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Abstract: In modern industrial systems, collected textual data accumulates over time, offering an
important source of information for enhancing present and future industrial practices. Although many
AI-based solutions have been developed in the literature for a domain-specific information retrieval
(IR) from this data, the explainability of these systems was rarely investigated in such domain-specific
environments. In addition to considering the domain requirements within an explainable intelligent
IR, transferring the explainable IR algorithm to other domains remains an open-ended challenge. This
is due to the high costs, which are associated with intensive customization and required knowledge
modelling, when developing new explainable solutions for each industrial domain. In this article,
we present a transferable framework for generating domain-specific explanations for intelligent IR
systems. The aim of our work is to provide a comprehensive approach for constructing explainable
IR and recommendation algorithms, which are capable of adopting to domain requirements and
are usable in multiple domains at the same time. Our method utilizes knowledge graphs (KG) for
modeling the domain knowledge. The KG provides a solid foundation for developing intelligent
IR solutions. Utilizing the same KG, we develop graph-based components for generating textual
and visual explanations of the retrieved information, taking into account the domain requirements
and supporting the transferability to other domain-specific environments, through the structured
approach. The use of the KG resulted in minimum-to-zero adjustments when creating explanations
for multiple intelligent IR algorithms in multiple domains. We test our method within two different
use cases, a semiconductor manufacturing centered use case and a job-to-applicant matching one.
Our quantitative results show a high capability of our approach to generate high-level explanations
for the end users. In addition, the developed explanation components were highly adaptable to
both industrial domains without sacrificing the overall accuracy of the intelligent IR algorithm.
Furthermore, a qualitative user-study was conducted. We recorded a high level of acceptance from
the users, who reported an enhanced overall experience with the explainable IR system.

Keywords: explainability; graph based XAI; information retrieval; knowledge graphs; domain-
specific IR

1. Introduction

The fourth industrial revolution brought to light new concepts that utilize increasing
amounts of industrial data. The important role of data is motivated by the potential of
extractable knowledge hidden within it. Knowledge integration plays an important role in
smart factories on a human, organizational, and technical level, where data is the central
resource for extracting knowledge with the help of, e.g., data analytics or machine learning
methods [1]. For this reason, modern decision-making and information-retrieval systems
provide new methods for extracting this knowledge from data. This is intended to enable
experts to use this knowledge for analysis, planning, and well-informed actions [2]. In this
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context, the role of the expert in the decision-making processes is essential, since they are
the ones who understand the implications of the extracted knowledge and can evaluate and
integrate it further. However, the expert’s ability to use the extracted data is influenced by
their understanding of the knowledge-extraction methods [3]. This is because understand-
ing the knowledge extraction algorithm helps the expert to be aware of its performance,
accuracy, and limitations, which in turn reflects on their trust levels towards the automati-
cally extracted knowledge. The development of intelligent information retrieval systems
mainly focuses on increasing the accuracy of retrieval. Here, we adopt the definition of
an IR system by William and Baeza-Yates (1992) [4]: a system that is able to match a user
query to data objects stored in a database. Those data objects are usually documents with
semi-structured or unstructured textual content. In this article, we consider the information
retrieval task as the method to respond directly to a user query or to retrieve information
that other algorithms then use to respond to a user query. The former case takes the form of
a search engine, while the latter can, for example, retrieve documents from a database for
a recommender system, which then generates the recommendation to the user. Machine
learning (ML), and especially deep learning (DL), models were able to solve prediction
tasks in IR systems with high accuracy, provided an availability of sufficient datasets. How-
ever, intelligent information retrieval algorithms are usually considered black-box models,
where the reasoning of their predictions is not clear. This has an influence on the level of
user’s trust and acceptance of the retrieved information [5]. This represents a particular
limitation in critical domains, where experts require a clear understanding of the reasoning
behind the prediction, in order to adopt it in making a final decision [6]. This is one of the
main drivers to develop the so-called open-box algorithms, which offer the possibility to
explain their reasoning to the user. The idea here is that the reasoning of the intelligent
model can inform the reasoning of the human expert and therefore support the expert’s
decision. The importance of explaining the prediction of intelligent information retrieval
algorithms grew rapidly in the recent years, as a part of the research on explainable artificial
intelligence (XAI) [2,5,7]. Our proposed framework, therefore, aims to generate high-level
explanations for intelligent IR systems. The explanations are meant to reflect the reasoning
of the intelligent algorithms for the users, allowing them to better evaluate and utilize the
retrieved information in their decisions.

Explaining intelligent IR algorithms depends on the domain of application, since the
explanations themselves are meant to clarify the algorithm’s logic to the domain experts.
This means that explainability functions require tailoring towards their industrial appli-
cations, which are considered domain specific, since they have strict requirements for the
decision-making process. In practice, tailoring IR and explainability solutions implies
additional implementation costs for handling domain-specific requirements. Additional
costs include: (1) labor costs associated with the developers, who manage the integration
of domain-specific requirements in the IR and explainability algorithms, (2) labor costs
associated with the domain experts, who provide the insights on the domain requirements,
e.g., through interviews, and (3) the costs associated with the complexity of technical
solution and subsequent costs of the methods it uses, e.g., the need for advanced processing
power. Therefore, the technical complexity is a result of the domain requirements’ com-
plexity. In order to limit those costs, our proposed framework is designed to provide a
transferrable structure for explainable intelligent IR solutions. It minimizes the needs for
tailoring the IR and explainability algorithms to each domain of application by adopting a
semantic representation of the domain’s knowledge and requirements. Since the domain’s
requirements are integrated into the concept of knowledge representation, the same IR
and explainability algorithms can be used in multiple domains. The cost of developing
explainable IR systems will therefore considerably decrease by implementing the same
IR and explainability algorithms in multiple domains. The balance between developing a
cost-effective solution and a domain-specific one is required for IR solutions; this is still a
challenge for the current state of the art.
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To address the explainability of intelligent IR systems and their transferability between
multiple domains, we investigated the role of knowledge graphs in making black-box IR
algorithms more interpretable, while providing the option to model domain requirements
in a transferrable manner. We considered two research questions in this investigation:

1. How to generate domain-specific explanations for intelligent IR tasks.
2. How to enable transferring the same explainable IR algorithm to other domains,

without compromising its performance.

We address these challenges by developing a framework that can link the IR and
explainability algorithms to the domain requirements through a knowledge graph as
a unified knowledge representation structure. We aim to integrate those requirements
in the knowledge representation to: (1) allow the intelligent algorithms to utilize the
domain’s requirements inherently, since they are already integrated in the knowledge
structure, and (2) provide a domain-agnostic semantic knowledge structure that both IR
and explainability algorithms can use. The key concept in our approach that answers these
questions is considering a semantic knowledge graph (KG) representation as a single source
of truth (SSoT). This way, multiple information sources are fused in the graph, and called
by the intelligent IR and explainability algorithms, to provide the user with understandable
search results. Our proposed solution serves as a foundation, which can be used to develop
explainable, domain flexible, IR systems. We use the term “domain flexible” to reflect the
ability of the framework of being domain-agnostic by being transferrable between multiple
domains, while being able to represent each domain’s requirements in the explainable
IR algorithm.

Among multiple knowledge representation structures, we choose knowledge graphs
in our framework for the following reasons:

1. The ability of knowledge graph to contextualize the entities within the graph. Con-
textualizing the entity is a result of its semantic relations to other entities in the
same graph. This feature provides more reliability to the IR algorithm and more
meaningfulness of the generated explanations.

