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Abstract: This paper presents findings from ongoing research that explores the ability to use Micro-
Electromechanical Systems (MEMS)-based technologies and various digital communication protocols
for earthquake early warning (EEW). The paper proposes a step-by-step guide to developing a
unique EEW network architecture driven by a Software-Defined Wide Area Network (SD-WAN)-
based hole-punching technology consisting of MEMS-based, low-cost accelerometers hosted by the
general public. In contrast with most centralised cloud-based approaches, a node-level decentralised
data-processing is used to generate warnings with the support of a modified Propagation of Local
Undamped Motion (PLUM)-based EEW algorithm. With several hypothetical earthquake scenarios,
experiments were conducted to evaluate the system latencies of the proposed decentralised EEW
architecture and its performance was compared with traditional centralised EEW architecture. The
results from sixty simulations show that the SD-WAN-based hole-punching architecture supported by
the Transmission Control Protocol (TCP) creates the optimum alerting conditions. Furthermore, the
results provide clear evidence to show that the decentralised EEW system architecture can outperform
the centralised EEW architecture and can save valuable seconds when generating EEW, leading to a
longer warning time for the end-user. This paper contributes to the EEW literature by proposing a
novel EEW network architecture.

Keywords: earthquake early warning; software-defined network; PLUM algorithm; decentralised
architecture; MEMS; citizen science

1. Introduction

With increasing population and urbanisation across the globe, large earthquakes have
become a significant threat to human life and infrastructure, especially for places closer to
active earthquake faults [1]. In this context, interest in issuing earthquake early warnings
(EEWs) is increasing globally, and research has found significant benefits of having EEW
systems to warn the public [2]. EEW can be a beneficial tool for warning people when an
earthquake occurs. EEW can warn people in areas where the anticipated ground-shaking
due to an earthquake could cause harm or destruction [3]. Depending on the size and depth
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of the earthquake and the number and type of sensors used to build the EEW system, the
warning window can range from a few seconds to tens of seconds. Research revealed that
even a 20–30 s warning lead-time could allow people to take simple protective actions such
as drop–cover–hold and mentally prepare themselves for an impending earthquake [4–6].
Even a couple of seconds could be extremely useful, as they can provide enough time for
automated systems to initiate precautionary emergency measures, such as stopping trains
to minimise potential derailment, the appropriate shutting-off of gas distribution valves
to reduce fire risk, and the orderly switching-off of large, heavy machinery to minimise
potential losses [1].

Ongoing technological innovations in earthquake-monitoring tools, telecommuni-
cation, earthquake-detection algorithms, and processing capabilities have created new
opportunities to develop EEW systems and provide opportunities for further enhance-
ments [7]. At present, EEW systems are operational in several countries and territories
worldwide [8]. Although these systems are robust, implementing them can be complex and
expensive. The ShakeAlert EEW system in the USA took 15 years to create and is currently
deployed in only three states: California, Oregon, and Washington. The deployment costs
nearly 100 million USD and requires nearly 39 million USD annually to operate [9]. The
cost of deploying an EEW system includes the expenditure of deploying a large number
of state-of-the-art seismometers across a vast land mass, which could be economically
unviable for many countries and territories [10].

In contrast with expensive high-end solutions, low-cost alternative technological solu-
tions are emerging to create cost-effective EEW systems. Low-cost solutions involve using
Internet of Things (IoT) technologies driven by micro-electromechanical systems’ (MEMS)-
based sensors [11]. Multiple studies, such as those in Sichuan-Yunnan, California, and
Taiwan [12–14], have shown the viability and capabilities of MEMS-based sensor networks
to provide EEW. Furthermore, with technological advancements, MEMS-based sensors are
now embedded with considerable computational and data-processing capabilities, creating
opportunities to further innovate and improve EEW systems [11].

Traditionally, the computation and data-processing of EEW systems are carried out at
a central location [15]. Data-processing at a central location provides a better control and
consistency in data processing; however, it also creates significant bottlenecks and limita-
tions [16]. EEW solutions across the world have recognised the limitations and challenges
of centralised processing and invested in redundancy solutions for data transportation and
processing [9]. For example, in the US, the Advanced National Seismic System (ANSS) is
equipped with three centralised processing units [9]. However, creating such redundancies
increase the costs associated with the EEW systems.

In contrast to traditional EEW systems, in this paper, we present a novel approach of
using decentralised data processing to generate warnings using a low-cost, MEMS-based
sensor network. The paper provides evidence of the performance of this novel approach
using data from an experimental network established in Aotearoa New Zealand (NZ).

With the aim of proposing a network architecture that is suitable for an EEW system
consisting of MEMS-based, low-cost, ground motion detection sensors and driven by
decentralised processing, the remaining sections of this paper are structured to provide the
EEW background, including the research gap that this paper tries to address (Section 2), the
method used (Section 3), its implementation and results (Section 4), discussion (Section 5),
and finally the conclusions of the study (Section 6).

2. Background on Earthquake Early Warning (EEW) Systems

Two basic concepts enable EEW systems. Firstly, information travelling over commu-
nication networks moves faster than seismic waves: P-waves (primary or pressure waves)
and S-waves (secondary or shear waves) and, secondly, the S-waves produce the most
damaging energy in earthquakes, and these arrive later than P-waves [15]. With these
concepts, EEW systems use a network of sensors distributed in a geographical area to
detect earthquakes and transmit information and warnings in real-time.
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Several countries and territories (Japan, Taiwan, Mexico, West Coast USA, etc.) have
already implemented EEW systems that can warn the public about oncoming earthquakes
for up to tens of seconds before ground-shaking occurs [11]. However, at present, NZ
does not have an official, nationwide EEW system [6]. GNS Science—NZ’s geological
survey, through the GeoNet project, is the official source of earthquake information [6].
GeoNet comprises high-end geophysical instruments, automated software applications,
and skilled staff to provide rapid information about earthquakes [17]. GeoNet’s current
instrument density takes around 60 s to compute a robust earthquake location, and thus is
only capable of disseminating information through its website and a mobile phone app
after the earthquake occurs [6]. GeoNet, as of writing, is not issuing EEW to the public.
However, several other parties are providing EEW services in NZ. In April 2021, Google
launched an EEW service to Android-based smartphone users in NZ [18]. This technology
uses MEMS sensors embedded in Android phones to detect earthquakes. However, very
little information on the Android EEW service is available in the public domain. This is
not considered an official emergency alert service in NZ [19]. Aside from Google, other
commercial providers offer private in-house EEW services to clients, but these services are
unavailable to the general public [6].

Despite the lack of an official EEW system that warns the public, a 2019 survey of the
NZ public showed that more than 90% support the use of EEW in NZ [5]. However, the
significantly high implementation and operating costs of a countrywide EEW system leads
to the question of its economic viability to deploy such a system in a country such as NZ,
which has a population of only about 5 million. Hence, there is a need to further explore
the development of viable EEW options for NZ [5].

The cost-effectiveness, implementation and maintenance of an EEW system is tech-
nologically complex. For example, Japan’s EEW system was relatively successful during
the 2011 Tohoku earthquake (Mw 9.0); however, the system encountered problems with
aftershocks and issued too many warnings, including false alarms [20]. Due to blackout and
communication failures, the lack of data from seismometers in disaster areas contributed to
the false alarms [20]. A dense network of seismometers is crucial when there are significant
lateral variations in the intensity of ground shaking [21]. There are also several other
non-technical challenges, such as the minimal time remaining to issue a warning after
processing data, public engagement and trust, and a lack of understanding of people’s
behaviour during earthquakes [22]. From the above-mentioned challenges, the large costs
associated with the implementation of EEW have motivated researchers to further explore
the feasibility of implementing low-cost EEW solutions.

2.1. Current State-of-the-Art of Low-Cost EEW Solutions

The United States Geological Survey (USGS) classifies modern seismometers as a
data acquisition system (DAS), including the seismic sensor, data acquisition unit, and
supporting communication hardware. Based on their performance, DAS are categorised
into Class A, B, C, and D instruments [23]. Class A instruments are near state-of-the-art
seismometers, while MEMS-based sensors such as Raspberry Shake (RS) are identified as
Class C instruments [23,24]. Low-cost EEW solutions, such as those using IoT technolo-
gies driven by Class C, MEMS-based sensors, are emerging to bridge the economic and
technological gaps [25].

