms that allow computers to gain a high-level, semantic
understanding of images and videos. Historically, the performance of computer vision
algorithms has been dependent on hand-crafted features such as SIFT [1] and HOG [2].
In recent years, however, such approaches have been eclipsed by convolutional neural
networks (CNNs), a subset of deep learning algorithms which seek to imitate the hierar-
chical learning process of the biological visual apparatus [3,4] using gradient descent to
identify features directly from the data. A landmark moment came when AlexNet [5] took
first place in the 2012 ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [6],
demonstrating for the first time a CNN-based method outperforming traditional computer
vision algorithms in head-to-head competition. Since then, ILSCRV has consistently seen
novel CNN architectures yielding increasingly better results [7].

While supervised learning with CNNs has continued to improve and allowed the
field of image processing to evolve at a rapid pace, this paradigm also has limitations.
In particular, the learned semantic distributions are heavily dependent on the training
datasets, meaning that their performance and generalizability are typically upper-bounded
by dataset size. This is especially true within the domain of object recognition [8]. Label
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creation for supervised learning is time-consuming and costly for large datasets, and this
problem is compounded in domains such as digital pathology and laboratory medicine
where the manual annotation process often suffers from high inter- and intra-observer
variability [9].

A subfield of machine learning that addresses some of these challenges is transfer
learning. In a typical transfer learning process, a model is first pretrained on a large, labeled
dataset such as ImageNet. After this, the model parameters are frozen, an adaptation layer
is added on top of its architecture, and the new network is finetuned on target tasks using a
smaller dataset with limited annotations [8]. In practice, this allows the network to leverage
representations learned on the larger dataset, boosting training efficiency on the smaller
dataset of interest. This practice has been shown to yield strong results in many contexts
but has achieved only mixed results in medicine [10]. This may be in part because features
learned from the natural images found in ImageNet may not be semantically important
in specific domains with a very different structure such as those commonly encountered
in pathology or radiology. In some cases, even when the domain gap is not very large,
transfer learning still does not result in higher accuracy for the fully trained model [11]. A
review of transfer learning can be found in [12].

Self-supervised learning (SSL) is a field that has emerged in response to these chal-
lenges, allowing networks to leverage unlabeled training data and learn to extract mean-
ingful representations without any type of manual annotation or data curation. This is
performed by automatically creating artificial supervisory signals from unlabeled data
and using these signals to pretrain networks on different imaging tasks. Given the huge
volumes of unlabeled data routinely created in clinical practice and biomedical research,
SSL represents an especially promising approach for medicine and healthcare in general.

In order to give medical professionals a clear understanding of the utility SSL can pro-
vide, this review will be organized into three sections. First, a background of prerequisite
material that has led to the advent of SSL will be covered. Second, a comprehensive review
of SSL will be given. This covers some of the earliest techniques and pretext tasks published
that provided a foundation for the field, as well as the current state of the art. Lastly, a
review of self-supervised pretext tasks applied to medicine is proposed, with a focus on
pathology; here, we will cover novel pretext tasks that have been designed specifically for
use in the field of digital pathology, look at commonalities that have led to their success,
and discuss potential directions for future research and clinical implementations.

2. Materials and Methods
2.1. Study Outline

We begin this review by providing prerequisite information for several research
domains that are relevant to the field of SSL. Because the scope of this review will be limited
to SSL’s applications in computer vision, all of the algorithms covered will generally use
CNNs as part of their architecture. Some of the more complex algorithms additionally
utilize different forms of adversarial or contrastive learning as part of their frameworks,
which allows them to achieve at times more robust and generalizable results. In order
to set the stage for SSL, we will provide a short summary of transfer learning. This is
motivated by the fact that transfer learning is the current dominant learning paradigm
in machine learning, and transfer learning results are currently used as a touchstone to
validate new SSL algorithms. We then break SSL down into four categories and highlight
the seminal works in each one: Pixel-to-Scaler, Pixel-to-Pixel, Adversarial Learning, and
Contrastive Learning. After this, we provide an overview of SSL’s applications in medicine,
and the strengths and weaknesses that are shown through the use cases analyzed. Finally,
we discuss the overall findings of this review and provide our insights on the direction of
future research and strategies SSL researchers can consider.
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2.2. Data Acquisition

A search was conducted for papers published between the years 2014 and 2020
discussing either the field of SSL or applications of SSL in pathology. 4 April 2020 was
the cutoff date for the data freeze. Three academic publication databases, Scopus, Google
Scholar, and CrossRef, were queried using specific keywords (“Self-supervised learning”,
“Selfsupervised learning”, “representation learning”). Papers that did not contain open-
source code or links to project repositories were excluded from further evaluation. In
addition to this, papers published on the topic of general SSL with fewer than 5 citations
were also filtered out. For papers published specifically on the application of SSL in
medicine, citation count was not a factor for inclusion, since this is a specific area covered
here. Paper abstracts were reviewed to ensure that their content was relevant to either SSL
or its applications in medicine. Papers that contained sufficient content to these fields were
read in full, characterized, and incrementally related to the rest of the study corpus. In sum,
we screened over 1500 papers and we retained 118 for inclusion in our review (Figure 1).
The full list of papers we reviewed and characterized can be found in Supplementary
Material Table S1. All works included in this review are organized into two categories
general SSL works and applications of SSL in medicine.
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3. Review
3.1. Background: From Convolutional Neural Networks to Self-Supervised Learning
3.1.1. Convolutional Neural Networks

In order to provide professionals not familiar with machine learning with a more
concrete idea of the foundational topics that will come up throughout this review, we
begin by providing a brief summary of convolutional neural networks (CNNs), which
are a type of neural network architecture generally used for imaging tasks. In contrast
with multilayer perceptrons (MLP) and other common network architectures consisting
only of fully connected layers, CNNs are primarily composed of convolution and pooling
layers (Figure 2). In a convolutional layer, small groups of weights, also called filters or
kernels, are convolved with inputs from the previous layer, forming dot products with
patches of the inputs equal to the size of the filters. Because each filter is convolved with
the entire input, CNNs demonstrate useful properties such as translation invariance (i.e.,
recognizing a feature no matter where in the image it is located). Each convolutional filter
produces a feature map, and CNN architectures typically have many filters in each layer.
Pooling layers aim to decrease the dimensionality of feature maps by iterating over patches
of values in the feature maps and either keeping only the maximum value (max pooling)
or the average value (mean pooling). These different types of layers build on one another
in a hierarchical fashion and allow CNNs to extract elementary visual features such as
oriented edges, end-points, and corners, which are then combined in higher layers to create
higher-order features [13].
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CNN weights are trained and updated in an iterative manner using various opti-
mization algorithms. As training progresses, the higher-order features learned become
increasingly representative of the images the CNN is being trained with. This enables
CNNs to act as autonomous feature extractors, which gives them an advantage over
algorithms that rely on handcrafted features, because handcrafted features must make
assumptions about the input data that do not account for unknown variability. It has also
been shown that the features CNNs learn are partially invariant to shifts, scaling, and dis-
tortions, which makes them more suitable for computer vision than fully connected neural
networks. Further details can be reviewed in [3]. In 2012, CNNs saw a surge in popularity,
when Krizhevsky et al. designed AlexNet, which had a much deeper architecture with
many more parameters than standard CNNs. AlexNet’s novel architecture gave it a greater
learning capacity which achieved state-of-the-art performance on the ImageNet dataset.
Since then, CNNs have continued to embody the state of the art in image classification.

