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Abstract: The assessment of mobility and functional impairments in the elderly is important for
early detection and prevention of fall conditions. Falls create serious threats to health by causing
disabling fractures that reduce independence in the elderly. Moreover, they exert heavy economic
burdens on society due to high treatment costs. Modern smartphones enable the development
of innovative mobile health (mHealth) applications by integrating a growing number of inertial
and environmental sensors along with the ever-increasing data processing and communication
capabilities. Mobility assessment is one of the promising mHealth application domains. In this paper,
we introduce a suite of smartphone applications for assessing mobility in the elderly population.
The suite currently includes smartphone applications that automate and quantify the following
standardized medical tests for assessing mobility: Timed Up and Go (TUG), 30-Second Chair Stand
Test (30SCS), and 4-Stage Balance Test (4SBT). For each application, we describe its functionality and
a list of parameters extracted by processing signals from smartphone’s inertial sensors. The paper
shows the results from studies conducted on geriatric patients for TUG tests and from experiments
conducted in the laboratory on healthy subjects for 30SCS and 4SBT tests.

Keywords: mobility assessment; Timed Up and Go test; 30-Second Chair Stand Test; 4-Stage Balance
Test; inertial sensors; signal processing; health monitoring

1. Introduction

The quality of life of the elderly is highly correlated with their mobility. Reduced mobility creates
serious risk of fall. Falls in the elderly are defined as “unintentionally coming to the ground, or some
lower level because of sudden loss of balance, loss of consciousness, sudden onset of paralysis as in
stroke or an epileptic seizure” [1]. Falls are a major concern among the elderly because of their negative
impact on a person’s physical and physiological state. Falls are the third leading cause of worldwide
chronic disability [2], and a study found that approximately 81%–98% of hip fractures are caused
by falls in the elderly [3]. Falls not only create serious threats to health among the elderly, but the
treatment costs and resources required to address them also exert a heavy economic burden on the
society. The total costs resulting from falls were in the range of 0.85 to 1.5 percent of the total healthcare
costs in the United States, Australia, the United Kingdom and the European Union (EU) in 2009 [3].
These costs are expected to further increase, as there will be an estimated 88.5 million individuals
aged 65 and older in the United States alone in 2050, a 120% increase over the elderly population in
2010 [4]. The risks of falling and of fall related injury increase with the person’s age because of loss
of agility, vision loss, and medication side-effects [5]. In addition to physical damage and their high
costs, falls create fear of falling again by reducing self confidence among the elderly, particularly while
walking on uneven pathways or a wet floor. The consequences of falls also include increased risks
of pneumonia, pressure ulcers, and even death [6]. Therefore, the assessment of mobility and early
recognition of individuals prone to falls are the key strategies to reduce fall related injuries and prevent
their consequences.
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The Centers for Disease Control and Prevention (CDC) created the STEADI (Stopping Elderly
Accidents, Deaths & Injuries) tool kit for health care providers [7]. The CDC recommends the evaluation
of gait, strength, and balance using three tests: the Timed Up and Go (TUG) test [8], the 30-Second
Chair Stand Test (30SCS) [9], and the 4-Stage Balance Test (4SBT) [10]. These tests are generally
performed in a clinical setting, thus limiting the frequency of testing and increasing the total test
costs. Because of the demographic changes, there will be an increasing number of geriatric patients
in the near future and probably fewer professionals would be available to assess the risk of fall in
clinical settings. Therefore researchers have attempted to bring these assessment tests to patients’
homes [11]. In the new era of health monitoring, wireless sensing, mobile and cloud computing
technologies support the development of mobile health applications. These technologies have been
proven to effectively monitor the activities of daily living [12–14]. Automatic activity recognition
and quantification systems that utilize inertial sensors are proposed for long-term health and fitness
monitoring [15–17], assessment of mobility in the elderly and people with Parkinson’s disease [18,19],
automatic fall detection [20,21], and rehabilitation [22,23]. An instrumented Timed Up and Go (iTUG)
test has been recently introduced and proven to be sensitive to pathologies [24,25] and useful in fall
risk prediction [26]. Approaches for automatic activity recognition used by researchers vary in number,
type, and placement of utilized sensors, as well as in processing of recorded signals. While some
researchers used multiple sensors for automatic activity recognition [27–29], an increasing number of
projects use a single inertial sensor [30–33] usually placed on the subject’s chest. The rapid proliferation
of smartphones and continual growth in smartphone capabilities have opened up new opportunities
for health monitoring applications. Modern smartphones include a number of built-in inertial and
environmental sensors that can be utilized in health and fitness monitoring applications. Modern
smartphones typically include accelerometers, gyroscopes, magnetometers, barometers, and humidity
sensors. With growing data processing and communication capabilities, smartphones enable the
development of innovative mobile health (mHealth) applications.

In this paper, we introduce a suite of smartphone applications for mobility assessment. The suite
includes applications for automating and quantifying standard mobility tests recommended by the
Centers for Disease Control and Prevention (CDC): Timed Up and Go (TUG), 30-Second Chair Stand
Test (30SCS), and the 4-Stage Balance Test (4SBT). The names of the applications are sTUG (Smart TUG)
Doctor, 30SCS and 4SBT, respectively. The applications record and process the signals from the
smartphone’s accelerometer, gyroscope, and magnetometer sensors to extract the parameters that
quantify individual phases of the tests. The applications offer an affordable solution for quantifying
mobility of the elderly with an immediate feedback and automated logging. The test procedures
require minimum setup that includes a chair, a floor marker at the distance of three meters from the
chair, and an inexpensive instrumentation with a smartphone placed on the chest or belt running
the mobility assessment applications. The applications are quite easy to use and can be used in both
ambulatory and clinical settings. For example, in ambulatory settings elderly subjects can periodically
use applications to quantify their mobility and possibly detect early signs of mobility deterioration.
The tests can be self-guided or conducted with a help of caregiver. In clinical settings, healthcare
professionals can use applications to assess mobility of multiple patients. With automatic updates to
an mHealth server over the Internet and services provided by the mHealth web portal, healthcare
professionals can gain insights into mobility of tested subjects over time. For example, they can assess
the impact of therapeutic interventions, e.g., impact of drugs, by analyzing the parameters from
multiple tests performed in a single day. Next, healthcare professionals and researchers can monitor
and evaluate evolution of disease by analyzing the trends in the parameters collected over longer
periods of time.