2. Unlike relational databases, the knowledge graph functions as a graph database. This
means that graph theory methods can be directly implemented on the entities and
relations in the knowledge graph. Graph databases enable an efficient querying of
the elements as a graph and the use of basic statistics, such as the degree of elements.
Furthermore, more complex statements, which are captured in the literature under
the term “centrality measures” can be calculated efficiently for a future algorithmic
extension of the presented approach. This enables, for example, considering more
complex measures of connectivity to evaluate the retrieved information in the con-
text of other information. Utilizing those methods from graph theory enhances the
relatedness of retrieved results to a certain user query.

3. Knowledge graphs provide paths between any pair of entities. Those paths consist of
in-between nodes and relations that connect those entities. Utilizing the concept of
graph walks, i.e., navigating those graph paths following a predefined set of rules,
the IR algorithm can identify more relevant results to the user query. Moreover, the
graph path represents the reasoning of connecting two entities and thus explains the
retrieval of one entity based on the others.

The proposed approach provides the methods to implement domain and expert re-
quirements in the explainable IR algorithm. This in turn enables the system to be applicable
in different domains through integrating requirements-engineering concepts explicitly into
the process of model creation. The knowledge graph links domain requirements, expla-
nations, and the domain data together. During the construction of the KG, information
from domain requirements, expert knowledge, and textual data sources are taken into
consideration and modelled through graph nodes and relations. The result is then used
to generate explanations on how the intelligent IR algorithm is retrieving search results
from the KG. The embedded knowledge in the KG relations allows one to overcome the
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challenge of explaining a black-box IR algorithm [2,8,9]. It provides sufficient information
to generate an understandable explanation that reflects the reasoning behind the IR-model’s
prediction. Explanations from the KG can be constructed visually or verbally, making them
more human-understandable for the end-user.

In order to generate a transferrable solution, the construction of the knowledge graph
is designed to capture high-level domain requirements, from the domain experts and from
the data sources themselves. Once those requirements are defined, they are embedded into
the KG uniformly. Then, they are retrieved with the same intelligent IR algorithm, since the
IR uses the same KG structure, and not the raw data source, to retrieve information. This
aspect of our framework provides a novel approach to address the challenge of creating a
transferrable IR solution that is domain specific at the same time.

Our contributions in this article are summarized as follows:

1. The development of a comprehensive framework, with specialized components that
are capable of integrating domain-specific requirements in the chosen semantic knowl-
edge representation.

2. Developing a novel system structure that enables intelligent IR and explainability
algorithms to considering domain requirements inherently, using the KG-based SSoT.

The development of a novel transferability approach minimizes the implementation
costs by enabling the use of the same IR and explainability algorithms in multiple domains,
without compromising their domain-specific requirements.

We tested the transferability of the proposed method within two different application
domains: (1) semiconductor industry and (2) job recommendation. Our results show high
user acceptance and IR accuracy in both domains, with minimal-to-zero changes in the
KG construction process, the intelligent IR algorithm, and the generation of visual and
textual explanations.

In the following sections of the article, we review the related literature in Section 2.
Section 3 elaborates on the proposed transferrable, KG-based retrieval, and explainability
framework. The evaluation use cases and metrics are demonstrated in Section 4 and the
article is concluded in Section 5.

2. Related Work

Although the topic of explaining intelligent algorithms is not new [3,10], it has gained
new perspectives since deep learning algorithms have become widespread [11]. This
was due to the black-box nature of such algorithms, which challenged the ability to track
the algorithms’ predictions and understand their reasoning. Explaining AI algorithms
followed several directions in the state of the art. Li et al., (2020) [2] classify these directions
in two main categories: data-driven approaches, such as [12,13], and knowledge-aware
ones [14,15]. Data-driven methods use the information from data and the intelligent model
itself in generating a comprehensible interpretation of the model’s behavior. Knowledge-
aware methods use the explicit or implicit knowledge that can be extracted from the domain.
This knowledge is used either to generate or to enhance the explanations of the intelligent
IR or recommendation algorithms.

For generating explanations, knowledge modelling methods have been investigated
in recent years to infer the reasoning behind retrieving certain results by the IR algorithm
or recommending an item to a certain user [16,17]. Both data-driven and knowledge-aware
methods, which are implemented in singular domains of application, supported explain-
ing the intelligent prediction models. However, these approaches were also dependent
on the models used for the information retrieval or recommendation tasks. Therefore,
recent literature shows a high focus on developing model-agnostic algorithms, not only
for the intelligent IR or recommendation tasks but also for generating explanations of
their predictions. A model-agnostic explanation algorithm means that the explanations
are generated independently of how the intelligent model works. The algorithm uses the
input and the output of the intelligent model to generate explanations without relying on
the model’s internal behavior. An example of such model-agnostic, explainable recom-
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mendation algorithms can be clearly seen in the work of Chen and Miyazaki (2020) [17].
They developed a task-specialized knowledge graph that serves as a general common
knowledge source, to generate model-agnostic explanations of the intelligent recommenda-
tions. Their knowledge-aware approach uses the task-specialized graph to overcome the
challenge of not having sufficient information from the databases to generate high-quality
personalized explanations.

Knowledge graphs are knowledge modelling methods that support the generation of
knowledge-aware explanations [2]. A KG is a network of interconnected entities, where
each entity is represented by a graph node, and the relevance between the nodes is repre-
sented by relations [18]. Through the nodes and their relations, the KG is described as a set
of triplets (head, relation, tail) as shown in Equation (1).

KG = {(h, r, t)|h, t ∈ E, r ∈ R} (1)

where h is the head entity, t is the tail entity, and r is the relation between them. E represents
the entity group, and R is the relations group.

In the context of domain-specific textual documents, graph nodes are defined to
represent the content of those documents, i.e., the words, sentences, or paragraphs [19].
Graph relations are then defined based on certain criteria, which should also reflect the
domain’s requirements. Alzhoubi [20] proposes the use of association rules mining (RAM)
for enhancing graph construction from textual databases. The proposed approach extracts
frequent subgraphs from the overall KG. Those subgraphs are then processed to produce
feature vectors that represent the relations between nodes. A similar approach is used
in [21], where vectors of the textual documents are considered as graph nodes, while
the relations amongst them are calculated using the cosine similarity scores between
document pairs.

The importance of model-agnostic solutions comes from their ability to use the same
explanation concept and apply it for different intelligent models [11,17,22]. However,
despite their independence of the intelligent models, explainability algorithms are still
influenced by the domain of application [8]. Different domains require different content
and shapes of explanations. Domain specifications also influence the intelligent IR or
recommendation algorithms. An example of such domain-specific algorithms is found
in the work of Naiseh (2020) [23], who proposes explainable design patterns for clinical
decision support systems. Another example in the biomedical domain is in the work of
Yang (2020) [6], who uses knowledge graphs to support the information retrieval task while
considering the domain of application and its implications on the generated explanations.
Their work builds on the flexibility that graph nodes and relations have, for embedding
domain-related information while representing the data. Knowledge graph structures
support the explainability of the system and serve as a foundation for the information
retrieval itself, since they represent queryable graphical knowledge bases [6].

The specific nature of a domain can be captured from multiple sources, which include
the databases and the knowledge of domain experts. Model-agnostic solutions, such as
in [17], solve the challenge of explaining different black-box algorithms with the same
explainability approach, but they do not handle components of the system that reflect its
specific requirements, such as the role of domain experts in generating the knowledge
graph, which then underlines the explainable recommendation algorithm. Domain-specific
approaches such as [6,14,23] address the challenges of considering domain requirements.
The compliance with domain requirements and specification(s) has its own cost, however.
The more the explainable solution is tailored towards a specific domain, the less applicable
it becomes in other domains of application [8]. For example, Ehsan et al. (2018) [14]
describe a highly domain-specific task for an explainable robotic behavior. They take into
consideration the expert’s role in annotating the corpus and link it to the robot’s navigation
states. However, their explainable approach is still dependent on the intelligent model,
meaning that other domains of application, with other requirements and databases, cannot
use the same model. Their approach is applicable in other domains once new corpuses are
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generated and the model is retrained again based on the new data. This process implies the
costs we elaborated in Section 1.