3.1.2. Generative Adversarial Networks and Adversarial Learning

Adversarial learning is a form of learning in which networks are pitted against one
another. Adversarial learning is most commonly utilized in the form of the Generative
Adversarial Network (GAN) framework (Figure 3). GANs were first introduced by Good-
fellow et al. in [14], and can be described as follows. We begin with some data modeled
as a random vector x that we would like to generate new instances of. This vector can
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represent any type of data, such as pictures of any type. To generate new instances, we
need to know the probability distribution for x, which we will call px. In order to approxi-
mate this probability distribution, two separate networks are trained, a generator and a
discriminator. The generator takes as input a random noise vector z defined by a known
prior pz and is tasked with learning a mapping from z to x. The discriminator takes as
input the output of the generator, and a ground truth image, and outputs a probability,
P(y), which represents the probability that the ground truth image is real or fake. As the
two networks are jointly optimized, the generator learns the mapping from z to x, which
approximates the probability distribution pz. Readers interested in their use in the medical
domain can refer to [15,16].
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3.1.3. Contrastive Learning

In contrastive learning, the goal is for a network to learn latent representations of
instances where similar objects are closer together in the latent space and dissimilar objects
are farther away. In many cases, a typical contrastive learning framework will utilize
a siamese neural network [17]. In a siamese neural network architecture, two different
instances are passed to the network, which shares the same weights for its first several
layers. An embedding is learned for both of these inputs, and then the embeddings
are concatenated and passed to further layers which translate them into some desired
value. In contrastive learning, this architecture typically utilizes a contrastive loss [18].
More recent state-of-the-art techniques have also achieved better results using contrastive
learning [19,20]. These techniques are elaborated on in Section 3.5.

3.1.4. Transfer Learning

Transfer learning is formally defined as the following: given a source domain Ds
with a corresponding source task Ts and a target domain Dt with a corresponding task Tt,
transfer learning is the process of improving the target predictive function ft(.) by using the
related information from Ds and Ts, where Ds 6= Dt and Ts 6= Tt [12]. A standard transfer
learning framework is shown in Figure 4.

Transfer learning has shown promise on a variety of computer vision tasks. The
network pretrained in [8] obtained state-of-the-art results when transferring its learned
features to the downstream task of object classification on the Pascal VOC 2007 [21] and
Pascal VOC 2012 datasets. In [22], it is shown that transferring features and then fine-
tuning them usually results in networks that generalize better than those trained directly
on the target dataset. In [23] a CNN shows state-of-the-art results when transferring
features learned from ImageNet pretraining to downstream tasks on the Caltech-101
and Caltech-256 datasets. At the time of their publication, reference [24] ranked 4th
in classification, 1st in localization, and 1st in detection on the ILSVRC 2013 dataset.
The different networks used for these tasks all shared a common set of features learned
through transfer learning. In [4], the authors discriminatively pretrained a CNN on a large
auxiliary dataset (ILSVRC 2012 classification) using image-level annotations only and then
transferred these features to classification tasks on the 200-class ILSVRC 2013 detection
dataset, outperforming the existing state-of-the-art method. In [25], the authors showed
that generic visual representation learned through transfer learning outperforms many
other visual representations on standard benchmark object recognition tasks.
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Although transfer learning has established itself as a powerful machine learning
training paradigm, it has yielded mixed results when applied to more specific domains of
interest, such as medicine. In [9], the authors show that a CNN pretrained on ImageNet
learns transferable features that outperform handcrafted features and a CNN trained from
scratch on four different medical tasks. In [26], experiments show similar results when
comparing off-the-shelf CNN features to CNNs trained from scratch and then fine-tuned
for a specific medical domain. However, reference [27] shows that when applying CNNs
to the detection of lymph node metastasis in pathology images, pretraining improves
convergence speed but the transferred features do not improve performance; the authors
there postulate that this is potentially due to a large domain difference between pathology
images and natural scenes in ImageNet, leading to limited transferability. Reference [10]
shows that feature representations learned through transfer learning and applied to a spe-
cific task are dependent on how well the representations can be applied to the downstream
task of interest. In addition to this, the benefits of transfer learning are seen more starkly
when very deep architectures such as ResNet are used. Architectures such as this are not
always necessary for medical tasks [28]. Transfer learning is also not readily applicable to
3D medical image analysis applications (e.g., MRIs, CTs and other voxel-based representa-
tions) due to the fact that 2D and 3D CNNs are not directly compatible: limited methods
exist to approximate a volumetric data problem to its relevant bidimensional image for-
mulation [29]. Transfer learning has also been successful. Although transfer learning has
established itself as a powerful machine learning training paradigm, it has yielded mixed
results when applied to more specific domains of interest, such as the field of medicine.
In [9], the authors show that a CNN pretrained on ImageNet learns transferable features
that outperform handcrafted features and a CNN trained from scratch on four different
medical tasks. In [26], experiments show similar results when comparing off-the-shelf
CNN features to CNNs trained from scratch and then fine-tuned for a specific medical
domain. However, reference [27] shows that when applying CNNs to the detection of
lymph node metastasis in pathology images, pretraining improves convergence speed
but the transferred features do not improve performance; the authors there postulate
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that this is potentially due to a large domain difference between pathology images and
natural scenes in ImageNet, leading to limited transferability. Reference [10] shows that
feature representations learned through transfer learning and applied to a specific task
are dependent on how well the representations can be applied to the downstream task
of interest. In addition to this, transfer learning can only be utilized with extremely deep
architectures. The benefits of transfer learning are seen more starkly when very deep
architectures such as ResNet that have been pretrained on large datasets such as ImageNet
are used. Architectures such as this, which are not always necessary for medical tasks [28].
Transfer learning is also not applicable to 3D medical image analysis applications (e.g.,
MRIs, CTs and other “voxel”-based representations) due to the fact that 2D and 3D CNNs
are not compatible.

The above use cases demonstrate one of the core weaknesses of the transfer learning
paradigm. Not all images can be approximated by the “natural” images found in datasets
such as ImageNet, specifically those found in different medicine domains. Although they
might share basic geometric features such as circles and shaded lines, a picture of a park
or a dog will have a much different underlying semantic structure than a high-resolution
H&E pathology staining or brain MRI scan. Studies have also shown that even when
there is not a large domain gap between the source and target data, transfer learning does
not always provide a significant performance advantage. In He et al., the authors show
that the only advantage networks trained with transfer learning provide versus randomly
initialized networks is faster convergence; however, model performance at convergence
was not found to be improved by transfer learning [11]. It has also been shown that in
some cases pretrained networks only provide increased performance on the task they were
trained on, e.g., image segmentation. When their weights are used for other tasks, e.g.,
object detection [30], the improvements are minimal.

3.1.5. Self-Supervised Learning

Self-Supervised Learning (SSL) is a field of machine learning that has recently begun to
emerge as a promising alternative to supervised learning and transfer learning. SSL bears
some similarity to transfer learning in that representations are learned from an auxiliary
pretext task and then transferred to a downstream task of interest. However, unlike transfer
learning, in SSL, the data used for the pretext task and the downstream task can be taken
from the same data source, or from different sources, and in both cases, manual labeling of
the data used for the pretext task is not required. SSL can be formally defined by modifying
the definition of transfer learning: Given a source domain Ds and a target domain Dt,
where Ds = Dt or Ds 6= Dt, a pretext task Ts and a corresponding downstream task Tt,
SSL is the process of improving the target predictive function fd(.) by using the related
information from Ds and Ts. Put in less technical terms, SSL is defined by creating an
artificial supervisory signal from some unlabeled data that can optionally be related to
the target data, pretraining a network, and then finetuning the pretrained weights of that
network on the target data. In some situations, the fact that the domain is the same for
both the pretext task and the target task allows SSL to overcome some of the weaknesses
of transfer learning, the most important one in the medical field being the poor learning
caused by large visual and semantic differences between source and target domains (e.g.,
ImageNet dataset vs. digitized pathology slides).