The rest of the paper is organized as follows. Section 2 describes system architecture of the
mobility assessment framework. Section 3 describes TUG test procedure and application including
signal processing and parameter extraction. Sections 4 and 5 describe the 30SCS and 4SBT applications,
respectively, including parameters and signal processing. Section 6 describes the results from
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preliminary tests performed on the geriatric as well as healthy individuals. Section 7 concludes
the paper.

2. Mobility Assessment System

2.1. System Architecture

Figure 1 illustrates system architecture of the application suite. The system requires an Android
smartphone with built-in accelerometer, gyroscope and orientation sensors running Android 2.3 or
above. During tests, the smartphone is mounted on the subject’s chest or back using an elastic band
to keep it stationary and close to the body. The z-axis corresponds to the sagittal axis, the y-axis
corresponds to the longitudinal axis, and the x-axis corresponds to the frontal axis of the human
body. Smartphone applications record and process signals from the sensors, extract parameters, and
display results on the smartphone’s screen. The applications stop monitoring automatically after the
completion of the test is detected. They create test descriptors that include date and time when the
tests are taken and all parameters that quantify the tests. A test descriptor is stored in a .csv file on
the smartphone.
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Figure 1. System architecture for mobility assessment.

The smartphone applications can be configured for use in clinical settings. In this mode of
operation, the applications require healthcare professionals to be registered users in the mHealth server
databases with privileges to administer mobility tests. A test administrator can enter a new patient
or select a patient already registered in the system. Upon completion of a test, the application
automatically uploads the test descriptor to the mHealth server. The mHealth server consists
of multiple virtual machines providing storage, database management, access control, and data
visualization services. It includes three main components: mHealth database, mHealth Web API,
and mHealth Web Portal [34]. The mHealth database is built to support a variety of physiological
records with annotations. Each record has information about the subject, equipment used to collect
records, and conditions under which the data are recorded, including application type, timestamp of
the recording, and location. The Web API is designed to be intermediary between personal devices and
the mHealth database. Any interaction with the mHealth API requires user authentication. Authorized
healthcare professionals and researchers can use the mHealth Web portal services for remote access to
physiological records and for rudimentary visualization of data. Through these services, longitudinal
studies aimed at quantifying improvements or deterioration in mobility can be performed.

With the proposed mounting of the smartphone on the chest or back, the applications record the x,
y, and z components of the acceleration of the subject’s upper trunk and use these signals to determine
the upper body movement. The smartphone’s gyroscope measures angular movements, specifically
the rotation around the x-axis (roll), y-axis (yaw), and z-axis (pitch). In our setup, we record the angular
velocity from the gyroscope and use the signals to detect and locate important transitions during
the TUG and 30SCS tests. Smartphone’s magnetic sensor is sensing the Earth’s magnetic field and
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is normally used to aid navigation by determining the Earth’s magnetic poles and the smartphone’s
orientation. In our setup, we use these signals to detect the subject’s orientation in the TUG test.

The tests can be administered by the subject himself/herself or a healthcare practitioner in a
clinical setting. The tests can be taken many times in a day. Analysis of the parameters collected
over longer periods of time may help in tracking long-term changes in mobility and diagnosis of
balance impairments. All the applications have been tested on Nexus 4 smartphone, HTC M7 and M8
(HTC Corporation, Taoyuan, Taiwan), Motorola RAZR M, and RAZR HD (Motorola, Inc., Schaumburg,
IL, USA).

2.2. Settings and Configurations

Figure 2 shows the smartphone screens demonstrating the settings and configurations of the
applications when used in clinical settings. The applications need to be set up before conducting
the tests and this is typically done by healthcare professionals in charge of administering the tests.
First, four settings screens (a), (b), (c) and (d) are common to all the applications, whereas the last two
settings screens (e) and (f) are used for the 30SCS and sTUG Doctor applications, respectively.
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Figure 2a shows a login interface. The applications use the Internet to communicate with the
mHealth server. The applications require application users, typically healthcare professionals, to enter
their credentials for login to the mHealth server. A “setting” button on the login screen takes the
user to the configuration screen shown in Figure 2b. The checkbox “Remember Me” enables the user
to save and cache the login credentials. The “Save to External SD card” option enables saving raw
data and tests descriptors to the external SD card memory. The “Offline Session” allows the user
to perform tests without uploading data on the server. The “Save Configurations” option saves the
modified configuration. After logging into the application, it shows up a screen shown in Figure 2d
with the list of subjects (with subject ids and dates of birth) who already participated in the tests.
The “add new subject” icon on the screen opens up a screen shown in Figure 2c and asks for the
new subject information such as unique id, gender and date of birth. The subject is added to the list
of users when the “save” button on the screen is pressed. Screens shown in Figure 2e,f show the
configurations available for the sTUG Doctor and 30SCS applications, respectively. “Upload TUG
Parameters to Server” enables the data upload to the mHealth server. “Save to Files” check boxes
enable the user to selectively save the raw data as well as parameters of the tests in the files. “Advance
Configuration” allows a user to specify the smartphone location, which can be on the subject’s back or
chest (default). For research and development purposes, we allowed options in the advanced settings
to set up sampling frequency and thresholds used in the applications. The sTUG Doctor and 30SCS
applications use default thresholds as shown in Figure 2f.