Over the last ten years, advances in MEMS-based technologies have driven down the
costs of ground motion sensors [26], while traditional seismic sensors cost tens of thousands
of dollars [27]. Declining sensor costs and internet ubiquity are the main drivers of IoT
technology [27,28]. The ubiquity of internet connection allows for the implementation of
interconnected networks. With the enhanced cloud services, a high amount of sensor data
can now be processed to generate warnings and alerts. The growth in this technological
advancement should make our cities safer [29].
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Such IoT technologies include several low-cost, MEMS-based earthquake sensor de-
vices such as RS [30], P-Alert [14], and Grillo [11,31], each of which is capable of provid-
ing complementary and alternative earthquake detection and warning solutions. These
low-cost MEMS, with a maximum resolution of 16-bits, can detect earthquakes tens of
kilometres away [13]. Dense networks of these low-cost Class-C MEMS accelerometers
have been used in seismological investigations, structural health monitoring, and EEW
applications [12,13,32]. The P-Alert network in Taiwan, for example, uses a dense array of
MEMS accelerometers that form a network of mini-arrays to record from moderate to large
strong-motion events [11,14]. P-Alert technology is also used to monitor the Himalayan
fault in India and the Apennines Fault in Italy [33,34]. These sensors are vertically mounted
on building walls to study how the sensor and structure interactions between the acquired
acceleration data can aid in the production of high-quality shake maps. In addition to
this, as one of the work packages of the TURNkey European Union project, the University
of Iceland has implemented an EEW sensor network using low-cost, MEMS-based RS
sensors, where the processing of ground motion data is conducted at a central location [35].
Similarly, the researchers who conducted an EEW project, namely, Community Seismic
Network, have designed a sensor package consisting of a three-axis Class-C MEMS ac-
celerometer; these sensor packages are located in buildings, and data processing is carried
out centrally at a cloud-based server to provide warnings [36].

The MEMS-based sensor networks are emerging as a solution to several EEW chal-
lenges inherent in the architecture of EEW networks [37]. Two key challenges for EEW
systems are: (i) when earthquakes occur at the edge or outside the seismic network, and
(ii) where the sensor density of the network is lower, thus compromising the required
azimuthal coverage [27]. In such situations, it is common for EEW systems to have poor
earthquake location estimates and significant alert delays due to their restricted azimuthal
coverage and the time needed for the wavefront to reach the required number of sensors
and generate an alert [27]. The array-based approach consisting of MEMS-based accelerom-
eters has demonstrated improvements in EEW capabilities; this can be seen in cases such
as those in Southern California [13], Northern India [38], Central Italy [39], Taiwan [25,40]
and the Sichuan-Yunnan Province [12].

Off-the-shelf sensors similar to those seen in smartphones are also available as scal-
able opportunistic sensor nodes [41]. Phone-based sensing is possible because almost
all smartphones are equipped with MEMS-based accelerometers. These motion sensors
can be programmed to work as seismometers, detecting the shaking generated by earth-
quakes. Although using smartphones is an interesting opportunity, it poses challenges in
the production of reliable EEW signals [42]. Additionally, using smartphones only for EEW
purposes will not be cost-effective, as smartphones come with powerful CPUs, plentiful
memory, and other auxiliary sensors [43]. Lee and colleagues [43] proposed a stand-alone
earthquake detection and alerting device for homes in South Korea that can send alerts
to nearby devices (e.g., smartphones and TV). As an alternative to a smartphone-based
network or stand-alone device, Boxberger and colleagues have proposed an innovative
instrumental design called a multi-parameter wireless sensing system that utilises and
incorporates off-the-shelf components to analyse ground motion data and issue EEW [44].
Another system, run by Grillo—an independent, private-sector EEW network—uses MEMS
accelerometers operating as an IoT and cloud platform, successfully providing earthquake
alerts in several high-intensity earthquakes in Mexico [11,31]. Further, in 2012, Fischer and
colleagues [15] reported on the testing of a wireless decentralised WLAN-based mesh net-
work for detecting earthquakes using custom-made, low-cost sensors [45]. This is the only
research found in the literature which has clearly taken an approach to detect and process
data at the node-level. In this project, the approach adopted for communication between
sensors limits the distance between the sensor nodes, and is in the range of 200–1000 m.
Although the authors claimed that the sensors are low-cost, there is no indication of the
actual cost of developing a sensor. With the limitation that two sensing nodes have to be
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installed very close to each other, this type of EEW system may require a significantly larger
number of sensors in a real-life scenario, which may offset its benefits.

Other promising IoT-enabled solutions that are readily available to citizens include
BRINCO and BRCK [46]. BRINCO is the first IoT-enabled alarm that can warn users in the
personal-aware mode; it sends ground motion data to a private cloud-based data centre
and assimilates the information with other seismic networks [46]. BRCK is a versatile IoT-
enabled device for use in areas with poor infrastructure, as it can utilise 2G communication,
which is ideal for deployment in disaster zones [46]. Such IoT-enabled solutions are
integrated with a cloud service for back-end analytics using machine learning and artificial
intelligence techniques [46]. While the above low-cost EEW approaches started to show
promising results, the affordability of such systems has encouraged the development of
systems with increased community participation and engagement.

There are initiatives exploring community and participatory seismic sensing
(i.e., citizen science techniques) to improve seismology and EEW [47]. For example, a
prototype MacBook-based EEW system called MacSeisApp utilises the sudden motion sen-
sors in people’s laptops to detect seismic activities; it utilises Apple’s Push Notifications via
a dedicated server to produce the earthquake notification [48]. The Quake-Catcher Network
offers a similar architecture to Apple—a distributed computing seismic network that uses
low-cost accelerometers that connect to laptops to record earthquakes [49,50]. Quake-Catcher
sensors are installed in the premises of volunteer host participants (e.g., schools, homes,
and businesses); these participant sensor hosts exist throughout the world in Chile, Mexico,
Taiwan, New Zealand, and other countries [49,50]. Low-cost, MEMS-based networks such
as Quake-Catcher could potentially be integrated as complementary systems to traditional
seismic networks [50].

An innovative, real-time, citizen-engaged network of mobiles phones was imple-
mented by Zambrano and colleagues [51], considering the coupling features of the geo-
graphical zone and time and spatial analysis with crowdsourced data. It offered a precise
and customisable architecture for the improvement in the delivery of notifications in and
around the epicentre, and demonstrated a reduction in the number of false alarms [51].
Further, in 2015, Minson and colleagues [52] constructed a smartphone-based EEW and
conducted an evaluation through controlled tests using simulated data for an Mw 7.0 Hay-
ward fault earthquake in California and actual data from the Mw 9.0 Tohoku earthquake.
With embedded MEMS-based motion sensors, smartphones have become a potential tool
for consideration in the development of crowdsourced EEW applications. An ongoing,
low-cost, crowdsourced, smartphone app-based EEW solution is the MyShake Platform;
since its release in February 2016, more than 300,000 people globally have downloaded
the app, providing EEW networks in different parts of the world within a short period
of time [53]. Similarly, a network of 82 smartphones fixated in buildings in Costa Rica
proposed an EEW with a significantly lower cost than a scientific-grade network [41].
Another crowdsourced EEW system is the SeismoCloud App, which shows promise in
delivering EEW to users in a region [54]. In addition, in April 2021, Google launched an
earthquake alert service to its Android phone users in NZ and Greece [18]. For the Android
alerting services, when a phone detects an earthquake, it sends data, including the location
details, for processing at a centralised server, and confirms them with shaking detected
from hundreds of phones [18].