A standard SSL framework is shown in Figure 5. SSL can be used as a preprocessing
technique, where a network’s weights are first pretrained using a pretext task and then
trained on the dataset’s actual labels. Recent advancements in this field have created pretext
tasks that allow self-supervised networks to come close to matching the performance of
networks trained through purely supervised techniques [20,31,32].
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weights from layers 1–3 are reused when training to accomplish a downstream task using the target data.

The success of SSL is heavily dependent on how well the pretext tasks are designed.
Pretext tasks implicitly introduce inductive biases into the model; they must therefore
be chosen carefully so that the inductive biases are applicable to the domain of interest.
If not designed properly, the learning algorithm will be able to find “trivial” solutions
which it can exploit as a shortcut to representation learning. These include low-level
cues like boundary patterns or textures continuing between patches, as well as chromatic
aberration [33,34]. These shortcuts vary depending on the details of the pretext task and
are mostly dealt with through various preprocessing techniques.

Self-supervised learning can be divided into four broad categories: pixel to scalar,
pixel to pixel, adversarial learning, and contrastive learning. In the following sections, we
review each in detail.

3.2. Self-Supervised Learning—Pixel to Scalar

One of the most central tasks in computer vision is image classification: a dataset is
divided into different subgroups called classes, where each class shares some predeter-
mined commonality. This dataset is then used to train a machine-learning algorithm to
differentiate between these classes. Once the algorithm is trained, it is tested on its ability
to correctly classify new images into one of the original classes. An example of this would
be training a CNN to discriminate between pictures of cats and dogs, and then once it is
optimized, giving it images it has not seen before and asking it to classify each image as a
cat or a dog. Characteristics of each image that determine what class it belongs to, called
features, are used to train the classifier.

Image classification has repeatedly shown itself to be an efficient task to force CNNs
to learn powerful and versatile representations of images. Consequently, many self-
supervised algorithms also model their pretext task as an image classification task. For this
review, we labeled any pretext task that transforms an image into either a scalar or vector
value as pixel-to-scalar. The primary difference between pixel-to-scalar pretext tasks and
a typical image classification pipeline is that, instead of using manually annotated class
labels as the ground truth feedback signal, the training data are augmented in some way to
create an artificial supervisory signal. This artificial supervisory signal does not require
manual annotation. It is instead extracted from the training data autonomously, so massive
amounts of unlabeled data can be leveraged for training. When the pretext task is designed
in a clever way, it allows CNNs to learn representations that are almost as powerful and
robust as those learned through supervised training.
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Many pixel-to-scalar pretext tasks that follow this classification paradigm revolve
around the idea of “solving jigsaw puzzles.” In [33], the authors create an artificial supervi-
sory signal by randomly sampling pairs of patches from the training image. The pairs of
patches are then fed to a siamese CNN, which extracts low-dimensional representations for
each image separately. The representations are combined to form a fused representation
which is used to classify the location of the neighboring patch given the location of the
first patch. It is shown qualitatively and empirically that the network trained with this
pretext task learns to associate semantically similar patches and generalizes well to the
object detection task on the PASCAL VOC 2007 dataset. Norooze et al. expand upon the
work of [33], introducing the Context Free Network (CFN), an algorithm that learns by
solving jigsaw puzzles as a pretext task [34]. Instead of only sampling pairs of patches from
an image, all nine patches are sampled at once. These patches are then realigned according
to a permutation randomly sampled from a set of predefined permutations, each with an
index assigned to it. The nine patches are fed through a 9-headed siamese CNN, which
learns a feature encoding for each patch. The feature encodings are then combined into
a single fully connected layer, which is downsampled to predict the index of the correct
permutation. This method is shown to be more robust than [33] due to the fact that spatial
ambiguities between similar patches are avoided when all nine patches are evaluated at
once. In [35], the authors introduce an algorithm called DeepPermNet, where an image is
split into patches and shuffled, and a siamese CNN takes the patches as input and outputs
the permutation matrix that was used to shuffle the original image. The pretext task used
in [34] is extended in [36], where the task of solving jigsaw puzzles is optimized jointly
with the task of object classification over different joint domains. Schematic illustrations of
the frameworks used in [33,34] are shown in Figure 6.
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Another common pixel-to-scalar pretext task formulation is that of solving image
transformations such as image rotations. This idea was first introduced in [37], where the
authors apply multiple random transformations to an image and use all transformations
derived from the same image to create a surrogate class. They then use an index for each
image as the class label and train a CNN in a supervised fashion with these surrogate
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classes. In another example [38], authors explicitly use rotations as the transformation.
They postulated that in order for a CNN to accurately predict the degree of rotation that has
been applied to an image, it must possess a high-level understanding of the objects present
in the image. This pretext task is implemented by rotating images from the ImageNet
dataset by 0, 90, 180, and 270 degrees. This technique is different than the common data
augmentation technique of rotating images to some degree to artificially increase the size
of a dataset due to the fact that the images here are segmented into classes based on
their degree of rotation. A CNN is then trained to predict the class representing that
image’s degree of rotation. A schematic of this framework is shown in Figure 7. This
idea is extended in [39,40]. In [39], the authors apply image rotation to the domain of
semi-supervised learning, where they train a CNN on both labeled and unlabeled data
from ImageNet. In order to optimize the network, they combine the unsupervised image
rotation loss for the unsupervised dataset with a standard cross-entropy classification loss
for the labeled images. Specifically, in [40], authors seek to improve the image rotation
pretext task based on two observations: the fact that the features learned are discriminative
with respect to rotation transformations and are therefore less applicable for tasks that
are rotation invariant, and the fact that not all training examples have their scenes and
objects obfuscated through rotation. The latter problem is handled by adding a weight
corresponding to each training instance that mitigates the influence of noisy examples. The
former problem is handled by modifying the architecture used in [38]. After the rotated
versions of an image are fed to a CNN, the learned feature representation f is split in half.
One half, f 1 contains rotation-relevant features and is used to predict image rotations. The
other half, f 2, contains rotation irrelevant features. In order to learn f 2, two additional
terms are added to the loss function. The first term is used to enforce similarity between
copies of the same images that have been rotated multiple times. The second term is used
to ensure spatial dissimilarity between the learned feature representations for each instance.
Image rotation and relative patch prediction are both used as auxiliary losses in [41] to
increase the effectiveness of the authors’ few-shot learning algorithm.
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In addition to raw image data, instances of the same image converted to multiple
image modalities (such as RGB and optical flow) and videos supply abundant sources of
unlabeled data for pixel-to-scalar pretext tasks. In [42], two pairs of images are passed
to a network at a time, where each pair contains the same image but different modalities.
The pretext task used for pretraining the network is to maximize the distance between
embeddings of different images regardless of modality, but minimize the distance between
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embeddings of the same image represented by different modalities [42]. In [43], the authors
design a pretext task to learn representations inspired by the relationship between visual
stimuli with egomotion. Pairs of images taken by a moving agent are used to predict the
camera transformation between the images. The image pairs are first fed to a siamese CNN,
which learns lower-dimensional representations for each image. These representations are
then combined into a fully connected layer which is downsampled to predict the camera
transformation between the two images. The camera transformation is expressed as a 3D
vector where the dimensions represent translations along the Z/X axis and rotation about
the Y axis.