3. Smart Timed Up and Go (sTUG Doctor) Application

The Timed Up and Go (TUG) is a frequently used clinical test for the assessment of mobility, and
fall risk prediction in the elderly population and people with Parkinson’s disease [35]. This is a simple
test and easy to administer anywhere, anytime. In this test, a subject sits in a standard arm chair.
The subject uses regular footwear and he/she can use a walking aid if needed. On the command “Go”,
the subject stands up from the chair and walks to a three-meter marker on the floor at a normal pace,
turns around, walks back to the chair, and sits down again. Figure 3 demonstrates the typical phases
of TUG test. The test outcome is the TUG time from the command “Go” to the time when the subject
sits on the chair again. An adult with mobility impairments may take more than 30 s to complete the
test, whereas a healthy adult can perform this test in less than 10 s. This test has been proven valuable
in early assessment of balance and mobility, although it is limited as its only outcome is the time to
complete the test. An older adult who takes more than 12 s to complete the TUG test is at high risk for
falling [36]. In addition, the health care professionals also observe and report the subject’s postural
stability, gait, stride length, and sway to fill in a form identifying slow, tentative pace; loss of balance;
short strides; little or no arm swing; shuffling; or improper use of walking aids.
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The sTUG Doctor application automates and quantifies the standard Timed Up and Go (TUG)
test [37]. On application start, it provides options to set up configuration and subject information as
shown in Figure 2. Then it opens the main display screen shown in Figure 4a. When the subject or
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the test administrator presses the green “Start” button on the screen, the application starts recording
and processing data from in-built inertial sensors and calculates TUG test parameters in real time.
The application starts measuring time from the point it finds a sit-to-stand transition during the test.
The application stops automatically after it detects a stand-to-sit transition and important parameters
are calculated and displayed instantly on the screen as shown in Figure 4b. The application quantifies
all the phases of the TUG test and calculates parameters listed in the Table 1. These parameters
include the total TUG duration, sit-to-stand duration, stand-to-sit duration, maximum lean forward
angle, maximum angular velocity, and the total number of steps taken during walking. The detailed
set of test parameters with subject’s unique id and timestamp are saved on the smartphone and
sent to the mHealth server. This application also has an alternative display tab which keeps all the
recordings for each subject with exact date and time of the test with summary parameters as shown in
Figure 4c. It should be noted that in standalone application mode, subjects are expected to be able to
start the application and press the Start button. The screens described in Figure 4a,b are designed to
accommodate older adults by featuring big buttons and large fonts with posture icons.
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Table 1. Parameters for TUG characterization.

Parameter Description Units

d.TUG Total duration of the TUG test (from “Go” to the completion of the test) s
d.S2ST Total duration of the sit-to-stand transition; d.S2ST = d.LF + d.LT s
d.LF Duration of the lean forward phase in the sit-to-stand transition s
d.LT Duration of the lift up phase in the sit-to-stand transition s

d.WALK Total time of walk s
d.ST2S Duration of the stand-to-sit transition; d.ST2S = d.PS + d.SD s

d.PS Duration of the prepare-to-sit phase in the stand-to-sit transition s
d.SD Duration of the sit-down phase in the stand-to-sit transition s

a.S2ST Maximum change of the trunk angle in the lean forward phase degrees
v.LF Maximum angular velocity during the lean forward phase degrees/s
v.LT Maximum angular velocity during the lift up phase degrees/s

n.STEP Total number of steps during walking phase steps
n.SBT Total number of steps before turn steps
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Figure 5 shows raw acceleration and gyroscope signals collected by the sTUG Doctor application
during a TUG test. When the “Start” button on the screen is pressed, the beginning timestamp is
captured. The program then waits for the beginning of the sit-to-stand transition by searching for a
change in the angular velocity around the frontal axis (the x component of the gyroscope). This change
is caused by leaning forward as the subject prepares to stand up. Additionally, acceleration thresholds
are checked to ensure that the leaning forward signature is caused by an actual motion rather than
by swinging forward while still in the sitting position. The angular velocity during the sit-to-stand
transition has a distinct profile as it starts from zero, increases to reach the maximum, and drops to
a zero at the end of the lean forward phase (LF). To determine the beginning of the transition, the
application finds the maximum angular velocity (v.LF) that is above a certain threshold, and then
searches backward to find the beginning of the slope. The maximum upper trunk angle (a.S2ST)
is reached at the end of the lean forward phase. The time duration between the beginning of the
transition and the end of the lean forward phase represents the duration of the lean forward phase
(d.LF). The second phase of the sit-to-stand transition is characterized by a negative angular velocity as
the subject moves into an upright position. The angular velocity reaches the minimum (i.e., v.LT), and
then increases back to zero. The moment when it becomes positive is considered to be the end of the
lift up phase and the end of the sit-to-stand transition. By time stamping this moment, we calculate the
duration of the lift up phase (d.LT), and the total duration of sit-to-stand transition, d.S2ST = d.LF + d.LT.
A stand-to-sit transition can also be divided into two separate phases, a prepare-to-sit (PS) and a
sit-down (SD) phase. The angular velocity increases to the maximum and then drops back to zero
as the subject leans forward in preparation to sit down. The moment when the angular velocity
drops to zero marks the end of the prepare-to-sit phase and the beginning of the sit-down phase.
By timestamping these characteristic points, the application determines the duration of the preparation
to sit phase (d.PS). In the sit-down phase, the angular velocity is negative as the subject’s upper
trunk moves back into the upright position. The moment it becomes positive marks the end of the
sit-down phase and the entire stand-to-sit transition. By capturing the time stamp of this moment the
application calculates the duration of the sit-down phase (d.SD), and the entire stand-to-sit transition
(d.ST2S = d.PS + d.SD). The total walk time (d.WALK) is calculated using captured timestamps and
the number of steps (n.STEP) using the acceleration and gyroscope thresholds. The application uses
the smartphone’s magnetic sensor data to detect turning and the number of steps before turn (n.SBT).
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4. The 30-Second Chair Stand (30SCS) Application

The 30-Second Chair Stand Test measures the number of stand ups a person can perform during
a 30 s interval which is based on the five-times-sit-to-stand test [38]. The primary goal of this test is
to measure the lower extremity strength and endurance, but it can also indicate speed, balance, and
mobility [39–41]. The standard test is limited as its only quantitative outcome is the number of stands
completed within 30 s. The test is conducted using a straight back chair without arm rests, and a
stopwatch. The patient is sitting in the middle of the chair with feet flat on the floor, hands placed
on opposite shoulders and crossed at the wrists. The typical phases of 30SCS test are shown in the
Figure 6. On the command “Start” the patient rises to a full standing position and then sits back down
holding arms against his/her chest. The patient keeps repeating these steps for 30 s. Table 2 gives
30SCS test scores as a function of gender and age used to determine whether the patient is at high risk
for falls [42]. A below average scores indicates a high risk of falls.
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Table 2. The 30-Second Chair Stand Test scores with ages and genders.