The above-described EEW solutions incorporate low-cost alternatives by using off-the-
shelf components and devices, while some of the solutions have incorporated community
and participatory seismic sensing. These low-cost solutions showcased their capability to
accomplish complex information-processing activities at the sensor node-level, providing
an opportunity to create networks that are driven by robust and faster communications
and network topologies [55,56].
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2.2. Research Gap

Modern IoT networks often operate in a three-layer architecture consisting of the
cloud layer, fog layer, and edge layer [57]. Generally, the cloud layer contains a collection
of servers capable of high-performance processing and storage, whereas the fog layer is
often identified as an intermediate layer capable of reducing the workload of the devices
at the cloud and edge layers [57]. The edge layer often contains devices such as sensor
nodes, which are capable of acquiring data. Figure 1 shows these layers as applied to three
different architectures.
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As shown in Figure 1a, traditionally, IoT-based networks consist of a large number
of sensor nodes at the edge layer, which transmit the sensed data to servers located at the
cloud layer for processing and storage. In the literature, this type of IoT sensor network is
defined as a centralised IoT network [58]. However, with the development of smart devices
with enhanced data processing and storage capabilities for a lesser cost, data processing
and storage have shifted from the cloud layer to the fog and the edge layers. This type of
network is identified as a decentralised IoT network [58]. When it comes to decentralised
IoT networks, the processing that occurs at the cloud and other layers can vary depending
on the context of the application and the capabilities and capacities of the devices used
at the fog and edge layers. For example, some networks use devices attached to both
fog and edge layers, or devices attached to all three layers (Figure 1b), whereas some
architectures are capable of accomplishing their entire processing or storage needs only at
the edge-layer devices, such as sensor nodes (Figure 1c). Enhanced performance of both
the fog and edge layer devices have created opportunities for decentralised processing
and storage more realistic with the ability to achieve lower latencies, lower operational
costs and increased network redundancy. However, when it comes to EEW networks,
whether it is high-end sensor networks or low-cost MEMS-based networks, data processing
in EEW systems was traditionally carried out at the cloud layer, and the warning sent
out as push notifications to the end-users [41,59]. Data-processing at a central location
provides the advantage of better control in the detection, collection and processing of data
during a disaster and immediately afterwards [16]. However, processing data centrally
also creates several technological bottlenecks and limitations. One of the main limitations
is the risk of disruption in data collection to a central location due to the impacts on the
telecommunication infrastructure after a big earthquake [60]. Data-processing centres,
intermediate data-collection centres, and infrastructures to transport data may be severely
disrupted or destroyed after an earthquake [61]. Unavailability of the central processing
capability due to the loss of connectivity may hinder the issuing of time-critical warnings
to end-users. EEW systems have recognised the limitations of centralised processing and,
therefore, invested in redundancy solutions for data transportation and processing [9].

Modern-day, MEMS-based, ground motion detection sensors have significant pro-
cessing capabilities, and they possess the ability to run ground motion algorithms and
data-processing at the sensor node itself [11]. Improvements in technological capabilities
have created an opportunity to explore how these sensors can be utilised to reduce the
amount of centralised processing for ground motion data and the possibility of generating
node-level alerts that are sharable among the sensor nodes and other connected devices.
This approach could reduce the cost of earthquake solutions. A node-level approach may
also increase the resilience of systems as it provides the possibility of alerting end-users at
regional and local levels, despite infrastructure failures occurring in parts of the system.
However, at present, most of the MEMS-based EEW systems either work as isolated pri-
vate solutions or are inhibited by telecommunication latencies and centralised processing
bottlenecks [11]. Except for the experimental EEW system based on custom-made sensors
by Fischer and colleagues [15], there is limited evidence in the existing literature regarding
detecting and issuing alerts in a more decentralised manner, where detection algorithms
are run at the node-level of a MEMS-based sensor network to become self-configurable
and self-healing. The approach proposed by Fischer and colleagues [15] seems capable
of detecting earthquakes and processing data mostly at the node-level. However, there
is no clear discussion regarding the robustness of the system, with only limited testing
and evaluation having been completed. Further, they did not attempt to compare the
performance of their approach with the traditional centralised EEW networks [15].
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3. Methods

With the above-mentioned gaps in the EEW literature, we propose a fully decentralised,
community-engaged, MEMS-based, EEW sensor network architecture. Similar to Figure 1c,
the proposed architecture processes ground motion data exclusively at the edge layer using
the sensors. This paper focuses on designing the above-defined EEW sensor network and
discusses its step-by-step development. The proposed architecture fully operates at the
edge layer, consisting of low-cost MEMS-based sensors capable of successfully running a
reliable earthquake detection algorithm within the sensor node and securely exchanging
ground motion and earthquake alert data with other nodes. These MEMS-based sensors
are hosted and operated by individual citizens and community groups in NZ, where the
sensors are installed in a private home, or a property owned by a particular community or
a group.

The implementation of an appropriate and feasible community-based MEMS sen-
sor network started with: (1) exploring different wide area network (WAN) topologies,
followed by (2) selecting a software-defined WAN (SD-WAN) solution for a community-
engaged EEW sensor network, (3) selecting appropriate sensors, and finally (4) selecting an
appropriate EEW algorithm.

3.1. Explore Appropriate WAN Topology

Establishing secure communication links between the sensors installed in (1) different
private local area networks, (2) supported by various internet service providers, and
(3) located in different geographical locations is a key challenge in building a community-
led low-cost sensor network. Therefore, it is important to investigate the available WAN
technologies as possible solutions. Ideally, the WAN topology should support the building
of a sensor network where the sensors are owned and hosted by the community members.
The securely connected MEMS-based sensors communicate with each other to exchange
data while installed at different geographical locations attached to private household
computer networks. The following subsections explore potential WAN approaches that are
suitable for implementation of the proposed EEW network.

3.1.1. Virtual Private Networks (VPN)

When it comes to exploring WAN approaches, Virtual Private Network (VPN) is one of
the well-known, capable of creating secure networks, connecting devices in geographically
dispersed locations attached to privately owned networks [62]. While VPNs are popular
among business organisations, they are resource-intense and complex to set up and imple-
ment [63]. These issues are particularly relevant when designing and implementing citizen
science or crowdsourced network, which consists of low-cost, MEMS-based sensors where
end-users do not belong to a particular organisation or consortium. The end-users of this
type of system are going to be members of the general public. However, they do not have
any direct relationship or collaboration with each other, except that their host devices are
connected and communicate with each other to form a network of ground-motion sensors
to provide a public service by generating warnings. Therefore, VPN may not be suitable
for building a community-engaged, MEMS-based EEW network, given the associated com-
plexities in ownership and costs. However, another option to explore is the SD-WAN as an
appropriate networking method to develop the proposed, community-engaged network.

3.1.2. Software-Defined WAN (SD-WAN)

SD-WAN is a virtual software-based WAN management approach. SD-WAN benefits
include: (a) cost or price advantages with freedom of transportation across different com-
munication infrastructure and technologies, (b) ability to enhance the performance of the
applications and their agility, (c) appropriateness for software-as-a-service and cloud-based
applications and (d) easy-to-operate, automated environment supported by cloud-based
management [64].
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Compared with VPN, SD-WAN virtualisation technology [65] can be considered more
appropriate for citizen-engaged or crowdsourced networks. SD-WAN automatically repairs
any outages occurring across the network nodes. Therefore, anyone can easily connect a
sensor to the network, as SD-WAN offers “self-healing” capabilities. SD-WAN can also
ensure automatic alignment while the network topology changes [66]. Due to SD-WAN’s
granular level of support and promising technology features, such as caching or application
acceleration, devices located at any type of private network (homes, cafes, libraries, com-
munity centres, etc.) can readily maintain the connectivity. SD-WAN-based networks can
readily allow for individuals or organisations to connect their devices and communicate us-
ing any internet connection as a specific communication infrastructure is not required. The
flexibility offered by the SD-WAN-based networks makes it a more appropriate approach
to implementing the proposed, community-engaged, MEMS-based network.

3.2. Selection of SD-WAN Solution for a Community-Engaged EEW Sensor Network

The proposed EEW network sensors are expected to be installed at community mem-
bers’ homes. Therefore, after its initial configuration, the sensors should easily connect
to any household internet connection and switch networks; ideally, they should function
as a plug-and-play. Therefore, this architecture should be designed with the ability to
penetrate firewalls and a Network Address Translation (NAT), equipped with self-healing
ability during a loss of connection, and be able to dynamically self-configure to manage
varying conditions of the network address (as there is a possibility that sensors may change
locations for multiple reasons). Ideally, the connection should be capable of being verified
and encrypted to mitigate hackers breaking the network defences.