The pretext tasks that are covered up to this point deal with pretraining networks
for the common tasks of image classification and object detection. A comparison of the
performance for the most frequently cited algorithms covered in this section can be found
in Table 1. In addition to these more generally applicable tasks, pixel-to-scalar pretext tasks
are versatile in how they can be designed and have been applied to a variety of highly
specialized domains, where the downstream task is something specific to that domain.
In [44], the authors design a self-supervised pipeline that takes images from multiple views,
and outputs 6D poses (three geometrical and three angular positions based on a relative
origin point) for objects in a scene. They circumvent the onerous task of manually labeling
training data by utilizing object masks to separate foreground from background, which
allows them to autonomously obtain pixel-wise object segmentation labels. In [45], the
authors use EXIF metadata from pairs of image patches as a supervisory signal for training
a classifier to determine whether an image is self-consistent. The network is then applied
to the downstream tasks of splice detection and splice localization. In both [46,47], the
authors use “learning to rank” as a pretext task. The pretrained network there is then
successfully used for the downstream task of crowd-counting and then the network in [47]
is used for the tasks of crowd-counting and image quality analysis. In [48], the authors
use an auxiliary pretext task that maximizes the Euclidean distance between different data
instances in the feature space in order to train a network for the downstream task of person
re-identification. In [49], the authors use SSL to address the distribution shift that occurs
when a model is trained on data from one distribution (source), but the goal is to make
good predictions on some other distribution (target) that shares the label space with the
source. This is performed by jointly training a supervised head-on labeled source data
and several self-supervised heads on unlabeled data from both domains. The multi-task
learning process pushes the features learned by the shared feature representation in the
network closer together for both domains.

Table 1. Results of transferring learned feature representations from Pixel-to-Scalar pretext tasks
for the downstream tasks of classification and detection on the PASCAL VOC 2007 dataset and
segmentation on the PASCAL VOC 2012 dataset using a standard AlexNet architecture. Evaluation
Metrics are included in parenthesis: mean average precision (mAP) and mean intersection over
union (mIoU).

Algorithm Classification
(mAP)

Detection
(mAP) Segmentation (mIoU)

Pretrained ImageNet 79.9 59.1 48.0
Context Prediction 65.3 51.1 -

Jigsaw Puzzle 67.6 53.2 37.6
Visual Permutation Net 69.4 49.5 37.9

RotNet 73.0 54.4 39.1
Semi-Supervised Rotnet 74.3 57.5 45.3

3.3. Self-Supervised Learning—Pixel to Pixel

Autoencoders were one of the first neural network architectures to use learn data
distributions from unlabeled data [50,51]. An autoencoder consists of two components,
an encoder and a decoder. The encoder takes some data as input and compresses it into a
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smaller feature representation, called an embedding. The decoder then reconstructs the
input from the embedding. A basic autoencoder is optimized by minimizing the difference
between the original input and the reconstructed output. Once the reconstructed outputs
are sufficiently close to the inputs, the encoder is used to extract low-dimensional feature
representations of the original inputs for use in downstream tasks. Many pretext tasks
follow a similar version of this learning paradigm. We will refer to this category of pretext
tasks as pixel-to-pixel.

One of the seminal papers in SSL was the work of Pathak et al. [52]. In their paper, the
authors designed a pretext task in which part of an image is removed, and a specialized
convolutional autoencoder which they call a context encoder is trained to reconstruct the
missing piece. The incomplete image is passed through an encoder network and com-
pressed down to a low-dimensional feature representation. That representation is then
passed to a decoder which uses it to produce the missing image content. The network
is optimized according to the difference between the pixels of the ground truth missing
image content and that produced by the decoder. The context encoders are able to attain a
higher-level understanding of images than normal autoencoders because the process of
reconstructing part of an image (inpainting) requires a much deeper semantic understand-
ing of the scene, while regular and denoising autoencoders typically only learn low-level
features. A visualization of this framework is shown in Figure 8.
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Figure 8. An illustration of the algorithm used in [52]. A patch is removed from a target image. The
incomplete image is then passed to an autoencoder, which is tasked with predicting the missing
section of the image.

Many pretext tasks that fall under the category of pixel-to-pixel use some form of
colorization. Colorization is the process of “filling in” images that have been converted to
grayscale [53,54]. The architecture used in [53], takes in a grayscale image and predicts a
color histogram at every pixel. In [54], a CNN is trained to convert a grayscale image to a
distribution over quantized color values. In both studies, the networks learn strong feature
representations because the architectures must interpret the semantic composition of the
scene and also localize objects in order to colorize arbitrary images. The ideas used in these
papers are extended in [55], where the authors augment the architectures used in [53,54]
by separating the colorization network into two disjoint subnetworks, where each one
predicts one color channel for the image. Instead of only colorizing a grayscale image,
they feed the entire architecture an image, and then one subnetwork receives the grayscale
information and uses this to predict the color information, while the other receives the
color information and uses this to predict grayscale information. The two representations
are then concatenated and used to reconstruct the original image. Illustrations of [54,55]
are shown in Figure 9.
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colorized version of the same image are passed to two separate autoencoders, which are tasked with predicting the colorized
and grayscale versions of their input images.

While many of the pixel-to-scalar and pixel-to-pixel pretext tasks discussed to this
point share a similar design paradigm, pretext tasks with different goals will inherently
learn different features [56]. Doersch et al. suggest that pushing a network to learn multiple
pretext tasks at the same time, a process called multi-task learning, allows the network to
cover a larger area of the feature space, and therefore allows it to learn more generalizable
feature representations. The four pretext tasks used in conjunction with one another are
the context prediction task from [33], the exemplar task from [37], the colorization task
from [54], and a motion segmentation task by Zou et al. [57]. In this paper, the authors
extract frames from videos and set up a pretext task where a CNN is tasked with predicting
what pixels will move in subsequent frames. For the multi-task architecture, all pretext
tasks share a common low-level architecture based on the ResNet-101 architecture [58]. At
higher levels, each pretext task has its own head, with a specific architecture designed for
that pretext task.

Similar to pixel-to-scalar tasks, videos also provide an abundance of unlabeled data
for pixel-to-pixel tasks. In [59], the authors use optical flow to segment groups of pixels into
objects. This allows them to autonomously extract segmentation masks from unlabeled
video data. A CNN is then fed a static frame and tasked with predicting these segmentation
masks. In [60], a network is trained from unlabeled video data to learn facial attributes.
The network is given a source frame and a target frame as inputs. It is then optimized to
generate the target frame by predicting the flow field between the two frames. In [61], the
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authors use frames from videos to train a network to predict the pixel values in a target
frame given a source frame.

Pixel-to-pixel tasks can also be designed for many different downstream tasks of
interest from specific domains. In [62], the authors pretrain a network for the task of
optical flow prediction. Sundermeyer et al. [63] use SSL to pretrain a network for the
downstream task of 6D object detection using RGB images. In [64], SSL is utilized to learn
to detect visual landmarks in different object categories, such as the eyes and nose on a
face. Ma et al. in [65] and Goddard et al. [66] design pretext tasks to train networks without
any manually annotated data on the downstream tasks of depth completion and depth
estimation, respectively. A comparison of the performance for the most frequently cited
algorithms covered in this section can be found in Table 2.

Table 2. Results of transferring learned feature representations from Pixel-to-Pixel pretext tasks
for the downstream tasks of classification and detection on the PASCAL VOC 2007 dataset and
segmentation on the PASCAL VOC 2012 dataset using a standard AlexNet architecture.