Moon et al., (2019) approach a solution for both challenges, by developing a domain-
agnostic intelligent reasoning system over graph walks for an entity retrieval task [11].
Their system is built on a conversational database (OpenDialKG) and tested amongst
multiple domains. Their solution highlights the importance of bridging the gap between
developing domain-specific solutions and transferring them amongst domains. Their
solution shows high accuracy in adopting the same intelligent model to different domains.
However, that adaptation is based solely on the large corpus they use to train the intelligent
model. In a domain where limited data is available, the model may not be able to cover
other domains. Moreover, the dependency on the data does not take into consideration the
role of domain experts in modeling domain requirements.

Therefore, our proposed framework is designed to enable domain-specific, explainable
algorithms, which are transferable to other domains with minimal changes. We put a high
emphasis on domain modeling by including the role of domain experts and explicit domain
requirements alongside the role of domain databases in the framework. Our approach
allows generating high-level explanations that users can read in a natural language or
visualize through the knowledge graph. Our solution builds on the work of Chen and
Miyazaki (2020) [17] and Moon et al., (2019) [11] and bridges the gap between developing
domain-agnostic and domain-specific explainable systems, utilizing the knowledge graphs
as a base structure that is comprehensible and adaptable to different domains.

We propose a complete framework that considers the role of databases, domain ex-
perts, and domain requirements in constructing the knowledge graph and then furthering
the IR explanations. Our framework uses the knowledge graph as the single source of
truth, which provides the intelligent IR and recommendation algorithms with information.
The explainability algorithm relies on the KG to generate high-level, textual, and visual
explanations. In contrast to the approaches in [15,24,25], where the IR and recommendation
algorithms are model-intrinsic, the use of the KG as a SSoT in our framework allows the
explainable IR algorithm to be model-agnostic. This removes the limits on the IR and
explainability algorithms alike. Moreover, as compared to the work of Moon et al. [11],
our framework extends the sources of domain requirements. While their approach cap-
tures the requirements from databases solely, our framework enables capturing those
requirements from databases, expert knowledge, and other requirement sources that can
be explicitly defined, such as those found in the exploratory data analysis (EDA). Our
proposed framework serves as a foundation for building domain-specific systems, since the
knowledge graph is constructed with domain requirements in mind. Moreover, it addresses
the transferability of the intelligent IR and explainability algorithms, through adopting the
knowledge graph as the main source of information for both algorithms. In comparison
to the similar transferrable approach of Chen and Miyazaki [17], our framework does not
compromise the domain-specific nature of the IR solution when transferring it to other
domains. We explicitly embed those requirements in the system design to enable their effec-
tive integration in the intelligent, explainable, IR. The use of the same intelligent models for
information retrieval or recommendation in different domains is therefore possible, since
they are trained to query the graph and not the data sources directly.

In Table 1, we summarize a part of the reviewed literature that informed our approach.
The table compares between approaches for developing graph-based, explainable intelligent
information retrieval and recommendation systems, including our proposed framework.
We separate the features of the similar solutions from their final outcomes to focus the
comparison on the two research questions of our research, namely addressing the domain-
specific requirements in the IR solution and enabling the transferability of the solution to
other domains with respect to their own sets of requirements.
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Table 1. Comparison between different explainability approaches.

Reference

Solution Features Solution Outcomes

Year
Model-

Agnostic/
Intrinsic

Recommendation
Approach

Explainability
Approach

Retrieval
Task

Domain
Requirement

Based on

Transferable
with Respect to

Domain
Requirements

Chen and
Miyazaki

[17]
2020 Model-

agnostic

Conventional
and intelligent

recommendation
systems

Textual explanation
generated from a
translator after

ranking graph paths

Graph path
retrieval

Not domain-
specific Yes

Moon et al.
[11] 2019 Model-

agnostic

Entity recom-
mendations

based on graph
walker

Explanations are
based on the

generated paths
from the graph

walker

Graph path
retrieval The Database Yes

Song et al.
[24] 2019 Model-

intrinsic

Based on a
Markov decision

process

Usage of
user-to-item paths to

generate
explanations

Graph path
retrieval in
user-item-

entity
graph

Not domain
specific No

Wang et al.
[15] 2019 Model-

intrinsic

Intelligent model
to learn path

semantics and
generate recom-

mendations

Pooling algorithm to
detect the path

strength and its role
in the prediction

Graph path
retrieval

Not domain
specific No

Xie et al.
[25] 2021 Model-

intrinsic

Recommendation
based on a

user-item KG
with item ratings

Explanation based
on KG and

multi-objective
optimization

Graph path
retrieval

Not domain
specific No

Our
Framework 2021 Model-

agnostic
Graph path

recommendation Graph based

Node
retrieval,

Graph path
retrieval

Database,
Expert Rules,

Explicit
requirements

Yes

3. Transferable, Graph Based, Domain-Oriented, Explainable IR

In order to address the challenges of explaining intelligent IR algorithms while consid-
ering domain requirements, we use multiple components to build a transferrable structure
that accomplishes this task. Our approach, visualized in Figure 1, is composed of domain-
specific components and domain-agnostic ones. Domain-specific components represent
the domain’s data, requirements, and any rules defined by the domain’s experts. Domain-
agnostic components play two main roles in the proposed framework:

(1) They link domain-specific components to the knowledge graph, which enables a
transferrable graph construction process that can be replicated for other domains.

(2) They perform the tasks of generating explanations and retrieving information based
on the KG structure.
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Figure 1. Proposed framework for transferrable, domain oriented, explainable IR, based on knowl-
edge graphs. Domain-specific elements are shown in white, while domain-agnostic algorithms are
shown in blue.

Domain-agnostic components integrate the intelligence of the IR algorithms, without
compromising their explainability. This is due to the strong connection to the knowledge
graph, which is inherently an open-box knowledge representation. The resulting framework
that includes all previous components and links them together through the KG is highly
flexible to the needs of multiple domains. Moreover, it enables flexible adaptation to
multiple AI algorithms that are used in the information retrieval task, since they are
dependent on the data that the KG itself is now providing.

The heart of our approach is the knowledge graph. The graph enables extracting
information from multiple sources, which are databases, domain experts, and lists of
requirements. It fuses this information in one queryable knowledge structure through
defining the nodes and relations of the KG. Once the graph is constructed, it serves as
the graphical knowledge base, which provides IR and explainability algorithms with all
needed information to generate explainable results for the user. Since the explanation is
generated based on the knowledge graph, our framework is capable of generating high-
level explanations even for black-box IR algorithms. The explanation format, e.g., visual,
textual, etc., is also dependent on the user’s requirements. In the following sections, we
explain the different parts of the framework in detail.
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3.1. Knowledge Graph Construction

Constructing the knowledge graph is based on defining its nodes and relations. The
knowledge graph is capable of representing multiple dimensions of a process. This is ac-
complished by: (1) defining node-types in the KG [21], (2) expanding the relation definition
to connect different nodes from the same type or different types, while defining different
levels of relevancies between the nodes [26]. In the proposed approach, graph nodes are
defined based on two pillars: information sources and expert-defined rules. Each pillar
participates in defining the node’s type, as well as its content and attributes.

3.1.1. Graph-Nodes Definition

Information in an industrial environment, for example, is usually distributed across
multiple data sources. These sources can equally represent multiple processes or process
parts. Therefore, our framework enables several information sources of defining different
node types in the graph. Each node type represents the information source individually,
while the graph relations connect those sources together. The node is then capable of
representing the domain-specific nature of the information, without compromising the
integration between multiple information sources in one knowledge structure.