Age
Men Women

Below Avg. Average Above Avg. Below Avg. Average Above Avg.

60–64 <14 14–19 >19 <12 12–17 >17
65–69 <12 12–18 >18 <11 11–16 >16
70–74 <12 12–17 >17 <10 10–15 >15
75–79 <11 11–17 >17 <10 10–15 >15
80–84 <10 10–15 >15 <9 9–14 >14
85–89 <8 8–14 >14 <8 8–13 >13
90–94 <7 7–12 >12 <4 4–11 >11

The 30SCS smartphone application automates and quantifies the standard 30-Second Chair Stand
Test. Application begins the test when a subject presses the green “Start” button on the screen shown in
Figure 7a. The subject then makes as many stand-ups as he/she can during 30 s. The application makes
an acoustic cue (beep sound) after 30 s to indicate the test completion. Our application counts the total
number of stand-ups as well as total number of complete cycles (stand-up to sit-down). The complete
set of derived parameters for each cycle of 30SCS test is presented in Table 3. The application displays
important parameters immediately on the screen after the completion of the test as shown in Figure 7b.
The application also has an alternative tab to display the test summary with important test parameters
for a single subject with data and time as shown in Figure 7c. The values of parameters listed along
with the raw signals of the test are saved in the .csv file on the smartphone as well as uploaded on the
mHealth server.
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Figure 7. 30SCS smartphone application screens: (a) application screen before the test is started;
(b) application screen with a selected set of parameters upon completion of a test; and (c) application
screen showing a log with multiple measurements for a single subject.

Table 3. Parameters for 30SCS characterization.

Parameter Description Units

n.SUP Total number of stand-ups in 30 s -
n.CC Total number of complete cycles -
d.CC Total duration of all complete cycles s

d.CYCLi Duration of each cycle (d.CYCLi = d.S2STi + d.ST2Si + d.STi + d.SIT) s
d.S2STi Total duration of the ith sit-to-stand transition: d.S2STi = d.LFi + d.LTi s
d.LFi Duration of the lean forward phase in the sit-to-stand transition s
d.LTi Duration of the lift up phase in the sit-to-stand transition s

d.ST2Si Duration of the stand-to-sit transition; d.ST2Si = d.PSi + d.SDi s
d.PSi Duration of the prepare-to-sit phase in the stand-to-sit transition s
d.SDi Duration of the sit-down phase in the stand-to-sit transition s
d.STi Total duration of standing phase s
d.SIT Total duration of sitting phase s

a.S2STi Maximum change of the trunk angle in the lean forward phase degrees
v.LFi Maximum angular velocity during the lean forward phase degrees/s
v.LTi Maximum angular velocity during the lift up phase degrees/s

Raw acceleration and gyroscope data for three chair stands during a 30SCS test is presented in
Figure 8. The plots are annotated with markers indicating relevant events for each cycle of a chair stand.
The test starts when the command “Start” button is pressed. Similar to the sTUG application, the 30SCS
application detects a stand-up phase with its sub-phases (leaning forward and lifting up). A subject can
spend some time in the standing position, described by a parameter d.STi. The standing is followed
by a stand-to-sit transition. In the sitting position, a subject may also stay for some time before a new
cycle is started. The sitting is characterized for each cycle by a parameter d.SITi. Please note that in
healthy subjects the parameters d.STi and d.SITi may be equal to zero, i.e., the subjects may move from
one transition to the other without any delays. However, elderly people and people with balance and
mobility impairments may require some time to prepare for the next cycle. To detect characteristic
events, the starting and ending points of transitions, algorithms used in the sTUG application are
slightly modified to work for the 30SCS test. The signals from the gyroscope sensors are processed to
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timestamp all the phases of each cycle for 30SCS. The application counts the number of stand-ups, and
the number of complete stand-up/sit-down cycles during the test.

Information 2016, 7, 47 10 of 20 

 

cycle. To detect characteristic events, the starting and ending points of transitions, algorithms used 

in the sTUG application are slightly modified to work for the 30SCS test. The signals from the 

gyroscope sensors are processed to timestamp all the phases of each cycle for 30SCS. The application 

counts the number of stand-ups, and the number of complete stand-up/sit-down cycles during the 

test.  

 
(a) 

 
(b) 

Figure 8. Inertial signals recorded during three cycles of a 30SCS test: (a) raw signals from 

accelerometer; (b) raw signals from gyroscope. 

5. The 4-Stage Balance Test (4SBT) Application 

The 4-stage balance test is used to assess static balance of the elderly during four progressively 

more challenging balancing positions. In this test, the subject should not use any assistive devices 

and should keep their eyes open during the test. The four respective positions of the 4SBT are shown 

in Figure 9. The positions are described as follows: (a) Feet together stand assumes feet are placed side 

by side; (b) Semi-tandem stand assumes that the instep of one foot is touching the big toe of the other 

foot; (c) Tandem stand assumes that one foot is placed in front of the other-heel of one foot touches the 

toe of other foot; and (d) One leg stand assumes standing on one leg. A nurse supervising the test 

clearly describes and demonstrates each position and always stands next to the subject to hold 

his/her arm and help them assume the correct foot position. When the subject is steady, the nurse 

starts measuring time using a stopwatch, but remains ready to catch the subject in case of a balance 

loss. If the subject can hold a position for 10 s without moving his/her feet or needing support, the 

test advances to the next position. The standard test outcomes are times in seconds the subject is able 

to hold each of four positions. It has been shown that an older adult who cannot hold the tandem 

stance for at least 10 s is at increased risk of falling [10]. 