Algorithm Classification (mAP) Detection (mAP) Segmentation
(mIoU)

ImageNet Pretrained
(Baseline) 79.9 59.1 48.0

Context Encoder 56.5 44.5 29.7
Image Colorization 65.6 46.9 35.6
GAN Colorization 65.9 - 38.4

Split-Brain AutoEncoders 67.1 46.7 36.0

3.4. Self-Supervised Learning—Adversarial Learning

SSL algorithms have also shown strong results when designed using adversarial learn-
ing, as opposed to the purely discriminative approaches covered so far. These algorithms
typically use GANs as their foundation. One of the first papers to introduce this technique
was the work of Radford et al. [67]. This paper proposes training GANs to learn image rep-
resentations and later reusing the learned features for supervised tasks. However, scaling
up GANs to utilize modern CNN architectures and model natural images causes their train-
ing to become unstable in practice. In order to fix this, the authors apply three architectural
modifications that have recently been applied to CNNs. The first modification is to replace
spatial pooling layers with strided convolutions, creating a network consisting entirely of
convolutional layers and allowing the network to learn its own spatial downsampling [68].
The second is to eliminate fully connected layers on top of convolutional features [69]. The
third is the technique of batch normalization, which stabilizes learning by normalizing the
input to each unit to have zero mean and unit variance [70]. Through visualization, it is
shown that the model learns relevant representations, and that the discriminator learns
object detectors. It is also shown that the generator learns specific object representations
for major scene components.

Building on this, several works have modified the GAN architecture and success-
fully applied it to learn robust feature representations without any labeled data. In Don-
ahue et al. [71], the authors augment the GAN architecture by adding an encoder that maps
data from the random variable x to the latent encoding z. The discriminator is then trained
to classify between outputs from the encoder, Ez versus inputs to the generator z, and
between outputs from the generator Gx and the ground truth images x. This pushes the
network to learn an additional inverse mapping from data to latent representation. This
network is called a Bidirectional GAN (BiGAN). In Chen et al. [72], the authors postulate
that due to the fact that the input vector z used for the input to the GAN framework is
completely random and has no constraints, the learned representations do not correlate
to semantic features of the data. To account for this, the input vector z to the generator is
split into two parts: z’, which is still used as noise, and c, which is designed to learn the
structural–semantic features of the data distribution. An additional term is then added to
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the GAN loss function that maximizes the mutual information (MI) shared between c and
x. The addition of this constraint yields results that show empirically that components of c
are highly correlated to high-level semantic features of x. The architecture of a BiGAN is
shown in Figure 10.
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In Tian et al. [73], the authors also add an encoder to the GAN architecture. They
hypothesize that adding viewpoint as a label will force the GAN framework to learn more
complete image representations. This is carried out through two pathways, a generation
path and a reconstruction path. In the generation path, the generator G is given random
noise z and a view label v as input, taken from a ground truth image x. The output of G, x’,
and x, are fed to a discriminator D which outputs two values, Dv, the probability x’ being a
specific view, and Ds, the image quality. Then, in the reconstruction path, a pair of images
xi and xj are used, where both images have different viewpoints but share the same identity.
Xi is fed to the encoder E, which produces representations z and v, which correspond to
xi’s feature representation and view representation, respectively. G takes z and the ground
truth view v as input, reconstructs the image, and feeds it to D along with xj. D then again
outputs the probability Dv and the image quality score Ds. The authors incorporate SSL by
first pretraining E using labeled images and then using its representation of v to estimate
viewpoints for unlabeled images. In Jenni et al. [74], the authors propose a pretext task to
learn features by classifying images as real or with artifacts. In order to generate artifacts,
the structure of the generator is changed to an autoencoder that reproduces images, drops
entries from the encoded features, and then a repair network is added to the decoder to
help it render a realistic image. A discriminator is then trained to distinguish real from
corrupt images.

In Chen et al. [75], the authors use SSL to address the challenge of GANs forgetting pre-
viously learned tasks due to the fact that they learn in a non-stationary environment [76–78].
This challenge is addressed by adding an auxiliary, self-supervised loss to the discriminator
to predict image rotations [38]. In this framework, the generator and discriminator follow
a traditional GAN framework for the task of predicting real versus fake images, however,
they are designed to collaborate with one another when tasked with predicting image
rotations. The addition of the image rotation task yields substantially better results than a
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baseline GAN and matches the performance of a GAN augmented with a supervised task
requiring labeled training data.

Similar to previous sections, self-supervised pretext tasks designed using an adver-
sarial framework have a variety of applications in specific domains. In Wu et al. [79], the
authors use a 3D-GAN to generate 3D objects from a probabilistic space. They utilize
the techniques used in [67] to stabilize training and significantly outperform other unsu-
pervised object generation methods. In Lin et al. [80], the authors use SSL to pretrain a
specialized GAN architecture for the downstream task of remote image scene classification.
This is a difficult task due to the fact that remote sensing images vary from natural images
in several ways. Objects in the same category frequently have different sizes, colors, and
angles. To tailor a GAN framework to learn better representations for this problem, the
authors propose two changes. First, they add a layer in the discriminator to combine
information from different levels of representations. The generator is then modified to
optimize two separate tasks: to make the reconstructed images similar to the samples
drawn from the training set, and to match the expected values of the features in the custom
layer added to the discriminator. In Ren et al. [81], the authors devise a GAN framework
that learns features from unlabeled synthetic images that are robust enough to be used on
real images. First, they train a network that takes an image as input and predicts its depth,
surface normal vector, and instance contour maps. These three quantities can be extracted
from a synthetic image autonomously. In this setup, the generator and discriminator share
the weights of an encoder. The discriminator then compares the features extracted from
this encoder for real and synthetic images. This framework is visualized in Figure 11. In
Singh et al. [82], a pretext task using adversarial learning is designed to pretrain a network
for the task of semantic segmentation of overhead imagery obtained from satellites. This is
a difficult task due to the fact that there is a domain gap between overhead images and
ground (natural) images. The authors adopt a modified version of the inpainting task
from [52] where they select difficult and semantically meaningful regions. A comparison
of the performance for the most frequently cited algorithms covered in this section can be
found in Table 3.
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Table 3. Results of transferring learned feature representations from Adversarial Learning pretext
tasks for the downstream tasks of classification on the PASCAL VOC 2007 dataset and detection on
the PASCAL VOC 2007 and 2012 datasets using a standard AlexNet architecture. Evaluation metrics
are included in parentheses.

Algorithm Classification (mAP) Detection_07 (mAP) Detection_12 (mAP)

ImageNet Pretrained
(Baseline) 79.9 56.8 56.5

Adversarial Feature
Learning 58.6 46.2 44.9

Cross-Domain SSL 68.0 52.6 50.0

3.5. Self-Supervised Learning—Contrastive Learning

Most recently, SSL algorithms have begun to shift from pixel-to-scalar and pixel-to-
pixel-based tasks towards building their frameworks around contrastive learning [20,31,32];
a schematic representation of the most relevant of these frameworks is depicted in Figure 12.
SSL algorithms that utilize different forms of contrastive learning have achieved state-
of-the-art results, and in some cases have matched or surpassed CNNs pretrained on
ImageNet using supervised learning, a substantial milestone in unsupervised learning.
There are several reasons for the increased performance of SSL algorithms using contrastive
learning versus other types of pretext tasks. The primary one is that the contrastive loss
function forces the network to learn high-level features that occur in images across multiple
views [83]. These views are created by applying different augmentations to images, and
more powerful views can be created by combining augmentations [31]. Additionally,
contrastive learning is able to take advantage of larger batch sizes and deeper networks [31].