3.2.1. Hole Punching to Overcome Network Address Translation (NAT) Challenges

Network Address Translation (NAT) imposes common challenges in peer-to-peer (P2P)
communication [64]. This is primarily because peer nodes may not be able to reach any form
of globally valid IP address [64]. Although there are known NAT traversal techniques, there
is minimal literature about them and their functionality. Further, there is only minimal
information to justify their efficiency and effectiveness [64]. However, the technique
commonly known as “hole punching” is considered one of the least complicated, yet more
robust and effective NAT traversal techniques, where it simply creates a tunnel for reliable
communication between two communicating entities, irrespective of the communication
protocol being used. According to Reference [64], about 82% of the NAT techniques support
hole punching to work with User Datagram Protocol (UDP), while about 64% support hole
punching to work with Transmission Control Protocol (TCP). The use of NAT applications
has become crucial for various peer-to-peer applications such as online gaming and voice
over IP (VOIP) protocols. Devices attached to networks with public IP addresses should
communicate with each other very easily. Additionally, the clients with private addresses
could be able to connect to a public server without any difficulty if they can initiate a
connection while behind a router or firewall. However, for hole-punching to operate
properly, it is essential to form direct communication between two devices installed behind
routers or firewalls that use NAT.

Ford and colleagues initially explored the use and application of hole-punching [67],
and it has gained considerable attention in the peer-to-peer application communities.
Furthermore, the specifications of several experimental level protocols, including STUN,
ICE, and Teredo, have documented the key features of the UDP-based hole-punching
techniques [67]. However, there are no published works that thoroughly analyse the
advantages and disadvantages of hole-punching for multi-level NAT.

3.2.2. Selection of Appropriate UDP Hole-Punching SD-WAN Solution

We considered several popular hole-punching solutions, including WireGuard, Open-
vpn, Nebula, ZeroTier and Tailscale, to identify the most appropriate to build the commu-
nity EEW network [68]. In this process, we considered factors such as scalability, flexibility,
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cost and security. Having considered the pros and cons of the available solutions with
regard to NAT-related challenges, we selected ZeroTier as the most appropriate SD-WAN
hole-punching solution to implement the intended, community-engaged, MEMS-based
EEW network. According to Goethals and colleagues [68], the response time, failure
rate, packet loss, and latency of ZeroTier are in the acceptable range to build a proposed
community-engaged SD-WAN solution. ZeroTier is capable of reducing the network
management complexities by combining the strengths of both the VPN and SD-WAN
approaches. ZeroTier’s software solution allows for devices, applications, and services
to be connected simply and securely, regardless of their physical location [69]. This can
be used in various use cases, including VPN, multi/hybrid-cloud, SD-WAN, peer-to-peer
networking, and IoT remote access, allowing all these things to be achieved with a single
system, leading to vastly reduced complexity and associated costs.

ZeroTier’s UDP hole-punching mechanism allows for connecting devices to com-
municate with the use of any type of data packet including TCP, UDP, etc. Basically, it
captures data packets from the sender and transmits them to the receiving end through the
transmission tunnel created with the UDP hole-punching mechanism. However, similar
to any other solution, it comes with its own limitations. Like any other proprietary hole-
punching technology solution in the market, it comes with a cost. However, ZeroTier is
more affordable than most similar tools available on the market. It is especially appropriate
for the experimental type of network as it offers a free service for networks of fewer than
50 devices. Although ZeroTier ensures scalable end-to-end security using 256-bit encryp-
tion, it can create vulnerabilities, especially with the type of devices used for the proposed
work and hence needs further attention regarding security measures.

The decision to use ZeroTier as an appropriate SD-WAN solution to implement in the
proposed network has provided the ability to assign a unique IP address for each sensor
when it is connected to the EEW network. As the MEMS-based sensors are to be installed
in people’s homes in a citizen science environment, having individual IP addresses for
each sensor will help connect sensors to the proposed, highly flexible and ad-hoc sensor
network without a dedicated network infrastructure.

3.3. Selection of Suitable Sensors for the Proposed MEMS-Based EEW Network

Having selected the ZeroTier as an appropriate SD-WAN solution to build the pro-
posed EEW sensor network, the next crucial step is to decide on the type of MEMS-based
ground motion sensor or sensors to implement the proposed sensor network. In this pro-
cess, we evaluated several low-cost MEMS-based ground motion sensors that are available
on the market. The selection criteria of MEMS sensors include node-level data-processing
ability, the memory of the sensor, accessibility, accuracy of the sensor data and price of
the sensor. These selection factors are crucial as the proposed network not only captures
the ground motion data from the sensors but also processes the data within the sensors,
as opposed to other traditional EEW systems where sensors are only used to capture
the data. The sensors evaluated for selection include popular off-the-shelf MEMS-based
ground motion sensors on the market, such as those from P-Alert [14], Canterbury Seismic
Instruments (CSI) [70], Grillo [11,31], and RS [30].

Having compared the sensors against the above-described criteria, we selected the RS
sensor to build our experimental network. Its openness to access and relatively superior
processing ability led us to select the RS sensor. Comparatively, other sensors provide
limited direct access to the sensor and data and the limited processing capacity at the sensor
node, which must be resolved before connecting to the proposed network. At present,
we are in the process of engaging with sensor manufacturers who have developed other
popular, low-cost, MEMS-based sensors in the market with the aim of resolving some of the
above-mentioned limitations. It is expected that removing the above-described limitations
will create future opportunities to integrate multiple types of MEMS-based sensors into the
proposed network rather than depending solely on RS sensors.
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Several different types of RS sensors are currently available on the market, namely
RS1D, RS3D, RS4D and RSBOOM, RSSHAKE&BOOM. Even though the listed RS sensors
are equipped with different sensing capabilities, all of them are powered by Raspberry
Pi 3 Model B with a Broadcom BCM2837 4 × ARM Cortex-A53 (1.2 GHz) processor with
1GB LPDDR2 memory. We implemented our experimental RS EEW network by adding
different types of RS sensors but predominantly the RS4D, which consists of a geophone
and triaxial C-class ground-motion accelerometer.

3.4. Selection of an Appropriate EEW Algorithm

Having identified the appropriate SD-WAN networking approach, followed by the
type of MEMS-based sensor, the next crucial step is to identify an appropriate EEW algo-
rithm that can successfully be implemented within the RS sensor node, which is constrained
by its processor’s computational and processing capabilities. With the aim of identifying
the best-suited detection algorithm, several popular EEW algorithms were compared and
evaluated. The complexity of the algorithm and the level of the computational capac-
ity of the sensors are two main factors that were considered during the selection of the
detection algorithm.

At present, a variety of EEW approaches have been used across different parts of
the world [11]. These approaches can broadly be classified into three categories: (i) the
source characterisation, (ii) ground-motion-based EEW and the (iii) on-site prediction
approaches [59,71,72]. These three approaches have several strengths and weaknesses
depending on the EEW implementation environment [55].

There are notable drawbacks to consider when selecting an EEW method based on
source characterisation. These drawbacks include missing earthquake detection during
extreme seismic activities, underprediction of large strong-motion earthquakes with finite
faults, and overprediction of large, multiple, simultaneous earthquakes [73]. When it
comes to on-site prediction approaches, predicting the intensity of the S-wave with the
P-wave’s intensity using a single station can lead to inaccurate results [11]. In contrast,
ground-motion-based EEW approaches showed promising and accurate results [71]. One of
the newer ground motion-based algorithms: the PLUM algorithm by Kodera, has become
popular due to its robustness, lightweight design and easy-to-implement nature [71]. The
PLUM algorithm has already been implemented in Japan as part of their EEW method [71].
EEW researchers in the West Coast USA are also studying the PLUM algorithm to integrate
it into their sensing and alerting system [74]. Considering these implementations, supported
by their robustness and ability to perform well in resource-constrained environments, our
research has chosen the PLUM algorithm as the most appropriate EEW algorithm to
implement the proposed, decentralised, MEMS-based EEW architecture.