Figure 8. Inertial signals recorded during three cycles of a 30SCS test: (a) raw signals from accelerometer;
(b) raw signals from gyroscope.

5. The 4-Stage Balance Test (4SBT) Application

The 4-stage balance test is used to assess static balance of the elderly during four progressively
more challenging balancing positions. In this test, the subject should not use any assistive devices and
should keep their eyes open during the test. The four respective positions of the 4SBT are shown in
Figure 9. The positions are described as follows: (a) Feet together stand assumes feet are placed side by
side; (b) Semi-tandem stand assumes that the instep of one foot is touching the big toe of the other foot;
(c) Tandem stand assumes that one foot is placed in front of the other-heel of one foot touches the toe
of other foot; and (d) One leg stand assumes standing on one leg. A nurse supervising the test clearly
describes and demonstrates each position and always stands next to the subject to hold his/her arm
and help them assume the correct foot position. When the subject is steady, the nurse starts measuring
time using a stopwatch, but remains ready to catch the subject in case of a balance loss. If the subject
can hold a position for 10 s without moving his/her feet or needing support, the test advances to the
next position. The standard test outcomes are times in seconds the subject is able to hold each of four
positions. It has been shown that an older adult who cannot hold the tandem stance for at least 10 s is
at increased risk of falling [10].

The 4SBT smartphone application consists of four tests that can be selected using the test selector
screen shown in Figure 10a. The application starts the test after the green “Start” button on the display
screen is pressed as shown in Figure 10b. The standard outcome of this test is the number of seconds a
subject can hold the position. We have quantified the subject’s ability to hold the balance by calculating
the displacement of the chest and timestamping excessive movements. Table 4 describes the derived
4SBT test parameters. The 4SBT application provides the average chest movements during each of
the four phases/positions of the balance test. The application uses accelerometer signals to quantify
relative displacement of the chest. The chest displacement values indicate the balance control of
the subject; the lower displacement values demonstrate better stability during the tests. When the



Information 2016, 7, 47 11 of 19

subject stumbles during any of the four tests and comes back in the stable position (e.g., put the foot
down during one leg stand), the 4SBT application reports the time of stumbling and loss of balance.
Figure 10c presents the display of parameters as well as the stumble status.Information 2016, 7, 47 11 of 20 
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Figure 10. 4SBT smartphone application screens: (a) application screen for test position selection;
(b) application screen before the test is started; and (c) application screen with a selected set of
parameters upon completion of a test.

Table 4. Parameters for 4-Stage Balance Test characterization.

Parameter Description Units

s.FTSi Relative displacement of the chest every second in the feet together stand cm
s.STSi Relative displacement of the chest every second in the semi-tandem stand cm
s.TSi Relative displacement of the chest every second in the tandem stand cm
s.OLi Relative displacement of the chest every second in the one leg stand cm

Figure 11 shows the chest acceleration magnitude during a semi-tandem stand when a healthy
subject maintains stable position (top graph), maintains stable position with an effort (middle graph),
and when the balance is lost approximately after two seconds from the beginning of the test (bottom
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graph). The graphs show that acceleration magnitude can indeed be used as a metric for quantifying
stability; significant changes in the acceleration magnitude in the bottom graph are due to a loss
of balance. The 4SBT application calculates the displacement for each second of the test using
Equations (1)–(4). Acc is the raw 3D acceleration magnitude (Equation (1)), Acc’ represent Acc without
the DC offset, eliminated by subtracting the value of Acc at rest, as shown in Equation (2). The velocity
vel is calculated at every sample using Equation (3), where ∆t is the sampling interval (10 ms in
our case). Next, the displacement Disp is calculated as shown in Equation (4). After analyzing the
displacement data from a several tests performed in the laboratory with and without stumbling, we
have found a displacement threshold of 30 cm that reliably detects the stumbling for the existing data
sets However, more tests collected in clinical settings are necessary to find a threshold that would work
reasonably well in majority of test cases. It should be noted that the current algorithm for detecting a
stumbling could fail if a subject drops a foot gently while maintaining a perfect stability. An alternative
to relying on algorithms to detect stumbling is to allow test administrator to automatically annotate a
stumbling event when it occurs (e.g., by pressing a button or issuing a voice command).

Acc “
b

Accx
2 ` Accy

2 ` Accz
2 (1)

Acc1 “ Acc´ Accprestq (2)

velpiq “ velpi´ 1q ` Acc1piq ˚ ∆t (3)
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1
2
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Figure 11. Comparison of accelerometer vector magnitudes during semi-tandem stands for:
(a) stationary standing; (b) standing with balance trail; and (c) standing with stumble.

6. Application Suite Verification and Validation

In this section we briefly discuss our experiments aimed at verification of the applications in the
mobility assessment suite. During the development of the algorithms for posture transitions from the
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smartphone’s inertial sensors in the TUG and 30SCS tests we used the following approach. A number
of volunteers participated in data collection, ranging from healthy subjects that performed the tests as
quickly as possible to people with mobility impairments affiliated with a local Parkinson’s support
group. The inertial sensor data collected by the smartphone are used in the initial development of
offline signal processing algorithms in Matlab (R1024a, The MathWorks, Inc., Natick, MA, USA).
To guide and inform algorithm development, each session is videotaped using a regular camera
and videos are manually annotated by timestamping posture transitions. For a selected group of
participants we also performed the test in a laboratory equipped with the Vicon motion capture system.
This laboratory allows for accurate tracking of reflective markers using 33 Vicon T40 series IR cameras
(Vicon Industries, Inc., Ipswich, UK). Test users carry the smartphone and strategically placed reflective
markers as shown in Figure 12. The motion capture system records the absolute position of each
marker with a millimeter precision every 20 ms. Using these data, we extract the acceleration vectors
from two reflective markers attached to smartphone and compare them to the acceleration vector
recorded synchronously by the smartphone during typical posture transitions. Whereas the algorithms
for detection and characterization of posture transitions used in the smartphone applications rely
exclusively on the sensor data from the smartphone, the Vicon system provides absolute location that is
used for verification of algorithms. We find that accelerometer data captured by the smartphone match
the accelerometer data derived from the reflective markers attached to the smartphone. In addition,
we verify that angles and angular velocity signals calculated by the smartphone application match
those derived from the Vicon system—the difference between the two is less than 1%. Once the
algorithms were tested and perfected in Matlab, they were ported to Java and the Android OS.
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Figure 12. A subject instrumented by reflective markers and the smartphone during posture detection
algorithms verification.