Earlier works applying contrastive learning to SSL algorithms were built around the
framework of siamese CNNs and focus on learning feature representations that maximize or
minimize a given distance metric. One of the earliest works to apply contrastive learning to
SSL is that of Wang et al. [84]. In their work, the authors design a pretext task that compares
patches from video frames. These patches are defined as similar when they are the first and
last frame in which an object appears in the video (i.e., “query patch” and “tracked patch”,
respectively). A siamese triplet network is trained using a ranking loss function to learn a
feature space such that the query patch is defined as closer to the tracked patch relative
to other randomly sampled patches. A model ensemble is then created by pretraining
CNNs using different sets of data. In Zeng et al., the authors extend self-supervised
distance learning to 3D, utilizing a 3D CNN to learn a mapping from a volumetric 3D
patch to a low-dimensional feature representation that serves as the descriptor for that local
region [85]. During training, pairs of learned mappings are then fed to a siamese CNN
which minimizes a contrastive loss representing the distance between learned embeddings.
The embeddings are then successfully utilized for several practical applications, including
scene reconstruction and 6D object pose estimation. In Wu et al. [86], the authors suggest
that by learning to discriminate between individual instances, a network can learn a
representation that captures similarity among these individual instances. The features for
each instance are low-dimensional vector representations that are learned by a CNN. Each
instance is stored in a discrete memory bank and assigned an index that acts as its class
label. As training progresses, the feature representations stored in the memory bank for
every instance are dynamically updated. The amount of similarity between instances is
calculated directly from the features using noise contrastive estimation (NCE).

Zhuang et al. [87] take a similar approach to [86]. In their paper, the authors also
design a pretext task with the goal of learning embeddings of images where similar images
are clustered closer together while dissimilar images are separated. The loss function is
designed to push the current embedding vector closer to its close neighbors and further
from its background neighbors. For the task of ImageNet classification, the algorithm used
in this paper, called Local Aggregation (LA), achieves an important milestone: through only
self-supervised training, it surpasses the performance of the original AlexNet architecture
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pretrained using supervised learning. In Sharma et al. [88], the authors demonstrate the
ability of self-supervised contrastive learning to be applied to specific domains. Here,
they apply SSL to the task of learning face representations for face clustering. They first
automatically generate training data without the use of manual labeling by comparing
frames and sorting them into positive (similar) and negative (dissimilar) pairs based on
their Euclidean distance. The training pairs are then fed to a siamese CNN which is trained
using again a contrastive loss.
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Figure 12. (a) An illustration of the algorithm used in [20]. An image is divided into overlapping subsections, which are
then encoded with their relative spatial locations preserved. An autoregressive network then takes the top section of a
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Self-supervised methods that utilize contrastive losses have also been developed
around the idea of maximizing mutual information (MI) between the inputs and outputs of
the network; here the MI definition is adapted from information theory, where MI is used
to denote the dependence between two random variables. In Hjelm et al. [89], the authors
train an encoder network to maximize the MI between its inputs and outputs. They define
their framework, called Deep InfoMax (DIM) by combining three objectives: maximizing
local information, maximizing global information, and also utilizing an adversarial loss
to force the learned representations to have desired characteristics specific to a prior
distribution. The contrastive loss used in [19] is also integrated into the authors’ framework
and achieved state-of-the-art results at the time of its publication. In Bachman et al. [83],
the authors extend the DIM framework by augmenting the views of each input; this causes
the network to have to extract high-level features present in all views in order to maximize
the MI between them, increasing the robustness of the learned features.

Three of the most promising SSL algorithms to come out in the last two years all
involve contrastive learning. These include Contrastive Predictive Coding (CPC), SimCLR,
and Momentum Contrast (MoCo) [19,31,32]. In CPC, the main intuition is that if data
from any domain is modeled as a sequence, as the model predicts further into the future,
shared information decreases, and the model needs to utilize higher-level structures to
make farther predictions. The architecture of CPC can be summarized as follows. First, an
encoder maps the input sequence of observations to a sequence of embeddings. Then, an
autoregressive model compresses all embeddings less than or equal to the current timestep
t in the sequence into a latent representation ct, referred to as the context. After this, a
function f is used to model a density ratio which is used to preserve all MI between ct and
future embeddings. A loss function called InfoNCE is used to optimize the function f, where
the loss function corresponds to cross-entropy and is given one positive sample from the
true distribution p(xt+k|ct) and multiple negative samples from a decoy distribution p(xt+k).
CPC has shown to be a very versatile framework, achieving promising results in speech,
images, text, and reinforcement learning. Here, we will focus on CPC’s applications in
computer vision. In Tian et al. [90], the authors modify the CPC framework in order to learn
representations that capture MI shared between multiple views of data. In Hénaff et al. [20],
the authors implement the CPC architecture specifically for images, dividing each image
into smaller patches and then using a neural network to embed them. This architecture is
then improved using four different techniques: the model’s depth and width are increased,
layer normalization is used during the training process, the complexity of the task is
increased by pushing the model to make predictions in four different directions, and more
extensive data augmentation is applied during preprocessing. When trained on the transfer
learning task of object detection for the PASCAL VOC 2007 dataset, the improved CPC
framework’s learned features outperform features yielded from a network trained in a
supervised manner with all ImageNet labels—which represented another landmark event
in self-supervised learning [20]. In Trinh et al. [91], the authors take inspiration from
both [19,92] to design their framework. Given an occluded patch from an image, their
network is tasked with selecting the correct patch among negative samples obtained from
the same image.

Two foundational self-supervised techniques represent, together with their newer vari-
ations, state-of-the-art in selected contexts: SimCLR and MoCo. The SimCLR framework
consists of four components. A stochastic data augmentation module first applies a random
transformation to training instances, resulting in two correlated views of the same example,
which are considered a positive pair. An encoder then compresses the training examples
into embeddings. Next, a neural network projection head performs a second mapping to
these embeddings, and the resulting latent representations are passed to a contrastive loss
function. Concurrent with other recently published contrastive self-supervised methods,
their work further reduces the gap between self-supervised and supervised learning. For
transfer learning across 12 natural image datasets, SimCLR outperforms a network pre-
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trained through supervised learning on five datasets. The supervised network outperforms
SimCLR on 2.

The MoCo framework consists of two encoders. One encodes a new instance to a low
dimensional representation q and the other encodes a set of samples {k0, k1, k2, . . . } that
are the keys of a dictionary. The dictionary is dynamic due to the fact that both encoders
are updated during training. A contrastive loss function is utilized to push q closer to its
positive key in the latent space and farther from all other dissimilar keys. A query and a key
are considered similar if they are both from the same image, and vice versa. Representing
another milestone achieved by SSL, MoCo outperforms a network pretrained through
supervised learning on seven detection and segmentation tasks. In Chen et al. [93], the
authors take inspiration from the SimCLR framework and improve the MoCo framework
by replacing the fully connected layer following the encoders with an MLP head and
adding more data augmentation. Both of these additions increase the performance of
MoCo on ImageNet. A comparison of the performance for the most frequently cited
algorithms covered in this section can be found in Table 4.

Table 4. Results of using learned feature representations from Contrastive Learning pretext tasks for
the downstream task of ImageNet classification using a ResNet-50 architecture. For comparisons
of results for downstream tasks with networks trained using supervised training, please refer to
[20,31,32,93].