4. Implementation and Results
4.1. Implementation of a Raspberry Shake (RS) Sensor Network

We have deployed nearly 25 sensors across five regions in NZ’s North Island: Auck-
land, Rotorua, Palmerston North, Wairarapa, and Wellington. While our network currently
consists of different types of RS sensors, the experiments and evaluations conducted in
this paper used RS4D sensors. Figure 2 shows an example of the proposed network with
RS4D sensors (S1, S2, . . . Sn), where sensors are installed at the homes of the general public
attached to the home local area network. In this arrangement, data processing entirely
occurs at the sensor node, and the communication takes place directly between the sensors
without any centralised servers.
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4.1.1. Implementation of Appropriate Security Measures for RS Sensor Network

Having selected an RS-based EEW sensor network implemented on a ZeroTier SD-
WAN platform, making the sensor network secure is considered the next most important
step in the process of building the proposed EEW network. Security becomes paramount,
especially because the proposed network consists of RS sensors located at the homes and
premises of the general public and attached to private home networks. Even though
ZeroTier provides strong end-to-end data security between the low-cost, MEMS-based
devices, the proposed node-level processing architecture could still create opportunities for
potential security breaches.

Such security breaches can become harmful since sensors are located in different
geographical locations, attached to different home-based private networks. It was found
that most of the potential security breaches that could be anticipated in the proposed
architecture may primarily occur by directly or indirectly accessing the sensor through
outside networks [75]. Successful login to a sensor by a third party could allow a user to
(a) gain admin access [75], (b) find IP addresses of other sensors through brute-forcing [76],
(c) access the source files, (d) remote login into another sensor [77], and (e) sneak out to an
outside network [78]. Figure 3 shows the interconnectivity of the above-mentioned threats.

In terms of security measures, several protection mechanisms were implemented at
each sensor to increase security at each level in the above diagram. Direct login access
was restricted by introducing security configurations to the user account in each sensor.
In addition, all possible IO ports, such as USB, serial, i2c, HDMI, etc., were disabled.
Furthermore, remote login to the sensors was restricted so that it can only be carried out
through the admin’s centralised server. With that, remote login to the sensor from the
centralised server is only permitted with a Secure Shell (ssh) key, which is pre-generated
and saved inside both server and sensor such that each sensor could have a unique ssh
key. In addition, incoming ping requests to all sensors were restricted to reduce the risk of
automated hacking tools. Due to security breaches in open network ports, all the unused
open network ports were disabled by configuring a network firewall. Moreover, we reduced
the number of incorrect login attempts and banned the user IP for a considerable amount of
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time in case of multiple incorrect login attempts. To protect the source code, we encrypted
all the files used for communication purposes with AES-256 encryption [79], which makes
it harder to decrypt the source code.
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To ensure the security of the proposed community-engaged architecture, we installed
the above-mentioned security measures to selected RS4D sensors. After having installed
the software to enhance the security, the vulnerability of the network to security breaches
was tested using a separate RS4D sensor environment dedicated to testing the performance
of newly installed security features. These tests were conducted before the sensors were
connected to the proposed EEW sensor network. As a first step, we used a network vulner-
ability scanner (Nmap) [80] and a password cracker (brute force attack generator) [81] to
assess the vulnerability of the network and ensure a proper configuration. The vulnerability
scanner was only able to discover the expected open network ports of the RS4D sensors
from all the available network ports (1000 ports). Further, the password cracker tool was not
able to log in from one sensor to another. These outcomes can be considered a confirmation
of the enhanced security of the network due to the newly implemented security measures.

4.2. Implementation of Modified PLUM EEW Algorithm within RS Sensor Environment

Having introduced measures to secure the node-level sensor environment running on
a ZeroTier SD-WAN solution, the next crucial step is to implement the PLUM algorithm
within the RS sensor nodes to detect the earthquakes.

When implemented with the RS4D sensor, the PLUM algorithm should be able to use
the real-time seismic data captured by the sensors to predict the seismic intensities at the
given prediction points within an area of a 30 km radius [71].

As shown in Figure 4, the prediction process for a given location (red star) takes place
in a circle with a 30 km radius around an observation data point (blue dot). While the
PLUM algorithm operates with a single operating point, this approach was subsequently
criticised for the possibility of false or missed alerts and to terminate the propagation
of the alert [82]. This is particularly relevant for the proposed type of EEW network,
consisting of low-cost sensors installed in the homes of the general public, which are often
in noisy environments compared to the high-end EEW networks consisting of sensors
installed in much more noise-controlled environments. Therefore, it is crucial to include
extra observation points in the system to avoid false or missed alerts and terminate the
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propagation of a false alert [82]. Accordingly, to minimise the anticipated false alarms by
having only a single observation station, we made a few modifications to Kodera’s original
PLUM algorithm. In our modified approach, we only use the PLUM approach to predict
the seismic intensity of a station using the observed real-time intensity at an observation
station. Rather than taking the maximum observed seismic intensity concept to predict
the station intensity [71], we are directly assigned the real-time seismic intensity of the
observation station to the prediction station. In this process, to reduce the number of false
alerts, we introduced a two-station trigger concept to the PLUM algorithm, as proposed
by Cochran and colleagues [74]. This modified PLUM algorithm triggering occurs when
the predicted seismic intensity exceeds a predefined threshold at a particular sensor. Then,
the triggered sensor will check whether any of the neighbouring sensors has experienced
a ground motion intensity above the same threshold within a defined waiting time. An
alert will only be issued if these conditions are met. Otherwise, the system will terminate
the alert. As reconfirmed in a more recent EEW study in the US [82], this modified PLUM
approach with a two-station trigger concept is expected to reduce the number of false alerts
and increase the accuracy of the alert generation.
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Figure 4. A scenario illustrating how the prediction process of the PLUM ground motion detection
algorithm occurs within a circular region of 30 km radius (The red star represents a prediction point
and blue dots are the potential observation data points whereas green dots are observation points
outside the 30 km range and not involved in the detection process in this particular scenario).

4.3. Defining and Calculating System Latency for the Proposed EEW Architecture

As shown in Equation (1), The system latency of the proposed EEW network (δtsys_latency),
can be defined as the sum of three components δtdetect (detection time), δttransmission (trans-
mission time) and δts-wave_travel (S-wave travel time).

Equation (1) proposed a formula for EEW system latency:

δtsys_latency = δtdetect + δttransmission + δts−wave_travel (1)

4.3.1. Transmission Delay (δttransmission)

This research defines the transmission delay (δttransmission) as the time taken to transmit
the data between two sensors within an area of a 30 km radius, and it is only dependent on
telecommunication factors; it is independent of the earthquake characteristics. Furthermore,
the transmission delay (δttransmission) was measured, along with different communication
protocols to identify which protocol could minimise the transmission delay.
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4.3.2. Detection Time (δtdetect)

Detection time(δtdetect) is the time taken for a particular detection algorithm to calculate
and issue an alert of an earthquake when seismic intensity at a sensor goes above the
predefined shaking intensity threshold [41]. Therefore, δtdetect depends on the type of the
algorithm and its complexity. Furthermore, δtdetect also depends on the specifications of the
ground motion detection sensor itself (in this research, RS). This includes the speed of the
processor, size of the RAM, the capacity and the speed of the storage, where these factors
determine the speed of execution of the algorithm at the node-level.

4.3.3. S-wave Travel Time (δts-wave_travel)

With the multi-station trigger concept, S-wave travel time (δts-wave_travel) is defined
as the time taken for the S-wave to travel from the first observation sensor to the farthest
observation sensor from the epicentre. For different earthquakes, the S-wave travel time
will differ according to the sensor geolocations and the number of sensors used to trigger
the alert (e.g., two sensors for our approach). As mentioned in the PLUM algorithm section,
using the low-cost EEW sensor network proposed in this study, the use of two observation
stations to trigger an alert is essential to reduce the number of false alerts [82]. Due to
the two-station trigger concept, even though the first sensor in the network detects the
earthquake in a fraction of time, it needs to wait for confirmation from the 2nd observation
sensor. This makes the S-wave travel time between the 1st and the 2nd observation
sensor (δts-wave_travel) a significant component of determining the system latency. For our
experiments, we assumed that the earthquakes are shallow and the generated S-waves
propagate horizontally as a plain wavefront with a constant speed of 3 km/s [71].