Expert-defined rules are used to reflect the knowledge of domain experts on the
construction of the knowledge graph. In the framework, we model the extracted expert
knowledge through rules, because they allow a formal representation that supports making
a decision about the node types, content, and the graph relations and explanations. An
expert-defined rule has an “IF . . . THEN . . . ” structure. Reasoning with these rules can
follow a forward-chaining or a backward-changing approach [27–29].

There are no restrictions on the methods used to get the knowledge from domain
experts. One can use questionnaires, interviews, and formal reports, for example, to
extract expert knowledge. However, our experience in implementing this concept shows
that conducting interviews with domain experts is an effective method for acquiring
their knowledge and directly translating it into rules in the system. Then, a backward
chaining inference allowed deducting the type and content of graph nodes, to represent the
information sources. Figure 2 shows an example of an expert defined rule and its use in
constructing the graph nodes.
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3.1.2. Graph-Relations Extraction

Defining graph relations also uses the previous two pillars, i.e., expert-rules and
data sources, and adds to them domain requirements. We use an independent domain-
requirements block in our framework to represent domain-specific needs that cannot be
directly represented in the information sources or the expert-defined rules. For example,
the terminology used in the documentations differs from one domain to another. This termi-
nology may also include certain entity types that have different meanings or implications in
multiple domains. Information sources and expert-defined rules do not explicitly express
those different implications. Therefore, we model such differences as domain requirements
in the framework. During the exploratory data analysis (EDA), characteristics of the data
reveal these implications, which are then translated to requirements that are considered
within the graph construction, information retrieval, and explanation steps.

Domain requirements can take several formats. They can be represented by lists,
dictionaries, or statements. They are then used within the relation extraction and the
information retrieval steps. The developer of the IR algorithm can manually integrate those
requirements into the algorithm in order to reflect them in graph queries. Figure 2 shows
an example of using expert-defined rules and domain requirements to define graph nodes
and relations.

We use a dedicated relation extraction (RE) algorithm to find the relations between
the nodes. The relation extraction utilizes the type and content of each node in the graph,
which reflects the content of the information sources. For example, nodes that represent
documents have textual content. To extract the relations between those nodes, textual
similarities are calculated between the node-pairs and added to the graph as a relation if the
similarity score is higher than a pre-defined threshold. Graph relations can also be defined
by the experts. In this case, the relation extraction algorithm translates the expert-defined
rule into a relation between the corresponding nodes in the graph. An example of such
a relation is linking document nodes based on a specific string of characters that appears
in the document’s header. Other domain requirements, which are not found during the
EDA, are also used by the relation extraction algorithm to find links between the nodes,
e.g., based on the implications of their domain terminology, Figure 2.

Through the information sources, expert-defined rules, and domain requirements,
the relation extraction algorithm in our framework is informed by the domain’s specific
nature. The algorithm itself, however, is not limited by the domain. A developer can
choose the relation extraction algorithm from a wide range of methods that are provided
in the state of the art. This allows the same relation extraction algorithm to be used in
multiple domains, while considering their domain-specific requirements at the same time.
The combination of this domain-agnostic component with domain-specific components is
what enables our approach to be transferred to other domains once their requirements and
specific nature are known. This, in turn, is due to the use of the knowledge graph at the
center of the framework.

3.2. Graph-Based Information Retrieval

Similar to the relation extraction algorithm, the information retrieval component in
our framework is designed to be domain agnostic. This enables its re-use in multiple
domains without compromising its ability to consider the domain-specific nature. Domain-
specific information is provided to the IR algorithm through the knowledge graph, i.e., the
definition of its nodes and relations. The information retrieval algorithm is also informed by
the domain-requirements, since these requirements may affect graph queries. An intelligent
IR generates predictions of correct responses to a user query. It can predict the nodes and
relations in the knowledge graph that lead to the most relevant results. When it retrieves
those results, it is also capable of getting explanations for each result from the explainability
algorithm. The IR and explainability algorithms are related via the knowledge graph.
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3.3. Graph-Based Explainability

To ensure the framework’s ability of generating explanations for IR or recommenda-
tion algorithms, regardless of them being open-box or black-box ones, we separate the
explainability algorithm in a way that only requires querying the KG to generate the expla-
nations. To generate an explanation for a result using the KG, the algorithm determines
the shortest path from a query node to possible, related result nodes in the KG [30]. The
query node in this context represents the node in the KG, which is directly retrieved from
the graph corresponding to a user query. Result nodes are the ones that are transitively
related to the query nodes. Nodes that belong to a graph path between query and result
nodes are ranked to identify the best fitting explanation for a retrieved result from the KG.
To present the explanation in a high-level, user-friendly way, natural language processing
(NLP) patterns are used to generate the output sentences.

The KG structure offers a visual explanation in addition to the textual one. Verbal
explanation is achieved from the graph by re-phrasing the information as a human-readable
sentence, e.g., through NLP and following the relevant nodes through relations. On the
other hand, the graphical representation of the knowledge graph with its nodes and
relations is also considered a visual explanation. Those visual explanations show node
relevancies, node clusters, or dependencies. Multiple visual features, e.g., color or size, can
be used to make the retrieved information more interpretable and understandable by the
user. Figure 3 shows an example of generating those verbal and visual explanations from
the KG.
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4. Experiment Design and Framework’s Evaluation

In order to evaluate our framework, we designed an experimental setup to test the
performance of each part of the framework. We focus on two main evaluation criteria,
which correspond to our research questions:

1. The extent of the framework building a domain-specific solution that integrates
the domain requirements and expert knowledge into the explainable, intelligent
IR algorithm.

2. The transferability of the framework to different domains, without compromising the
performance of the KG construction, the intelligent IR, and the explainability algorithms.
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To evaluate we use a set of key performance indicators (KPIs). We use the KPIs to
evaluate the performance of the framework in a certain domain, i.e., the first criteria. To
evaluate the second criteria, we implement the framework on two different domains that
include a high level of dependency on the domain requirements and the knowledge of
domain experts. The domains belong to different environments to ensure that their require-
ments have no similarities. The first evaluation domain is supporting the semiconductor
chip-design process. Within this domain, a use case of a semantic search for design docu-
ments has been implemented using the framework. The second evaluation domain is in
the field of CV-Job matching and job-posting recommendations. The second use case takes
the form of an intelligent recommender system for personalized job-posting suggestions.

In each of the two use cases, we tested (1) the performance of the intelligent information
retrieval algorithm, (2) how the KG represents the domain of application, and (3) the
explainability of the overall solution.

Evaluation of the IR and Recommendation

We tested the performance of the IR algorithm quantitatively through two KPIs: (1) the
relevance of the semantic search results and (2) the precision and accuracy of the intelligent
document clustering and matching. Moreover, we evaluate the algorithm qualitatively
through expert-user feedback, which was collected through surveys and focus groups.

The Relevance measure, shown in Equation (2), is defined by the number of relevant
results to a user’s query, as a percentage of the total number of retrieved results.

Relevance =
No. Relevant Results

Total No. Results Retrieved
× 100% (2)

The precision and accuracy are measured for the intelligent models that are imple-
mented for the IR and recommendation tasks. We measure the precision and accuracy of
those models using the standard Precision and F1 measure, see Equations (3) and (4).

F1 = 2× Precision× Recall
Precision + Recall

=
TP

TP + 1
2 (FP + FN)

(3)

Precision =
TP

TP + FN
(4)

where TP is the number of correctly classified documents, while FP is the number of
documents that are incorrectly classified as belonging to a certain class, and FN is the
number of documents that are incorrectly classified as not belonging to that class.