The second phase of the testing is carried out in both laboratory conditions and in clinical settings
under supervision of healthcare professionals. In the laboratory conditions, a variety of subjects
perform the mobility assessment tests. We capture videos of these sessions. These videos are manually
annotated to identify timestamps of posture transitions. Time parameters describing duration of
posture transitions are extracted from videos and compared to the time parameters reported by the
sTUG and 30SCS applications. Below we show the results of verification for a selected set of parameters.

Table 5 shows the results of a laboratory testing of the sTUG Doctor application, specifically
the verification of the dTUG parameter, which is the main quantitative outcome of the TUG test.
We consider three subjects, each performing three TUG tests (Test#1, Test#2, and Test#3). For each
test we show the time reported by the sTUG application (sTUG) and the time extracted from the
video, as well as the absolute error. The rows marked as Error indicate the absolute difference in
measurements, if we assume the times extracted from the video are taken as reference times. The results
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show that the maximum error falls below 4%. In a clinical setting, the sTUG application is tested as
follows. A nurse in charge of mobility assessment carries out the standard TUG test with a stopwatch
to measure the time a subject needs to complete a TUG test. In addition, the subject has a smartphone
on his or her chest or back and the start button is pressed when the command GO is issued by the
nurse. The time recorded by the nurse using the stopwatch is compared to the time reported by the
sTUG Doctor application. In an experiment with 20 older adults we find that the test times recorded
by the stopwatch with the resolution of 0.1 s match the times reported by the sTUG in all conducted
tests within 400 ms.

Table 5. Testing the sTUG Doctor application: duration of the TUG test (d.TUG).

- - Test#1 Test#2 Test#3

S#1 (Female, 28)
sTUG (s) 10.6 9.84 9.54
Video (s) 10.2 9.69 9.59
Error (%) 3.92 1.55 0.52

S#2 (Male, 47)
sTUG (s) 10.5 10.5 9.8
Video (s) 10.38 10.54 9.76
Error (%) 1.16 0.38 0.41

S#3 (Male, 55)
sTUG (s) 8.79 8.61 8.48
Video (s) 8.57 8.47 8.64
Error (%) 2.57 1.65 1.85

Table 6 shows the results of a laboratory testing of the 30SCS application. We consider three
subjects S#1, S#2, and S#3, each performing the test two times (Test#1 and Test#2). For each test,
we show the times to perform the sit-to-stand transitions. The rows marked with 30SCS include
the sit-to-stand times in seconds reported for individual stand-ups during the test reported by the
application, and rows marked with Video include the sit-to-stand times extracted from manually
annotated videos. If we assume that times extracted from the videos are reference times, the absolute
errors by the 30SCS application range from 0% to 14.4%, but are typically less than 5%. We find these
errors quite satisfactory. For the medical outcome of the 30SCS test, the number of stand-ups, the
30SCS application is 100% accurate. Similar observations can be found for the stand-to-sit times—the
absolute errors for the times reported by the 30SCS range between 0% and 3.7%.

Table 6. Testing the 30SCS application: sit-to-stand transition times (d.S2STi).

S#1 (Female, 28) - #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12

Test #1
30SCS (s) 1.37 0.76 0.77 0.78 0.77 0.8 0.84 0.79 0.83 0.83 0.84 0.84
Video (s) 1.5 0.75 0.75 0.75 0.75 0.8 0.83 0.78 0.85 0.8 0.83 0.83
Error (%) 14.38 1.33 2.67 4.00 2.67 0.00 1.20 1.28 2.35 3.75 1.20 1.20

Test #2
30SCS (s) 1.18 0.92 0.95 1 0.92 0.98 0.91 0.99 1 - - -
Video (s) 1.25 0.9 0.9 1.02 0.9 0.95 0.9 0.93 1.02 - - -
Error (%) 5.60 2.22 5.56 1.96 2.22 3.16 1.11 6.45 1.96 - - -

S#2 (Male, 47) - #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 -

Test #1
30SCS (s) 1.46 1.06 1.09 1.07 1.04 1.02 1.04 1.05 1.04 1.05 1.06 -
Video (s) 1.48 1.08 1.05 1.11 1.06 1.04 1.05 1.09 1.03 1.02 1.01 -
Error (%) 1.35 1.85 3.81 3.60 1.89 1.92 0.95 3.67 0.97 2.94 4.95 -

Test #2
30SCS (s) 0.98 1.2 1.54 1.54 1.3 1.22 1.42 - - - - -
Video (s) 1.01 1.2 1.54 1.57 1.26 1.21 1.44 - - - - -
Error (%) 2.97 0.00 0.00 1.91 3.17 0.83 1.39 - - - - -

S#3 (Male, 28) - #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 - -

Test #1
30SCS (s) 1.61 1.03 1.19 1.2 1.19 1.22 1.23 1.27 1.2 1.24 - -
Video (s) 1.6 0.98 1.22 1.24 1.18 1.2 1.28 1.26 1.18 1.2 - -
Error (%) 0.63 5.10 2.46 3.23 0.85 1.67 3.91 0.79 1.69 3.33 - -

Test #2
30SCS (s) 2.34 1.06 1.02 1.07 1.2 1.12 1.34 1.22 1.29 - - -
Video (s) 2.32 1.06 1.01 1.1 1.23 1.11 1.33 1.18 1.27 - - -
Error (%) 0.86 0.00 0.99 2.73 2.44 0.90 0.75 3.39 1.57 - - -
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7. Results