4.3.4. System Latency Calculation Scenarios

To test the performance of the proposed decentralised EEW sensor architecture as well
as to obtain its δtsys_latency, we calculated δtdetect, δts-wave_travel and δttransmission separately.
As the first step, we calculated the transmission delay (δttransmission), followed by the
detection time (δtdetect), and finally the S-wave travel time (δts-wave_travel).

For the latency calculations, we deployed a ground motion data simulator inside each
RS ground motion detection sensor, capable of accurately simulating the ground-shaking
captured by the RS MEMS accelerometers. In this process, we created six hypothetical shal-
low earthquake scenarios with their corresponding S-wave arrival from various azimuthal
directions towards the installed sensors in Wellington. This paper presents the results
obtained from the hypothetical earthquake scenarios that originated from the regions that
were anticipated to create ground shaking in the Wellington region. One of the six scenarios
was from the direction of Hawke’s Bay region, another one from the Tūrangi region, three
from the Cook Strait, and the final one from the South Wairarapa region.

In terms of installing sensors, even though we planned to utilise a higher number of
sensors located in the Wellington region, our sensor installation efforts in the community
were disrupted due to the COVID-19 lockdown. This led to a limit on the number of sensors
that were available for the experiments. At the time of conducting the latency experiment,
as shown in Figure 5, there were only five sensors available in the Wellington region, which
was considered sufficient to conduct the experiments.

As the next step, for each sensor, time-stamped ground-motion datasets with the
calculated S-wave arrival time due to a particular earthquake scenario were programmed
into the data simulator installed within the sensor. Thereafter, the pre-programmed data
simulator in each sensor were triggered at the exact time when the S-wave (with the velocity
of 3 km/s) of each earthquake scenario was expected to reach that particular sensor. For
the simulations, we assumed that the earthquake waves travelled as circular waves [41].
For the hypothetical earthquake dataset, we used a ground motion dataset captured by our
RS sensor network. Each earthquake scenario was repeated ten times, leading to a total of
60 simulations. After running ten simulations for each scenario, the range of the values
obtained for the system latency for all the investigated protocols remained negligible and
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was in the milliseconds range. Therefore, we decided that it is reasonable to report the
average findings obtained for the latency figures for each scenario.
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Calculating the Transmission Delay of the Network (δttransmission)

With the hypothetical simulated environment, we analysed and compared different
standard communication protocols that support the implementation of IoT-based networks
to select the protocol that provides the minimum value for the δttransmission. This is impor-
tant, as having a minimum value for the transmission delay is desirable for a time-critical
application such as EEW.

At present, several popular communication protocols support the implementation of
IoT-based networks [83]. Among them, Message Queuing Telemetry Transport (MQTT) is
an application layer protocol based on TCP/IP with a publish and subscribe data transfer
mechanism [84]. In comparison, both the TCP and UDP are standard communication
protocols without any application layer [85]. These three protocols were evaluated to find
the most suitable primary communication protocol for the proposed EEW network. By
evaluating the standard communication protocols, TCP and UDP, we defined an application
layer where client–server communication can take place.

Having recognised the potential use of the above-mentioned protocols for communica-
tion, we compared the transmission delay (δttransmission) obtained for each of the protocols.
During this comparison, TCP, UDP, and MQTT protocols were tested for the end-to-end
transmission delay between two sensors for a cycle of 24 h.

Figure 6a shows the average transmission delay recorded for each hour for a 24-h period
for the UDP and TCP protocols, while Figure 6b shows this for the MQTT. When comparing
the average transmission delay for a day for all three protocols, UDP outperformed the TCP
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and MQTT, with an average δttransmission of 16.10 ms, whereas TCP and MQTT reported an
average of 51.38 ms and 613.51 ms, respectively.
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It is evident that the δttransmission of UDP is much smaller than that of TCP and MQTT,
but the reliability of the data delivery of each protocol should be considered before selecting
the best communication protocol for the proposed EEW network. Therefore as the next
step, the reliability of each communication protocol is analysed.

According to the communication protocol characteristics, it is evident that TCP has its
own benefits, such as error checking mechanism and handshaking process between the
sensors, which ensure reliable data communication compared to the UDP, which has none
of the above characteristics.

When selecting the most appropriate communication protocol, it is evident that MQTT
is the least appropriate due to its high δttransmission, so it is not suitable for the proposed
EEW architecture. As the next step, UDP and TCP were compared to identify the most
appropriate. Even though UDP protocol resulted in a δttransmission which is one-third
of the TCP’s δttransmission, UDP does not guarantee reliable data delivery, which can be
considered a significant limitation for a time-critical application. It was also observed that
the performance difference between the protocols is in the millisecond range, and hence
can be considered as only creating a negligible impact on the system latency.

Having considered findings from the evaluation process of the protocols (MQTT, UDP
and TCP), TCP was selected as the best communication protocol for the proposed EEW
network to conduct the communication between the sensors.

Calculating the Detection Time (δtdetect) of the Network

The detection time (δtdetect) for the proposed EEW architecture was calculated in the
RS4D sensor environment by implementing a modified PLUM-based earthquake detection
algorithm. In this experimental environment, the calculated δtdetect varied between 0.10
and 0.19 s for the six selected hypothetical earthquake scenarios (Table 1). We selected the
PLUM-based approach due to its simplicity and easy-to-implement nature [71]. Addition-
ally, PLUM does not calculate the source parameters of the earthquake, which makes it
comparatively faster than most other EQ detection approaches [11]. More importantly, it
requires less processing power. Therefore, the obtained δtdetect values show that the RS4D
type of low-cost sensor, with its Raspberry Pi 3 Model B processor, is easily able to provide
the level of processing power required to run a PLUM-based detection algorithm.
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Table 1. Reported average latencies for the six hypothetical earthquake scenarios with the decen-
tralised architecture.

Hypothetical
Scenarios *

Decentralised Processing Using TCP (in Seconds)

δtdetect δttransmission δts-wave_travel δtsys_latency

Scenario 1 0.10 0.05 2.50 2.65

Scenario 2 0.13 0.05 2.70 2.88

Scenario 3 0.19 0.05 1.00 1.24

Scenario 4 0.17 0.05 1.20 1.42

Scenario 5 0.17 0.05 1.10 1.32

Scenario 6 0.19 0.05 1.60 1.84
* See Appendix A for illustrations of the scenarios with corresponding azimuthal directions.

Calculating the S-Wave Travel Time (δts-wave_travel) of the Network

When it comes to S-wave travel time (δts-wave_travel) between the first and the second
observation sensors, the travel time differs according to the earthquake scenario, since
it is primarily dependent on the respective sensor locations, in relation to the direction
of the S-wave. Our findings from the six earthquake scenarios presented in this paper
confirm the above observation as the S-wave travel time (δts-wave_travel) between the first
and second sensors varied between 1.0 and 2.7 s (Table 1). Furthermore, it is evident from
the findings that there is a clear correlation between δts-wave_travel and the density of the
sensor distribution in the S-wave travel direction. When the S-wave is directed towards the
areas with lesser sensor distribution, it resulted in a higher δts-wave_travel value, whereas a
lower δts-wave_travel value occurred in the direction of higher sensor distribution.

Overall, simulation experiments conducted with the node-level processing approach
resulted in a system latency (δtsys_latency) between 1.24 and 2.88 s (Table 1).