Evaluation of the Domain-Specific KG

To test the knowledge graph’s ability to represent the domain, we used an ontological
structural-evaluation metric, namely the class richness [31,32], which is defined in Equation (5).

lass Richness =
No. Classes With Instances

Total No. Classes
× 100% (5)

Class Richness measure reflects how the graph covers the instances of the use case. The
underlying assumption for using this measure is that the elements of the framework, expect
for the algorithms, can represent classes of an ontology. If a class is capable of representing
a domain, then it will have instances defined from that domain. The more classes having
instances, the more representative is the proposed framework of the domain of interest.

Evaluation of the Explainability Algorithm

Testing the explainability algorithm takes place through four different metrics. We
measure firstly the availability of information for generating an explanation based on the
knowledge graph. Information availability is used in this context to measure the quality of
the explanation. It represents the amount of information that our framework provides
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about the retrieved results from the KG. The more information collected about the algo-
rithm’s reasoning, the more comprehensive the explanation will be, and thus the higher
the explanation quality is. To quantify this measure, we rely on the explanation templates
that are used for generating the textual explanations. We consider the explanation to be
of a high quality if all the slots of the explanation template can be filled with information
from the KG. Otherwise, we consider the explanation to be of a low quality. We then define
the information availability as the ratio of high-quality explanations to the total number of
explanations generated by the explainability algorithm, as in Equation (6).

In f ormation Availability =
No. Fully Generated Explanations

Total No. Explanations
(6)

In addition to the information availability, we calculate the mean explainability preci-
sion (MEP) [17,33] of the explanation that are associated with the IR output, as defined
in Equation (7). MEP measures the average proportion of explainable results of an IR
algorithm or recommendations of a recommender system.

EP =
1
U

U

∑
u=1

Nexp

L
(7)

Here, U is the number of users, Nexp is the number of explainable results, and L is the
total number of results.

The third and fourth metrics focus on the quality of the explanation itself. We use
bilingual evaluation understudy (BLEU) [34] and Rouge-L [35] scores to calculate how much a
generated explanation represents the explained result. BLEU score measures the closeness
between a machine-generated text and the original human-defined one. We use this score
to measure how a generated textual explanation represents the original information that
the KG paths have provided to the explainability algorithm. Rouge-L score measures the
ability of a machine generated text to summarize the original information. In our case, this
score represents the ability of the explanation to summarize the information that led to
retrieving a certain result from the KG structure.

While F1 measure, Class Richness, MEP score, and BLEU and Rouge-L scores are
all well-defined measures that are used in the literature, we develop the Relevance and
In f ormation Availability metrics to correspond to the nature of our domain-oriented frame-
work and to demonstrate its ability to perform accurate information retrieval and generate
comprehensive explanations for the different domain-specific environments it is used for.

In the following, we elaborate the implementation of our framework within two
evaluation use cases. We focus on the strategy of implementing the framework’s compo-
nents in each domain, the results of evaluating the framework’s domain coverage, and
its transferability.

4.1. Use Case 1: Chip-Design Document Search and Retrieval

The first use case for implementing and evaluating our framework is situated in the
semiconductor industry. In the semiconductor chip-design environment, design docu-
ments include different types of reports, which are created during multiple design phases.
The documents in our use case include three types, where each type is collected from a
separate database:

1. Failure reports: these represent the reports that design engineers prepare for each
discovered failure in the chip design. The report is a semi-structured, text-based
document. It contains predefined information fields, which are then filled with
free textual input, describing the failure itself, its corrective actions, and additional
relevant details.

2. Project structures: this type of document is the result of the automated generation
of a design project from the internal system of the company. It represents all project
parts, product elements, and technical details, which have been inserted by the project
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personnel. This data source inherits the structure of the design project itself. Such
structural information is especially important for discovering links and relations
between different elements of one project or, possibly, between different projects.

3. Specifications documents: which also represent the full project documentation but
in a human readable format, including tables of technical details, schematics of the
chip modules, and so on. This type of file is considered as a reference, which a design
engineer re-visits in case they need more information about a certain technical detail
of the project.

These three document sources provide the foundation for lessons learned from pre-
vious chip designs. The goal of this use case is to extract and model this knowledge and
to provide it to the design engineers with high-level explanations. When engineers are
handling a certain design problem, they look for similar previous failures to see if their solu-
tions can be used for the current problem. However, despite the availability of documents
about previous failures, the engineer does not have sufficient tools to find semantically
similar failures within large, multiple databases. Therefore, the information retrieval task
in this use case takes the form of a semantic search engine, which is designed to provide the
design engineer with relevant documents that are semantically similar to a current design
failure. The engineer can write a short description of the current failure and search for
relevant documents throughout the multiple document sources. The information retrieval
algorithm searches the knowledge graph to provide the user with a list of search results.
Each result includes a textual explanation of the reasoning behind its retrieval. Visual
explanations are also provided to the user through visualizing a sub-graph that includes
the search results, their interconnections, and their connection to the search query.

4.1.1. Dataset Preparation

Three datasets of design documents were used in this use case. The datasets included
a total of 5587 documents, which were generated from design projects over a period of 10
years. Documents from the three datasets had different levels of structuring:

• Documents with a hierarchical structure (Project structures): which include the project
structure documentation.

• Documents with a column-based labeled structure (Failure reports): which included
the failure reports as a free textual input, arranged in semi-structured tables.

• Unstructured documents (specification documents): which included a non-consistently
structured content, describing the technical specifications of the final product.

We implemented a customized text mining pipeline to extract the textual content of
the three document types. Extraction steps included cleaning the text from less meaningful
terms, which can affect text weighing and similarity algorithms, such as cosine similarity
scores calculated from Term Frequency Inverse Document Frequency (TF-IDF) weights [21].
After cleaning the textual content of each document, document vectors were calculated to
enable their representation in a machine-readable format.

Previous document sources were fused together in one knowledge graph, which in-
cluded the document vector representation, to enable the intelligent IR algorithm querying
all types of documents uniformly. The construction of the knowledge graph was conducted
following the steps in Section 3.1.

4.1.2. Knowledge Graph Construction

Based on the pillars for defining graph nodes and relations in our framework, we
analyzed the three data sources in this use case to determine the domain requirements.
We also interviewed the engineers to extract the expert-defined rules for constructing
the graph. We started by modeling the three documentation sources using three node
types in a multidimensional KG, see Figure 4. Each node type has properties that reflect
the special content of the corresponding document it represents. Nodes that represent
failure cases include the document vectors. The data content of these nodes was also
arranged to represent the table columns in the original database. This table-like format
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allows for the separation of each failure report into its main parts: “Failure Description”,
“Failure Tests”, and “Failure Solution”. Those parts are then used to enhance the similarity
calculation with other nodes. Nodes that represent the chip specifications include the final
vectors of the documents’ content. Nodes that represent the project’s structure included
the textual vectors of the documents’ content, alongside the structural information of each
project element. This information includes the exact position of the project’s element in the
hierarchy of the designed chip.
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Four types of nodes are defined, along with their relations. Relations exist amongst nodes of the same
type and among those of different types.

Expert defined rules led to the definition of a fourth type of nodes. We call the addi-
tional node type ‘Linking nodes’, and we use it to represent special documentation terms
followed by the design engineers [8]. Such documentation style included, for example, the
use of a special combination of terms as a shortcut of a common design problem. To capture
those documentation styles, we extract different combinations of terms from the textual
content. Those combinations form N-Gram terms, which include an N number of terms that
appear in a specific repeating pattern amongst the documents. We use Unigrams, Bigrams,
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and Trigrams, corresponding to patterns of 1-term, 2-terms, and 3-terms respectively. Those
patterns are then used to enrich the connections in the knowledge graph.