Author Algorithm Accuracy

Zhuang et al. [87] Local Aggregation 60.2
He et al. [11] MoCo 60.6

Hénaff et al. [20] CPC 63.8
Chen et al. [31] SimCLR 69.3

He et al. [32] MoCo2 71.1

3.6. Self-Supervised Learning in Medicine
3.6.1. Selected Applications in Medicine

The previously discussed results are focused on natural images, i.e., images of ev-
eryday objects or places such as those contained in ImageNet. However, medical images
such as those arising from medical equipment or in digital pathology workflows are often
extremely different from the natural images, both in the semantic structure of the contained
information and in technical representation (e.g., file size, file format, etc.). Therefore, the
application of SSL to the domain of medicine requires specific research and performance
evaluation. Here, we review the current state of SSL in medicine.

There are many examples of SSL being successfully applied to different domains of
medicine: radiology domain experts created the first applications, possibly due to the more
advanced digitalization status of the imaging field, followed by other clinical specialties. In
one of the earliest examples, Jamaludin et al. [94] use longitudinal information from MRI
scans to train a siamese CNN to learn embeddings where pairs of images from the same
patient at different points in time and pairs of images from different patients are pushed
further apart in the latent space, and vice versa. A second pretext task used is predicting
vertebral body levels, and the loss functions from these two pretext tasks are combined.
Close to the publication of this paper, SSL was also successfully applied to human brain
scans. In Alex et al. [95], self-supervised and semi-supervised learning are combined to
pretrain a network for the downstream task of segmentation of gliomas, a type of brain
tumor, from MRIs. Stacked denoising autoencoders were pretrained layer by layer using
unlabeled data consisting of lesion and non-lesion image patches and a reconstruction
loss. After pretraining, labeled patches from a subset of patients were used to finetune the
network. In Spitzer et al. [96], the authors design an auxiliary task for classifying cortical
brain areas [97]. Pairs of patches are sampled from images of the same brain, and the
pretext tasks are to approximate the geodesic distance between these patches as well as
predict the 3D coordinates of each patch.
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Shortly after the publication of these papers, further research was conducted applying
SSL to other data modalities, such as endoscopic video data [98,99]. In Liu et al. [98],
the authors design a self-supervised approach to train deep CNNs for the task of dense
depth map estimation using monocular endoscopic video data [100]. In Ross et al. [99], the
authors design a pretext task where they re-colorize unlabeled endoscopic video frames
with a specialized GAN framework. Colors are converted to the Lab color space, and a
U-Net [101] model that predicts the corresponding a and b channels from the luminescence
channel is used as the generator with a ResNet18 model as the discriminator. This method
reached comparable performance with 1

4 of the original dataset, and also performs better
than other pretraining methods that use non-medical data or other medical data.

SSL has also seen successful applications in cardiac MR imaging. Qin et al. [102]
address the downstream task of cardiac image segmentation by taking advantage of the
fact that the tasks of cardiac MR image segmentation and motion estimation are closely
related [103,104]. To leverage the related nature of these tasks, the authors design a network
consisting of two branches: an unsupervised branch for the task of motion estimation and a
segmentation branch. Both branches share a feature encoder. The cardiac motion estimation
branch is tasked with finding a sequence of consecutive optical flow representations
between a given target frame and a series of source frames. The representations learned
from this task are then used for segmentation. Bai et al. [105] use standard cardiac MR scans
to derive an auxiliary training signal. This leads to the pretext task of using anatomical
positions defined by cardiac chamber view planes to derive feature representations of the
images. This pretext task achieves a high segmentation accuracy on the downstream tasks
of short-axis and long-axis image segmentation that surpasses or matches the performance
of a network trained from scratch using supervised learning.

Recently, more general studies have been performed assessing the robustness and
reliability of SSL tasks when applied to multiple medicine domains. In Zhou et al. [106],
the authors develop a generalized SSL framework for dealing with different types of
medical images, which they name Models Genesis. In Models Genesis, an autoencoder is
trained using multiple SSL pretext tasks which include non-linear transformation, local
pixel shuffling, outpainting, and inpainting. In Tajbakhsh et al. [28], a large-scale study is
performed to evaluate the effects of pretraining using different self-supervised tasks for
different medicine domains. Four medicine applications are considered across various
specialties: false positive reduction for nodule detection in chest CT images; lung lobe
segmentation in chest CTs; severity classification of diabetic retinopathy in fundus images;
and skin segmentation in color tele-medicine images. The pretext tasks used include image
rotation, patch reconstruction using a Wasserstein GAN [107], and colorization using a
conditional GAN [108]. Pretrained models were more successful in all tasks, except for
skin segmentation, where transfer learning from ImageNet performed better. The authors
postulate that this is most likely due to the fact that skin images are closer to natural images
than other medical images.

3.6.2. Selected Applications in Pathology

Digital pathology is one field in particular where SSL has the potential to improve
upon the results of transfer learning techniques for the computational diagnoses of medical
images [106,109]. In routine pathology workflows, biopsies are mounted on glass slides and
manually examined at the microscopic level by pathologists to assess disease characteristics
such as cancer progression, genetic profiles, and cellular morphology [110]. With the
development and adoption of high-resolution slide scanning technology, many parts of
the pathology workflow are increasingly transitioning towards digital. As new cases are
digitized along with entire archives of glass slides, large datasets of pathology images are
becoming increasingly available. However, these images are many orders of magnitude
larger than other types of images, typically containing over a billion pixels [111] and
often have only slide-level labels (e.g., diagnosis). Obtaining pixel-level labels from expert
annotations is prohibitively costly and also error-prone [27]. Therefore, self-supervised
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learning represents an especially promising approach to enable models to be trained on
unlabeled images in pathology.

Microscopy has similarly benefited from SSL: in Lu et al. [112], the authors train a
CNN to automatically learn representations for single cells in microscopy images. The
representations learned by solving this pretext task, the features learned by the CNN
improve upon other unsupervised methods for the downstream task of discriminating
protein subcellular localization classes at a single-cell level. In Zheng et al. [113], the authors
address the task of segmenting white blood cells (WBCs) in blood smear images. This
task is difficult for three reasons: different staining techniques and illumination conditions
create significant variability in the original blood smear images; different types of WBCs
sometimes cause variations to exist in the same blood smear image; and the boundaries
between neighboring cells are blurred due to the irregular shapes of WBCs. For the pretext
task in this paper, K-means clustering is used to separate the background and foreground
region of the blood smear images. Then, cell regions are segmented using shape-based
concavity analysis.

Over the past two years, as general SSL techniques have continued to increase the
upper bound of unsupervised learning, more papers applying these techniques to the
complex downstream task of analyzing pathology images have been published. In Ya-
mamoto et al. [114], the authors design a pretext task that utilizes both the nucleus structure
of cells analyzed in high magnification images as well as the structural pattern of cells
analyzed in low magnification images. Low magnification pathology images were first
divided into patches, embedded by an encoder network to form a latent representation,
and then clustered using k-means. Impact scores for each image were then calculated using
these clusters. A similar analysis was carried out for high magnification images, and then
images with impact scores that did not match were removed. The features learned from
the adjusted clustering were then used for subsequent predictions. When analyzed by an
expert pathologist, it was found that the features learned by the pretrained networks corre-
lated with the Gleason score, which is the grading system used by pathologists to assess the
progression of prostate cancer. The features learned by the pretrained networks were also
unique in that they were able to be understood by pathologists. In Tellez et al. [115], the au-
thors create a technique called Neural Image Compression (NIC), which compresses large
histopathology images to a higher-level latent space using unsupervised learning. NIC first
divides gigapixel pathology images into smaller patches. An encoder then embeds each
patch into a low-dimensional embedding vector. The embeddings are then concatenated
so that their original spatial arrangement is kept intact. In order to learn patch encodings,
three different unsupervised image representation learning methods were used: a varia-
tional autoencoder, contrastive training, and BiGAN [71]. In Gildenblat et al. [111], the
authors use contrastive learning and a Siamese CNN to pretrain a network to learn feature
representations for the downstream task of image retrieval. The pretext task used in this
paper is based on the assumption that in pathology images, patches that are close to one
another are more likely to represent similar tissue morphology. In order to implement
this, patches were extracted from each image and the network’s task was to push their
embeddings farther apart based on the magnitude of their spatial proximity.