The sTUG Doctor application has been used in the Center for Aging, Huntsville, AL. The Center
led by a gerontologist provides an innovative and comprehensive model of care for adults over the
age of 65. Its primary goal is to empower the general population with the latest knowledge about
issues of aging, particularly about the use of medications and unique problems of the elderly, such as
memory disturbances, polypharmacy, falls, incontinence, dementia, depression, and mobility problems.
Specifically, sTUG Doctor is used in a pilot study aimed at fall prevention and improved mobility. It is
used to quantify the impact of medical interventions that typically include changes in medications
and community-based exercise sessions designed to improve mobility. Initial pilot study included
30 patients. Table 7 shows the results for three patients (P#1, P#2, and P#3) who participated in the
study. For each patient, we show the TUG test results taken: (a) when the patient is admitted into
the study; (b) once midway through the study; and (c) once approximately three months through the
study. The TUG results showed that all three patients significantly improved their performance in the
TUG test (e.g., almost 34% improvement of the total time d.TUG for P#1, more than 31% improvement
for P#2, and 28% improvement for P#3). Sit-to-stand (d.S2ST), stand-to–sit (d.ST2S) and total walk time
(d.WALK) durations have also been improved significantly. Moreover, total number of steps (n.STP)
taken to cover the three-meter distance has been reduced indicating the improved stability of walking.
These certainly indicate improved mobility over time.

Table 7. The TUG test results recorded during stability improvement program.

P#1 (Female, Age 79) P#2 (Female, Age 80) P#3 (Female, Age 87)

Parameter 12
Feb

02
Apr

12
May

%
Change

12
Feb

02
Apr

21
May

%
Change

13
Feb

27
Mar

11
May

%
Change

d.TUG 16.59 13.34 10.92 ´34 15.11 11.12 10.46 ´31 20.96 16.62 15.03 ´28
d.S2ST 1.29 1.23 0.94 ´27 0.84 0.62 0.64 ´24 1.19 1.85 0.95 ´20
d.LF 0.9 0.71 0.42 ´53 0.73 0.49 0.47 ´36 0.79 1.34 0.72 ´9
d.LT 0.39 0.52 0.52 33 0.11 0.13 0.17 55 0.4 0.51 0.23 ´43

d.WK 13.79 9.88 8.76 ´36 12.59 9.91 8.06 ´36 18.29 12.02 12.53 ´31
d.ST2S 1.51 2.23 1.22 ´19 1.68 0.59 1.76 5 1.48 2.75 1.55 5

d.PS 0.32 0.58 0.39 22 0.43 0.31 0.33 ´23 0.26 0.58 0.48 85
d.SD 1.19 1.65 0.83 ´30 1.25 0.28 1.43 14 1.22 2.17 1.07 ´12

a.S2ST 61.75 42.22 42.51 ´31 47.76 49.89 51.88 9 45.37 65.8 39.39 ´13
v.LF 256.0 178.9 209.5 ´18 161.5 231.5 213.5 32 124.5 100.2 72.08 ´42
v.LT ´8.35 0 ´6.8 ´19 ´36 ´22.9 ´33.1 ´8 ´1.86 ´13.9 ´1.82 ´2

n.STP 34 25 15 ´56 35 19 13 ´63 38 19 25 ´34
n.SBT 15 12 7 ´53 17 10 7 ´59 20 10 12 ´40

The 30SCS application has been tested in our mHealth laboratory. Five healthy subjects
participated in this test. Table 8 presents the average/standard deviation of the 30SCS test cycle
parameters for those subjects. P#5 completed 16 stand ups and 15 complete cycles (i.e., from the
moment of sitting to the completion of stand-to-sit transition). The average trunk angle (a.S2ST) is also
smaller when compared to other cases. This indicates that the subject P#5 avoids leaning forward in
order to increase the number of stand ups. We observed that most subjects require more time per cycle
as the test progresses, which may be an indication of the fitness level. Figure 13 illustrates the change
of the cycle time during the 30SCS tests, as well as the fitted regression line. We estimated the slope of
the regression line by calculating ratio of the height of the line at the end to the height of the line at the
beginning. Slope values greater than one indicate that a subject needs more time to complete a test
cycle as the test progresses. In addition, an increase in the duration of individual phases (such as d.SIT,
d.S2ST, d.ST, d.ST2S, etc.) have also been noticed towards the end of the test.



Information 2016, 7, 47 16 of 19

Information 2016, 7, 47 17 of 20 

 

5 10 15 20 25 30
1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7
Increasing Slope Regression Lines for Cycle Duration during 30SCS

Time [S]

d
.C

Y
C

L
 [
S

]

 

 

RLine P#1

d.CYCL P#1

RLine P#2

d.CYCL P#2

RLine P#3

d.CYCL P#3

RLine P#4

d.CYCL P#4

RLine P#5

d.CYCL P#5

 

Figure 13. Regression lines fitted in all cycle times (d.CYCL) with 95% Confidence interval. 

Table 9 presents the 4SBT application results performed on a healthy female 28-year-old subject 

recorded for three different cases (stationary, balancing and stumbling) explained in the 4SBT 

application section. The mean and standard deviation (M and SD rows in the table) are shown to 

illustrate variability of the displacement during 10 s of each test. We notice that the displacement 

values in full tandem stand (s.FTS) are lower than the values in a one leg stand (s.OL). There is more 

variation in the values for standing when a subject stumbles. The stumbling occurs at T = 3 in the 

one-leg stand test. Therefore, we can say that the higher values of chest displacements are associated 

with the decreased stability during the positions of the 4SBT test. 

Table 9. The 4-stage balance test results.  