Comparison of System Latencies for the Decentralised and Centralised EEW Architectures

In addition to conducting experiments at the node-level with decentralised architec-
ture, we also implemented a centralised network architecture connecting the same set of
sensors used for the node-level processing to make a comparison (Figure 7). Unlike the
decentralised architecture, the centralised processing architecture consists of an additional
computer that acts as a central server to perform all the detection algorithm processing.
Sensors in the centralised architecture forward the ground-motion data they captured
directly to this dedicated server, at which point the detection algorithm is executed. After
the execution, the computer will disseminate the alert data to the appropriate sensors.

Although there is not much evidence available in the literature about the specifica-
tions used for centralised processing servers, we found that most of the implementations
published with centralised processing used the Amazon Web Services (AWS) as their cen-
tralised data processor [9,41]. However, the specifications of the implemented AWS server
were not described in any of the centralised processing literature. Thus, guided by the
above literature, for our decentralised vs. centralised comparison, we used the Amazon
Web Services (AWS) virtual machine as our centralised server to connect the RS4D sensors
with the configuration of t2. micro instance, 1GB RAM and 8GB memory.

The experimental simulations with the centralised architecture were conducted using
two standard communication protocols: TCP and MQTT.
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Figure 7. Centralised processing architecture using the AWS virtual machine.

Although we selected TCP as the best communication protocol to implement the de-
centralised EEW architecture, when calculating the latency for the centralised architecture,
we compared the performance of the centralised architecture with the use of both TCP and
MQTT. This is because, traditionally, most of the centralised EEW architectures primarily
use MQTT as their communication protocol, but not TCP. As shown in Table 2, the results
obtained from the comparison experiments clearly show that the TCP-based decentralised
EEW architecture proposed in this research, implemented on a ZeroTier SD-WAN platform,
outperforms the traditional centralised EEW architecture that operates with either MQTT
or TCP.

Table 2. Reported latencies for the six earthquake scenarios with three different architectures.

Hypothetical
Scenarios

System Latency for Centralised
Processing (in Seconds)

System Latency for
Decentralised Processing
Using TCP (in Seconds)MQTT TCP

Scenario 1 4.15 2.94 2.65

Scenario 2 4.57 3.13 2.88

Scenario 3 3.24 1.48 1.24

Scenario 4 3.51 1.69 1.42

Scenario 5 3.32 1.64 1.32

Scenario 6 3.84 2.08 1.84

As shown in Table 2, the results also show that, when running the simulations for the
six earthquake scenarios, the centralised processing model with TCP as the communication
protocol performed better compared to MQTT. This is evident for the centralised architec-
ture with a TCP reported system latency (δtsys_latency) in the range of 1.48–3.13 s, whereas,
when using the MQTT, the system latency (δtsys_latency) varied between 3.24 and 4.57 s.

We also observed that, when using the centralised processing approach, the system
latency increased with the number of sensors in the network. In a real-time scenario, a
typical nationwide EEW network may consist of hundreds of sensors and, during an actual
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earthquake, with the use of the PLUM approach, the system has to deal with a significant
number of circular regions with a 30 km radius. In such a situation, the system has to
identify the region of the detection sensor accurately, followed by its neighbouring sensors.
In a centralised arrangement, this processing needs to be carried out in a single dedicated
server, and a high number of sensors attached to a number of circular regions will lead
to an increase in the complexity of the processing software. The increased complexity of
the software is evident when comparing the pseudocodes of the decentralised architecture
(Figure 8a) and centralised architecture (Figure 8b). It can be clearly seen that, as shown in
Figure 8b, for the centralised processing architecture, it is essential to include two additional
if conditional blocks to identify the region and the neighbouring sensors of a particular
detection sensor.
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With this added complexity, the respective pseudocodes show that the processing
time rises along with the number of sensors in the EEW network. Therefore, in a real-life
scenario, when an EEW system carries a high number of sensors located across a vast
geographic region, a system that operates with centralised processing, identifying the
region of a sensor and its neighbouring sensors will become significantly time-consuming.
In contrast, when using the decentralised approach, the system latency does not depend
on the number of sensors outside the radius of its 30 km region; each sensor will only
communicate with sensors within the 30 km radius.
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To check the validity of the above observation, in addition to the five sensors installed
in the Wellington region, we introduced several additional sensors installed in different
regions outside Wellington. We recalculated the system latency with the centralised pro-
cessing network approach (Figure 9). As shown in Figure 9, these additional sensors were
installed in four geographically dispersed regions on the North Island of NZ.
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As discussed above, our proposed approach is mainly based on disseminating the
alert in a 30 km radius. The introduction of more sensors in a large area, as shown in
Figure 9, increased the processing time at the central server. Introducing additional sensors
creates an essential need to identify the sensor’s region and its neighbouring sensors during
a particular earthquake event.

The results obtained from this multiple region scenario show that the system latency
varied from 1.52 to 3.2 s for TCP. This was earlier reported as 1.48 to 3.13 s when operating
with only a single, 30-km-radius circular region (Table 2). Despite the above findings having
reported a marginal increase in latency, the above experimental results provide evidence to
show that the system latency of the centralised architecture continues to increase with each
additional sensor that is added into the system. Therefore, we can argue that the system
latency of an EEW system with centralised architecture can increase in a situation where
the network consists of a significantly high number of sensors dispersed across multiple
30-km regions.
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Calculation of Packet Loss

In addition to calculating the system latency, we further investigated the packet loss
for the three-sensor network approaches (decentralised processing with TCP, centralised
processing with TCP and centralised processing with MQTT) to compare the system
latency. These investigations reported significant packet loss when we ran the experiments
in a centralised architecture environment where the MQTT was used as the primary
communication protocol (Figure 10). In contrast, the reported packet loss was zero for both
the decentralised and centralised architecture when we used the TCP as the communication
protocol. Although the MQTT is built on top of TCP, the main reason for the packet loss is
the packet drop in the centralised broker. We used the free version of the PAHO MQTT
centralised broker, where a considerable amount of data packets was dropped due to the
heavy traffic in the server [86].
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5. Discussion

Unique to any of the previously conducted EEW research across the globe, the research
presented in this paper introduces a comprehensive sensor network architecture from
scratch, with the specifications of the essential components needed to construct a low-cost,
MEMS-based EEW system. Mostly, the previously published literature on EEW systems
primarily focused only on discussions of system latency and the accuracy of the network
architecture [8,11,41]. In contrast, this paper has investigated all the components and steps
required to implement an EEW system and compared them with the existing approaches. In
addition, the decentralised EEW sensor network architecture proposed in this paper shows
that the detection of earthquakes and processing of ground-motion data can successfully be
implemented at the sensor node. This research explored and implemented an experimental
EEW system by employing 100% decentralised processing compared to the currently
available EEW approaches based on centralised processing [8,11,41,87]. Even though
Fischer and colleagues proposed a decentralised EEW approach, there are no clear findings
of the robustness of their system [15]. Further, this paper also demonstrates that using a
lightweight and easy-to-implement algorithm such as PLUM can be considered an ideal
EEW approach, that is suitable for implementation in resource-constrained environments
such as low-cost, RS MEMS-based sensors.



Informatics 2022, 9, 25 23 of 32

Our work demonstrates that a low-cost, MEMS-based sensor network with decen-
tralised processing can be used to produce EEW alerts to the public with a minimal cost
compared to both high-end EEW systems such as California’s ShakeAlert and low-cost
systems such as Costa-Rica’s ASTUTI [41]. Further, it should be noted that, with the decen-
tralised processing, the proposed EEW architecture outperforms a system with centralised
processing; therefore, there will be no additional costs in implementing a centralised mid-
dleware server. The major proportion of the cost of our proposed EEW solution is allocated
for purchasing the MEMS-based RS sensors. Furthermore, the annual running cost of the
proposed network primarily consists of the internet usage of the sensors. Implemented as a
community-engaged EEW solution, the public usually absorbs the internet charges.