In Hu et al. [116], the authors take inspiration from the adversarial frameworks used
in [72,117] to design an adversarial self-supervised framework that learns cell-level visual
representations and is able to separate different types of cells based on their semantic
features. In Rawat et al. [109], the authors design a pretext task inspired by the idea that
molecular differences of tumors can be identified through differences in morphologic
phenotypes. In order to implement this pretext task, datasets of tissue microarray (TMA)
cores that contained 207 tissue cores each were used. For pretraining, patches were
extracted from each tissue core and assigned an index between 1 and 207. The loss
function consisted of a cross-entropy loss used to predict the identity of each patch, and
an additional loss term designed to minimize the distance of patches from images stained
at different locations, which led to small variations in their appearance. Empirical results
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showed that this approach outperformed patch-based classification methods as well as
networks pretrained through transfer learning. In Lu et al. [118], the authors apply SSL
techniques to the classification of breast cancer histology slides. The pretext task used
in this paper is CPC (as defined in Section 3.5 above). Results show that using CPC as a
pretext task leads to better feature representations than pretraining networks on ImageNet.
A comparison of several of the pretext tasks covered in this section compared to the results
from their supervised learning counterparts is shown in Table 5.

Table 5. A comparison of results yielded by training algorithms using different pretext tasks designed for pathology images
versus their supervised counterparts. For Hu et al. [116], the results are averaged over four different runs. In all cases,
self-supervised methods outperformed supervised methods.

Paper Task Metric Supervised
Training

Self-Supervised
Training

Gildenblat et al. [111]
Separation of Tiles ADDR 1.38 1.5

Tumor Tile Retrieval Ratio of Retrieved Tumor
Tiles 26% 34%

Hu et al. [116] Image-Level
Classification

Precision 0.910 0.952
Recall 0.959 0.963

F-Score 0.931 0.947

Lu et al. [118] H&E Classification
Accuracy 86.0 ± 4.64 95.0 ± 2.65

AUC 0.939 ± 0.240 0.968 ± 0.022

4. Discussion

This review has provided a broad and comprehensive overview of the current state of
self-supervised learning research. While still very much in its infancy, SSL has continued
to yield stronger and more accurate results over the last half-decade. It is clear that
analytical medicine and self-supervised learning are a natural pairing, as the strengths of
self-supervised learning address many of the weaknesses that currently exist in machine
learning in medicine. Specifically, SSL addresses the fact that while modern machine
learning algorithms typically require large, labeled datasets to leverage their full learning
capabilities, there are not many publicly available datasets in medicine. Additionally, the
cost of hiring medical practitioners to do manual labeling is expensive.

These problems can be circumvented through the use of pretext tasks that are able to
leverage implicit supervisory signals in unlabeled datasets to provide learning close to or
equal to that of manual labeling. The trade-off for this is that while SSL requires fewer data,
it generally requires more GPU-compute time. In fields where labeling requires highly
trained specialists whose time is very expensive, SSL can be an extremely cost-effective
option. Leveraging the complex, implicit signals in medical datasets also has the potential
to allow both medical practitioners and data scientists to acquire results that shed light on
current medical problems from a different angle.

There are several directions future research into SSL can take to advance the state of
the art. Here are few selected areas where development might lead to further adoption
and could effectively lower the barrier of entrance by, for instance, automating some of the
steps that are currently created by experts:

I. The totality of the pretext tasks we reviewed was manually crafted by experts,
required domain expertise as well as ML knowledge, and involved a large number
of trials and experimentations. We think there is an opportunity to formulate
this as an optimization problem, conceptually very similar to the search for an
optimal architecture for a deep learning problem. Given enough examples of
pretext tasks (e.g., building blocks), and provided that hardware prices continue to
decrease, it could be possible to compose these building blocks autonomously. This
process would consist of creating new pretext task pipelines, running them, and
benchmarking these pretext pipelines either against related problems/datasets.
In doing so, a researcher would gain insight into what would and would not
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potentially work on the new problem/dataset at hand. Optionally, a researcher
could run these models directly on the new data. A small manual curation effort
would be required to label a few cases from each generated dataset and apply the
pretrained models to new problems (i.e., new objective functions) and new datasets.

II. Again, focusing on optimizing pretext tasks, another potentially useful direction
is the development of a way to balance generating and benchmarking new com-
putationally intensive pretext tasks (as detailed above) while minimizing the total
compute the cost of the entire search, or minimizing the computational cost of most
successful pretext task. For example, consider the scenario where there are two
pretext tasks whose benchmark differs by a single-digit performance percentage.
With the difference in their performance being negligible, the pretext task that
entails the least expensive computation (e.g., grayscale could be preferred over
tile reconstruction) should be prioritized. This could be useful in areas where
computational resources are limited (e.g., edge ML or battery-operated devices),
for example, in the medical device area.

III. Direct specification of inductive biases. Instead of implicitly choosing inductive
biases by designing pretext tasks and augmentations, these biases could be incor-
porated directly into model architectures and training regimes, thus potentially
improving the performance and training efficiency of SSL. For instance, a random
rotation data augmentation step could be replaced by a rotation-invariant network
architecture such as RotNet [38] to enforce the rotational symmetry directly. This
approach has previously been applied to the histopathology domain, in which
images are known to be rotation invariant [119] This may also serve to mitigate a
potential pitfall of SSL, where chosen pretext tasks or augmentations may implicitly
introduce unwanted inductive biases. Further work in this direction is needed to
design model architectures that respect more complex invariances in features such
as color jittering or image deformation.

5. Conclusions

SSL is a growing field that has seen rapid improvement and evolution over the past
decade. In this review, we covered the four major areas of SSL: pixel-to-scalar pretext tasks,
pixel-to-pixel pretext tasks, adversarial learning, and contrastive learning. A wealth of
different pretext tasks now exists for researchers to compare their own work, and SSL is at
a point in its lifecycle where it is spreading to specific and challenging domains such as
digital pathology as well as beginning to challenge supervised learning as the dominant
training paradigm. Several benchmarks for SSL have already been published [120,121], but
with the vast amount of new pretext tasks being designed, there is still a need for a more
powerful benchmarking tool in order to fully take advantage of state-of-the-art training
algorithms such as MoCo, SimCLR, and their newer variations.

The focus of our work is to provide a comprehensive overview of SSL, along with a
specific emphasis on applications in medicine and digital pathology. It is our hope that the
material covered in this review will allow researchers to leverage the powerful potential of
SSL and integrate it into their own machine learning pipelines, especially in those areas
where data are abundant, and labels are scarce.

Future applications of SSL in medicine, we speculate, will be very prominent, and
might span multiple medical service lines, medical specialties, and even industries, poten-
tially reaching areas where medical data are acquired at scale and its majority is unlabeled.
Such industries could be insurance (i.e., payers) and patient-facing applications, to name
a few. Again, our reasoning for this lays in the fact that the vast majority of healthcare
and biomedical data are unlabeled, making it a perfect scenario for SSL. We anticipate
that SSL will help unlock the value of unlabeled data in medicine and healthcare. Moving
forward, SSL represents an appealing option for those seeking to unlock the value of large,
unlabeled datasets.
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