Relations in the knowledge graph were extracted from the information sources, the
expert defined rules, and the explicit domain requirements. From the information sources,
textual similarity was calculated between the content of the three types of documents
to define their relevance. To calculate the textual content similarity, we first implement
a simple TF-IDF approach to get the term weights and generate the document vector.
Using the calculated vectors, we use the Cosine-Similarity algorithm to find the relevant
documents and then create relations between them in the KG. Expert defined rules and
the corresponding node type ‘linking nodes’ were used to create extra relations between
each node and the linking node’s content, if it was included in the document’s text. Project
structural information was also a source of creating relations between the nodes, which
corresponded to their hierarchical structure in the designed chip. Through these types of
relations, documents from multiple sources were also transitively linked to each other, as
shown in Figure 4.

4.1.3. Modeling Domain-Specific Features

In this use case, the chip-design domain introduced several requirements that the
semantic search tool needed to consider. The first requirement is modeling different
document types in one queryable knowledge base. The multidimensional knowledge
graph we use in the framework accomplishes this task. The second requirement came
from the documentation styles that the design engineers followed. This included the
non-standard naming conventions, report structures, and the abbreviation types used
in the documents. We model those requirements in our approach using the “domain
requirements” and “expert-defined rules” components.

Modelling the domain-specific features influenced two parts of the system: (1) relation
extraction and node definition in the KG, where special relations and nodes were defined
for non-standard vocabulary used in the documents; and (2) the IR algorithm, which was
modified in our implementation to handle free-text search-queries if they are composed
solely of non-standard terms. Experts have provided a set of rules that guided the informa-
tion retrieval and the explanation. Those rules included, for example, the importance of
certain groups of failures over others. Such difference in the failure importance was a result
of multiple factors, including the effect of such failure on other parts of the chip and the
effect of the failure on the overall performance of the final product. This type of information
was directly related to the expert’s observations of the failure’s long-term effects. Therefore,
this knowledge was embedded in the KG and consequently the IR algorithm to put more
emphasis on this type of failure. We implicitly design the search functions in the IR module
to consider the set of expert-defined rules. This influences the search function to assign
higher priority to specific documents within the search results and thus show them on top
of the result list. The information that included the textual explanation was also defined by
the domain experts and was modeled in the Explanation Requirement components in the
framework to represent the expert’s need for certain information in explaining the results
of the IR algorithm.

4.1.4. IR Algorithm

For the defined use case, we implement a graph-based IR algorithm. The algorithm
depends on the transitive relations in the knowledge graph to retrieve relevant documents
to a user query, based on the shortest path approach. User queries are searched in the
KG, revealing direct hits from graph nodes that correspond syntactically to the search
terms. From the direct hits, relations in the KG are used then to retrieve new nodes that
are connected to the direct-hit nodes. Several graph transitions can take place between
the direct hit and the relevant result node in the transitive path. However, a high number
of transitive relations will produce a large number of search results, with furthermore
potentially lower relevance to the search query. Therefore, we set a threshold of 2 graph
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transitions to retrieve relevant results. All retrieved results are then enriched with their
corresponding explanations from the explanation algorithm and provided to the user
through a search interface.

4.1.5. Explanation Algorithm

The explanation input included the rules that expert users provided in addition to
the requirements that shape the explanation. In our use case, explanations are intended to
clarify the relevance of a previous design-failure document to a user query. This explanation
is generated from the semantic similarities between the documents and the properties of
the document node. To represent those similarities in a human readable format, we design
sentence templates that are built from the available information about the documents and
their similarity. Pre-defined slots in the sentence template are filled with corresponding
information to generate a full description of the algorithm’s reasoning, which is shown
in Figure 5. We define two templates with increasing quality of explanation. This is to
consider the cases where there is a lack of information for filling the template’s slots. This
way, simple explanations with low quality will be generated in cases where no sufficient
information is available, while more complex and informative explanations will be gener-
ated when more information can be collected from the KG. We refer to the latter type as
high-quality explanations.
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Figure 5. Verbal explanation template used in the implementation of Use Case 1. The template is
designed based on expert requirements for explaining the semantic search results.

4.1.6. Evaluation and Results

We evaluate our framework in this use case through the metrics defined in Section 4.
The components of the framework are evaluated in terms of their ability to represent
the domain and generate meaningful, transferrable explanations and search results from
the KG.

To evaluate how the proposed approach is capable of representing the domain of
application, we use the Class Richness metric, see form (5). Here, we consider the entities
in the framework as classes. We neglect the algorithm boxes since they do not follow a
standard ontological representation. By defining the instances of each component in the
use case and calculating the overall Class Richness of the knowledge graph, we achieve
a value of 88% class coverage. This value reflects a high coverage rate of the proposed
framework over the domain-specific requirements and their corresponding components in
this use case.

To evaluate the IR and explainability algorithms, we perform a sample of 300 random
searches through the IR algorithm. We firstly calculate the Relevance score (2) for each
retrieved search result to evaluate the performance of the IR algorithm. Then, we calculate
the Information Availability Equation (6), BLEU score, and Rouge-L score to measure the
quality of the explanation generated for each result, Figures 6 and 7.
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Figure 6. BLEU and Rouge-L scores for the search results. The figure represents the scores for the
short search queries. The average BLEU score for the short search queries (on the horizontal axis)
reached 37.2%, and the average Rouge-L score was 25.1%.
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Figure 7. BLEU and Rouge-L scores for the search results. The figure shows the scores of the long
search queries. The average BLEU score for the long search queries (on the horizontal axis) reached
38.3%, and the average Rouge-L score was 27.4%.

For each search query, we calculate the MEP score for the overall explanations gener-
ated for all retrieved results, as given in Equation (7). We achieve an average value of 99%
for the MEP score. We trace this result back to the inherently open-box nature of the KG,
which provides the IR and explanation algorithms with sufficient information about the
retrieved results. Evaluation scores are shown in Table 2.
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Table 2. Evaluation results of the proposed framework on Use Case 1.

Graph Evaluation Measure IR Evaluation
Measure Explainability Evaluation Measure

Class Richness Avg. Relevance Information
Availability MEP Avg. BLEU Avg. Rouge-L

Short search query
88%

87.3% 78.7% 82.5% 37.2% 25.1%

Long search query 99% 91.8% 99.6% 38.3% 27.4%

4.2. Use Case 2: CV-Job Matching and Recommendation

In the second use case, we choose a different domain to test the framework. We build
an information retrieval algorithm that supports a job recommendation system. The field
of matching job postings to job seekers features a different set of requirements, which is a
result of the varying structures and content of job postings and job seekers’ CVs [36].

CV documents include information that summarizes the user profile. Recommending
a certain job to the CV holder requires finding the similarities between their skills and
qualifications to those required by the job posting. This, in turn, requires the information
retrieval algorithm to focus on parts of the CV that include the information about the user’s
qualifications and skills, more than other sections, such as the hobbies and interests. This
also applies to the job postings themselves, where one can find several parts about the
company portfolio, which are repeated in every job posting and thus do not participate in
generating an effective matching to the specific job seeker.

To accomplish this matching effectively, we build a customized named entity classifier
(NER) to support the information retrieval, and later the recommendation and explanation
systems, in separating the different textual parts of the job posting and the user’s CV to
better model them in the knowledge graph.

4.2.1. Dataset Preparation

For this use case, we built an experimental dataset that included 50 user profiles and
1606 job postings. We collected the job descriptions in the fields of IT and Engineering
from the job-hunting website “Monster” (https://www.monsterindia.com, accessed on
4 August 2020), in compliance with the European General Data Protection Regulations
(GDPR) (https://gdpr-info.eu/art-5-gdpr, accessed on 10 December 2021). All user profiles
were anonymized before being included in the dataset.

In the experiment dataset, we removed personal and demographic information about
the user, without compromising the performance of the job recommendation system. This is
because the recommender is designed as a graph-based collaborative-filtering (CF) system,
following the shortest path algorithm of Dijkstra [30].