Most of the network architectures constructed for EEW systems in the past were
mainly focused on centralised processing rather than node-level processing. From the
results of our proposed decentralised processing approach, it is clear that it outperforms
the other proposed approaches worldwide [11]. The data transmission delay between the
sensors plays a significant role in the system latency of the EEW system. Our results show
that the standard communication protocols UDP and TCP outperform the commonly used
communication protocol MQTT. Even though the UDP outperforms TCP by a minimum
value of approximately 35 ms, it is always advisable to use TCP as the communication
protocol for time-critical applications due to its higher reliability compared to UDP. To
compare and evaluate the performance of the communication protocols, along with the
proposed SD-WAN architecture, we implemented a centralised processing architecture by
adding an AWS virtual machine to the network. From the results obtained from the latency
calculations, we can see that the system latency of our proposed decentralised processing
outperforms the MQTT-based centralised processing approach by a considerable value of
approximately 2 s. It is also evident that the packet loss when using MQTT is a significant
drawback for a time-critical application, where packet losses cannot be accepted.

The results show that the system latency of the centralised processing increases with
the number of sensors in the network since there is only one processing unit for the complete
network, compared to decentralised processing, where each sensor processes the algorithm
for the sensors within the 30 km radius. Furthermore, the additional processing blocks
for the centralised server, such as identifying the area of the particular sensor and the
neighbouring sensors in an earthquake event, will also add to the delay. In comparison, our
approach will not have such a delay as the sensors only directly communicate with other
sensors in the 30-km-radius area. Our results also show that the decentralised processing
approach significantly reduces latency by deploying more sensors in the network, which
will shrink the travel time of the S-wave between the two neighbouring sensors [33].
Furthermore, for a larger network with a considerable number of sensors, it should be
noted that the processing time of the algorithm with the centralised processing approach
can only be reduced by improving the processing power of the centralised server, which
will eventually raise the cost of the centralised architecture. On the other hand, the cost of
the decentralised EEW architectures is becoming more affordable because MEMS-based
sensors are getting cheaper, while their processing power is increasing rapidly.

Regarding system latencies, the above discussion clearly shows that the implementa-
tion of the TCP-based decentralised processing architecture outperforms other centralised
processing architectures implemented around the world.

In addition, redundancy should be considered in case of a failure in the EEW network
architecture. In our approach, the redundancy is mainly dependent on the density of the
sensors in a 30 km radius area, since we are processing the algorithm at the sensor node.
Therefore, the failure of a single or multiple sensors may not cause any major network
failure since the remaining sensors in a particular area will continue to process the data
and detect earthquakes. On the contrary, in the centralised processing approach, failure to
connect to the centralised server or failure of the centralised server itself will collapse the
functionality of the entire network, and lead to failure to detect an earthquake. The EEW
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sensor network architecture proposed in this paper is less prone to failures compared to an
architecture driven by centralised processing.

In addition to that, most of the EEW approaches found in the previous literature
were implemented using the MQTT-based centralised processing. It is proven that the
TCP-based centralised processing outperforms the MQTT-based centralised processing
approach. Even though implementing a TCP-based centralised processing architecture
requires the inclusion of a software-defined network at the node-level to identify the sensors
uniquely, we can propose TCP as a better choice when reducing the system latency of the
network, compared to MQTT, for a centralised EEW network.

Furthermore, in this research, we investigated the potential security-related risks and
identified the potential security breaches that can be anticipated in the proposed type
of community-engaged EEW sensor network environment. To mitigate the identified
vulnerabilities, we implemented appropriate measures to secure the proposed EEW sensor
network, which runs on the ZeroTier SD-WAN platform. At present, there is hardly any
EEW literature that addresses potential security risks or provides solutions to mitigate
such risks.

In addition to the above factors, the proposed architecture can be easily scaled, im-
plemented, and exported to develop a sensor network by simply provisioning low-cost
sensors, installing them in people’s homes, and implementing decentralised processing
at the node-level. Six of the selected hypothetical earthquake scenarios were triggered by
S-waves. The scenarios suggest that a low-cost, MEMS-based, decentralised processing
network could achieve the fastest theoretical EEW performance compared with the other
centralised EEW networks, especially with the anticipated futuristic improvements in low-
cost sensors and processing algorithms. These types of low-cost sensors could also support
the implementation of hybrid networks with the aim of enhancing and complementing
existing EEW networks consisting of expensive Class A type seismographs. Our approach
to ground-motion detection with an appropriate alerting mechanism has demonstrated an
effective EEW solution, where alerts may arrive early, allowing the system end-users to
carry out simple protective actions, such as drop-cover and hold.

Limitations and Future Work

While this paper provided evidence that an EEW system can be implemented using
MEMS-based, low-cost sensors without any centralised processing, we identified several
limitations that need further investigation. The inherent limitations of the PLUM approach
constrain our proposed EEW system. While the PLUM algorithm is considered a more
robust approach to detect seismic intensity, it limits the warning time to a maximum of
~10 s. Regarding the further use of S-Wave to detect the intensity of shaking, PLUM
approach makes it unsuitable for providing a meaningful warning to the areas near the
epicentre. To minimise the inherent limitations of the PLUM algorithm in the next phase
of our research, we intend to investigate the feasibility of predicting the S-wave shaking
intensities using the P-waves, which can eventually considerably increase the warning
time. Additionally, we are looking into different algorithms, which could predict the
shaking intensity beyond the 30-km radius defined by the PLUM algorithm. Further, our
team is exploring the opportunities to implement a community-engaged sensor network
comprising different types of low-cost sensors, rather than using a single type of sensor.
The successful implementation of an EEW network with multiple sensor types will result
in an eco-system of community-engaged, MEMS-based, EEW sensor networks.

As described in Section 4.1.1, even though we have conducted a preliminary testing
of the performance of the embedded additional measures to enhance the security of the
proposed MEMS-based, decentralised sensor network, to provide a more accurate judg-
ment, security enhancements must be tested when exposed to real-world threats when
operating under real-world scenarios. We intend to carry out such an in-depth testing of the
implemented security enhancements as one of the future activities in the ongoing research.
Furthermore, we intend to develop a centralised alert service that could detect and notify
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users of security breaches in the sensor network and is capable of automating actions
upon the suspicious activity (e.g., automatically disconnecting the breached and vulnerable
sensors from the network). This feature will automatically remove the vulnerable sensor
nodes from the network, which will eventually increase the security of the network.

6. Conclusions

We have demonstrated that the PLUM-based EEW algorithm can be implemented
using a network of low-cost, MEMS-based sensors, providing accurate operational EEW at
a lower cost compared with scientific-grade seismographs. Furthermore, we investigated
the overall system latency of the proposed EEW system and its components in the proposed
network. From the outcomes of the transmission delay, along with different standard
communication protocols, we can confirm that the use of TCP as a communication protocol
running on an appropriate SD-WAN solution can reduce the transmission delay, regardless
of the type of processing architecture (centralised or decentralised). In terms of the detection
time, by introducing the decentralised processing architecture, we showed that our results
outperform the commonly implemented centralised processing architectures. It should be
noted that the detection time of our proposed decentralised processing network does not
vary with the number of sensors in the network. Thus, it should show approximately the
same results as the nationwide EEW system; however, when it comes to the centralised
processing, the algorithm’s detection time tends to increase with the number of sensors.
Furthermore, the packet loss in the decentralised processing architecture is negligible
compared to the centralised architecture.

In this paper, we investigated the feasibility of implementing an EEW network that pro-
cesses the detection algorithm at node-level rather than in a centralised processor. We also
presented a step-by-step guide to building an EEW network with low-cost, MEMS-based
sensors. This research provides clear evidence to confirm that the proposed type of EEW
system can successfully be implemented by choosing the appropriate detection sensors and
algorithms. Therefore, this paper can be considered as providing a comprehensive guide
to construct an EEW sensor network with decentralised processing and can be used as a
benchmark, which is beneficial in building similar networks in the future. Furthermore, the
proposed concept of a decentralised, low-cost sensor network architecture can be used to
implement community-engaged warning applications in the other disaster domains, such
as developing low-cost warnings for bushfires.
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Appendix A. Map Illustration of the Latency Test Scenarios
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The following link provides access to the GitHub repository containing source code
that can be used to implement the EEW sensor network architecture proposed in this paper:
https://github.com/rs-networking/Decentralised_Processing_PLUM_V1.0.git (accessed
on 20 August 2021)

https://github.com/rs-networking/Decentralised_Processing_PLUM_V1.0.git
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