4.2.2. Knowledge Graph Construction

The knowledge graph is constructed from the two selected types of documents. It
models them in two node types: userProfile (CV) nodes and jobPosting (JOB) ones. Node
properties in this case include the textual content of multiple parts of the document, as well
as the classified entities in the text, as predicted by the customized entity classifier.

The graph includes three types of relations:

(1) userProfile-jobPosting which relates the user to potential jobs directly, see Figure 8.
(2) userProfile-userProfile which finds the relevancies amongst users.
(3) job-Posting-jobPosting relations.

https://www.monsterindia.com
https://gdpr-info.eu/art-5-gdpr
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Figure 8. Direct relations between user profiles and relevant job postings. Each relation is defined
based on the similarity score between the two nodes.

The last two relation types are extracted to support the CF-based recommender sys-
tem. This happens through finding job posting recommendations based on the transitive
relations in the knowledge graph. These create paths in the graph connecting a userProfile
node to a jobPosting one, through an intermediate node, which is either a userProfile or a
jobPosting, as shown in Figure 9.
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Figure 10 shows the calculated similarities for two user profiles with the job postings
in the database. From the similarity distribution analysis, we select the threshold value of
>40% (Slightly above average distribution) and recommend the top 4 similar job postings
to the respective user profile.
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4.2.3. Modeling Domain-Specific Features

The requirements of the job recommendation domain were very different from those
in the chip-design one. The structure of user profiles and job descriptions, as well as
the textual content in each one, revealed the need to classify the different sections of the
document to enhance the recommendation result. This was a domain-specific requirement
that we modeled through the “domain-requirements” component in the framework. It took
the form of a list of document classes that created section-based relations in the knowledge
graph and influenced the recommendations of a job postings.

Experts also provided rules on how different sections of the user profile have different
levels of importance when generating the relation between a user profile node and a job
posting one. Expert defined rules in this use case also influenced the textual content of docu-
ment nodes. This, in turn, affected the document vectors and the corresponding similarities.
An example of such rules would be the handling of numerical content of user profiles,
where values of months and years were irrelevant to the relation extraction algorithm.

4.2.4. IR Algorithm and the Recommendation System

The information retrieval task in this use case is meant to provide the recommender
system with needed information to generate a job recommendation for a user. The IR
algorithm queries the KG as defined in the framework. Graph queries retrieve in this case
all paths that link a certain userProfile node to neighboring jobPostings. Dijkstra’s shortest
path algorithm is used for this purpose.

The recommendations of relevant jobs are achieved on two levels:

(1) The direct level: where the user is recommended the most similar job postings that
are directly connected to their corresponding node in the graph.

(2) CF-based recommendations that are recommended to the user based on the interme-
diate relevancy to another user or job posting. This means that a userProfile (A) can
get a recommendation of a jobPosting (B) because userProfile (A) is directly connected
to userProfile (B), which is directly connected to a jobPosting (B).



Informatics 2022, 9, 6 22 of 29

For example, if User (A) has a skill as a data scientist in their profile, while User (B)
has a skill as a data analyst, then the similarity between those skills will link both users. In
this case, User (A) will also receive a job recommendation for a Data Analyst position if it
was recommended to User (B).

Similarly, another transitive path can go through an intermediate jobPosting node,
as follows: userProfile (A)→ jobPosting (A)→ jobPosting (B). An example of this case
would be: If User A receives a job recommendation for a Data Scientist position, and this
position is already related to a Data Analyst position, then User (A) will also receive the
recommendation for the Data Analyst position. An example of the path generation for the
CF-based recommender is shown in Figure 9.

Figure 10 illustrates the cosine similarity scores calculated between two userProfil
nodes and multiple jobPosting nodes in the KG. The horizontal axis represents the job-
Posting in question, while the vertical axis represents the calculated similarity score. Each
userProfile is illustrated in a different color. From Figure 10, it is noticeable that a similarity
threshold is needed to determine the creation of a relation in the KG between the jobPosting
and the userProfile. Negative scores that appear in Figure 10 are a result of the angle
between the document vectors (here 90◦). Those scores are considered in their absolute
value in the graph relation definition.

4.2.5. Explanation Algorithm

The explanations generated for this use case used the same algorithm as in Use Case 1.
Textual explanation templates were used with information slots, which are filled based
on the knowledge graph. In this use case, however, the explanation requirements were
different. This is because explaining the job recommendation needed to include specific
information about the parts of the user profile that matched the job description. Those
parts were categorized based on the custom entity classifier.

We design the NER as a support vector machine (SVM) and trained it on a custom
dataset of 60,000+ entities. The dataset was created from documents in the technical
and engineering domain. Those documents mainly represented job postings. The data
was labeled manually by three independent technical personnel. Dataset labels have
been chosen to correspond to the domain of job matching and recommendation. The
classifier was therefore trained to predict 7 classes of entities that a user profile may include.
These classes are programming_framework, skill, software, study, job_title, location, and
programming_language. Based on the predicted classes, the similarity scores between
a user profile and a job description, and the graph transitive relations, the explanation
template was constructed as shown in Figure 11. The first explanation template uses
syntactically similar words to fill the information slots with similar terminology between
the user profile and the job posting. The second template is equipped with more information
through implementing a customized name entity classifier on the language model. An
example of the final explanation is:

“I recommend you Job number 509 as a “Software Engineer”, which is a match to your
profile by 51.682%, through the following classes:

Study: [‘science’, ‘analysis’, ‘control’, ‘bachelor’, ‘data’],
Software: [‘oracle’],
Programming language: [‘java’, ‘python’],
Skills: [‘agile’, ‘research’, ‘development’, ‘software’]
Other similar terms to this job are: [‘architecture’, ‘server’, ‘product’, ‘framework’,
‘design’, ‘technology’]”
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profile and the job posting, within the transitive relation.

4.2.6. Evaluation and Results

To evaluate the different parts of the framework in this use case, we calculate the KPI
metrics we defined. Table 3 shows the accuracy, precision, and recall measures for the
customized NER. We achieved an overall F1 score of 88% based on the training dataset in
the domain of job matching.

Table 3. Precision, Recall, and F1 scores of the customized NER, with regard to the predefined classes.

Precision Recall F1-Score Support

programming_framework 0.84 0.85 0.84 241
skill 0.794 0.88 0.83 2610
software 0.79 0.90 0.85 902
study 0.87 0.86 0.86 4481
job_title 0.89 0.99 0.94 480
location 0.99 0.96 0.98 485
other_word 0.93 0.88 0.90 9190
programming_language 0.92 0.98 0.895 642

Accuracy 0.88 19,031

To evaluate the knowledge graph structure, we use the Class Richness measure.
We reach a percentage of 89% of coverage of the graph for the instances of CVs and
job descriptions.

Evaluation of the explainability was conducted through calculating the MEP, BLEU,
and Rouge-L scores for the explanations generated for recommended job postings. We
achieve an MEP score of 85.6% for the recommended job postings. To calculate BLEU
and Rouge-L scores, the user profile and its recommendations’ content are combined for
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reference, and the generated explanation is fed as a test sentence. The results are shown
below in Figure 12 for multiple profiles and job postings. According to [37], the BLEU
score and Rouge-L precision score are in a good range if they are above 20%, which shows
that the generated explanations are related to the recommended job descriptions. Our
BLEU score ranged around an average of 23.5%, and the Rouge-L scores ranged around an
average of 26%.
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Figure 12. BLEU and Rouge-L scores for a sample of recommended job postings to two user profiles.

5. Discussion

The implementation of our framework in the presented use cases shows its adaptability
to multiple domains while generating explanations for the retrieved search results and
recommendations. In the evaluation experiments, we focused on the main contributions of
our approach, namely the ability of the framework to embed domain-specific requirements
and the transferability of the framework to multiple domains with minimum to no changes
in the intelligent algorithms.

Embedding domain requirements in the two use cases was a direct result of adopting
the domain-specific components in the proposed framework. Those requirements are
captured from multiple parts of the system, including the rules that domain experts define,
the results of the EDA process, and the content of databases. To the best of our knowledge,
no other solution has been suggested in the literature as to how to include domain require-
ments from all of those parts. Here, we especially refer to the domain-specific solutions
in the comparison Table 1, which only consider databases for extracting domain-related
features. The importance of including other sources of domain requirements can be seen in
the ability of expert defined rules in contrast to existing solutions, for example, to represent
differences between the documents, which cannot be included in the database itself. This
hinders other solutions from reaching the level of domain adaptability that the presented
framework achieves.

Results from our experiments show that adopting the IR and explainability algorithms
to requirements from a certain domain did not limit its ability to be transferred to other
domains. The domains, within which we implemented our framework, revealed different
features and requirements. Despite that fact, our use of the same IR and explainability
algorithms was possible without compromising their accuracy. Numerical evaluation
showed that the IR algorithm maintained an accuracy level higher than 95% in both
use cases. The comparable literature in Table 1 focuses on the accuracy of the IR or
recommendation algorithms, namely [11,15,24,25]. Within this context, we show in Tables 2
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and 3 that our framework was able to achieve a high performance of the IR algorithm,
ranging between 87% and 99% in both use cases, depending on the length of the user query
and database size. This result is not only comparable to the 88.1% of accuracy, achieved by
Wang et al. [15] using their Knowledge-aware Path Recurrent Network (KPRN), but adds to
it the ability of considering domain requirements in the intelligent IR algorithm. Unlike the
domain-intrinsic nature of the KPRN, our framework provides the same or higher accuracy
in domain restricted environments, such as the ones demonstrated in the previous two
use cases.

The explainability algorithm reached 85.6% in one use case and ranged between 82.5%
and 99.6% depending on the length of the search query. In both cases the MEP score is
comparable or surpasses the results of Chen and Miyazaki [17], who achieve an 87.25%
MEP score from a similar explainability algorithm implemented on a Slack-Item-KG of 100k
items. It should be also noted in this comparison that our main contribution is not achieving
the highest accuracy levels of the IR and explainability algorithms but rather achieving
accurate results in a domain-specific environment, with a higher level of restrictions and
data complexity than in the general-purpose datasets used in [15,17,24,25]. The ability of
our solution to consider those requirements and achieve high accuracy scores of the IR and
explainability at the same time, is the value-added that our framework offers in comparison
to the current state of the art. In Table 4, we summarize the comparative MEP scores of our
proposed framework and other similar solutions.

Table 4. Explainability comparison based on the MEP scores.

Approach MEP Score %

Chen and Miyazaki—Slack-Item-KG 100k 87.25
Chen and Miyazaki—Slack-Item-KG 1M 91.67
Our framework—Use case1 (short query) 82.5
Our framework—Use case1 (long query) 99.6

Our framework—Use case2 85.6

It can be noticed from Table 4 that the MEP score increases with the increase of data
size. This increase can be in the dataset itself, such as the case of using Slack-Item-KG
1M instead of 100k, or in the search query, such as the difference in our first use case
between long and short queries. The enhanced potential for generating explanations from
larger numbers of data is due to the increased potential to find relations and paths in the
KG, which correspond to the user query. With more information in the search query, or
larger knowledge graphs, more paths can be extracted and used for constructing the result
explanation. Here, we mainly compared the explainability algorithm in our approach to the
work of Chen and Miyazaki, since the authors explicitly use the MEP measure to evaluate
their work. We then extended our evaluation to include BLEU and Rouge-L scores, as
illustrated in Figures 6, 7 and 12.

The evaluation of the proposed framework was implemented on two use cases that
have different domain requirements, to demonstrate the transferability of the solution. In
general, the proposed framework is designed in a generic way that adopts to any domain
of interest. The implementation of our framework in other domains, such as medical [23],
energy [38], or educational [39], can be similarly accomplished, as long as the domain
requirements are defined by the experts and data sources. The IR and explainability
algorithms are then transferrable amongst those domains, due to their dependence on the
KG structure. This fact implies the sustainability of the proposed framework, when used
in a certain domain and then transferred to another one. Another sustainability aspect
of our framework comes from the potential to develop and extend the knowledge graph
itself, during the lifetime and therefore ongoing extension of the industrial process that
is supported by the framework and its underlying data. Since the proposed framework
includes the necessary elements to construct the knowledge graph, it inherently enables its
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expansion and development. This allows for a long-term use of the framework, which can
take into account new data, new domain requirements, and new user queries.

Our framework was developed to handle textual data sources. This fact influenced
the nature of domain-specific and domain-agnostic components we used in the framework.
That being said, we also address the limitation of our framework to include image data
sources, since it lacks the image-processing components on the input part of the framework.
Although the current framework excels in handling pure textual data sources, and imagery
data that is well annotated, it can still be extended to include specific elements that handle
pure visual data sources to embed them in the knowledge graph construction process. Once
the image data is embedded in the KG, the IR and explainability algorithms will be able to
query these data types directly, corresponding to the same user queries.

6. Conclusions

In this article, we proposed a framework for a domain-agnostic, explainable informa-
tion retrieval based on knowledge graphs. Our framework is designed to model domain-
specific requirements and make them available to the IR and explainability algorithms. We
designed specialized components that are capable of embedding multiple data sources,
expert-defined rules, and domain requirements in the construction of the KG. We use
the KG as the center of our framework to tailor IR and explainability algorithms to the
needs of a certain domain, without compromising their accuracy or transferability to other
domains of application. The ability to use the same components of our proposed approach
in different domains makes the overall solution domain agnostic. The architecture of the
proposed framework enables the overall concept of (1) integrating domain-specific features
in the IR algorithms and (2) enabling the transfer of IR and explanation functions between
multiple domains.

We implemented and evaluated the proposed explainable approach in two real-life
use cases, within the semiconductor chip design and the job recommendation domains. The
implementation use cases showed the ability of our approach to represent multiple data
sources and embed the expert knowledge effectively in the KG construction, the IR, and
the explainability algorithms. We evaluated the framework based on three criteria: (1) its
ability to cover the domain-specific requirements, (2) its transferability to other domains
using the same sore components, and (3) the performance of information retrieval and
the quality of the generated explanations. Evaluation results showed a high coverage
of domain requirements that reached 88% in both evaluation domains. The same IR
and explanation algorithms were used in both domains without changes, reflecting the
transferability of the solution. Moreover, our framework implementation achieved MEP
scores up to 99.6%, exceeding the comparable state of the art, and corresponding at the
same time to the domains of interest. We measured the availability of information for
generating the domain-specific explanations, which reached up to 91.8% in the case of
long user queries. The performance of the IR algorithm was also tested and evaluated
in terms of the relatedness of retrieved results to the user query. This relevance ranged
between 87% and 99% depending on the length of the query. When using the IR results for
generating job recommendations, our recommendation algorithm achieved a score of 88%
for the F1 measure. Our evaluation of the intelligent, explainable, IR, and recommendation
performance proved that the framework’s domain-specific components and the use of
knowledge graphs enabled generating high-quality explanations for the retrieved search
results and recommendations in each of the evaluation domains.

Future steps for the development of our framework include its implementation in
combination with the multidimensional knowledge representation (MKR) framework [40].
MKR is a framework that utilizes text mining in combining results from different dimen-
sional analysis in one knowledge representation. Its ability to enhance the knowledge
representation from analysis results, such as named entity recognition, topic detection, and
sentiment analysis, holds the potential to support our framework in generating feature-rich
explanations for the IR and recommendation algorithms.
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