 Standing Stationary Standing with Balance Trial Standing with Stumble 

 
s.FTS s.STS s.TS s.OL s.FTS s.STS s.TS s.OL s.FTS s.STS s.TS s.OL 

1 0.02 0.12 0.05 0.2 0.75 1.6 0.89 0.1 5.6 0.65 0.51 8.21 

2 0.19 0.28 0.1 0.35 1.6 11.88 1.09 0.21 13.78 1.17 0.88 12.29 

3 0.59 0.18 0.06 0.19 0.48 1.94 9.05 0.3 3.23 2.07 8.43 34.66 

4 0.6 0.72 0.71 1.03 0.21 8.27 3.02 13.79 18.11 24.8 0.7 18.93 

5 1.63 0.41 1 0.75 1.99 8.65 12.88 2.3 9.3 12 2.67 12.21 

6 0.21 0.41 1.5 0.91 1.48 0.38 2.75 10.4 7.77 7.46 0.9 12.34 

7 0.67 0.02 0.21 0.86 2.99 2.14 1.94 15.82 16.22 12.28 1.75 13.84 

8 0.43 0.24 1.88 2.24 0.3 0.49 1.73 3.66 16.86 10.35 3.54 11.05 

9 0.02 0.71 2.36 0.73 0.76 5.33 5.75 7.89 27.93 5.95 1.85 13.99 

10 0.08 0.82 0.47 2.60 5.64 3.66 8.29 12.83 14.64 15.14 2.81 12.71 

M 0.44 0.39 0.83 1.0 1.62 4.43 4.74 6.73 13.34 16.40 2.4 15.02 

SD 0.45 0.26 0.79 0.77 1.57 3.75 3.87 5.84 6.83 10.4 2.22 7.02 

8. Conclusions 

Proliferation of smartphones that integrate increasingly sophisticated sensors creates new 

opportunities for instrumentation and quantification of standard monitoring and diagnostic 

procedures. This is particularly important for the monitoring of elderly and chronic patients. In this 

paper, we describe a suite of smartphone applications we developed to automate standard 

recommended mobility assessment tests: TUG, 30SCS, and 4SBT. The applications provide 

instantaneous feedback to the user and automatically upload the test results to the mHealth server. 

The application has been tested on a group of healthy volunteers and elderly patients with recent 

falls and showed promising results. By utilizing commodity smartphones, the application suite 

offers an affordable tool for instantaneous quantification of the mobility assessment. Analysis of the 

parameters collected over longer periods of time may help in longitudinal monitoring of mobility of 

subjects and quantify the effectiveness of exercise programs and therapies. 

Figure 13. Regression lines fitted in all cycle times (d.CYCL) with 95% Confidence interval.

Table 8. The 30SCS test results.

Parameter P#1 (Male,
Age 32)

P#2 (Male,
Age 47)

P#3 (Male,
Age 29)

P#4 (Female,
Age 24)

P#5 (Female,
Age 28)

n.SUP 12 12 11 13 16
n.CC 12 12 10 12 15
d.CC 29.02 29.80 28.71 28.60 28.90

d.S2STi 1.0 ˘ 0.17 1.0 ˘ 0.25 0.96 ˘ 0.2 1.0 ˘ 0.17 0.7 ˘ 0.15
d.LFi 0.44 ˘ 0.16 0.42 ˘ 0.2 0.3 ˘ 0.16 0.5 ˘ 0.15 0.31 ˘ 0.2
d.LTi 0.57 ˘ 0.04 0.6 ˘ 0.04 0.6 ˘ 0.14 0.6 ˘ 0.03 0.4 ˘ 0.02

d.ST2Si 1.2 ˘ 0.2 1.1 ˘ 0.17 0.9 ˘ 0.35 1.4 ˘ 0.04 0.8 ˘ 0.22
d.PSi 0.45 ˘ 0.21 0.5 ˘ 0.15 0.5 ˘ 0.23 0.6 ˘ 0.03 0.41 ˘ 0.1
d.SDi 0.76 ˘ 0.04 0.6 ˘ 0.05 0.5 ˘ 0.14 0.8 ˘ 0.03 0.44 ˘ 0.1
d.STi 0.29 ˘ 0.25 0.1 ˘ 0.17 0.4 ˘ 0.30 0.1 ˘ 0.06 0.13 ˘ 0.1
d.SITi 0.30 ˘ 0.11 0.2 ˘ 0.03 0.54 ˘ 0.8 0.4 ˘ 0.12 0.35 ˘ 0.1

a.S2STi 44 ˘ 5.7 48 ˘ 22.2 57.9 ˘ 10 40.3 ˘ 5.2 29.6 ˘ 3.0
v.LFi 186 ˘ 26 172 ˘ 47 268 ˘ 19 144 ˘ 18 192 ˘ 28
v.LTi 5.3 ˘ 5.2 12.7 ˘ 19 2.74 ˘ 8.2 7.59 ˘ 7.4 31.6 ˘ 28

d.CYCLi 2.4 ˘ 0.21 2.5 ˘ 0.3 2.7 ˘ 1.09 2.38 ˘ 0.2 1.9 ˘ 0.25
Slope 1.14 1.09 1.03 1.03 1.05

Table 9 presents the 4SBT application results performed on a healthy female 28-year-old subject
recorded for three different cases (stationary, balancing and stumbling) explained in the 4SBT
application section. The mean and standard deviation (M and SD rows in the table) are shown
to illustrate variability of the displacement during 10 s of each test. We notice that the displacement
values in full tandem stand (s.FTS) are lower than the values in a one leg stand (s.OL). There is more
variation in the values for standing when a subject stumbles. The stumbling occurs at T = 3 in the
one-leg stand test. Therefore, we can say that the higher values of chest displacements are associated
with the decreased stability during the positions of the 4SBT test.
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Table 9. The 4-stage balance test results.

Standing Stationary Standing with Balance Trial Standing with Stumble

s.FTS s.STS s.TS s.OL s.FTS s.STS s.TS s.OL s.FTS s.STS s.TS s.OL
1 0.02 0.12 0.05 0.2 0.75 1.6 0.89 0.1 5.6 0.65 0.51 8.21
2 0.19 0.28 0.1 0.35 1.6 11.88 1.09 0.21 13.78 1.17 0.88 12.29
3 0.59 0.18 0.06 0.19 0.48 1.94 9.05 0.3 3.23 2.07 8.43 34.66
4 0.6 0.72 0.71 1.03 0.21 8.27 3.02 13.79 18.11 24.8 0.7 18.93
5 1.63 0.41 1 0.75 1.99 8.65 12.88 2.3 9.3 12 2.67 12.21
6 0.21 0.41 1.5 0.91 1.48 0.38 2.75 10.4 7.77 7.46 0.9 12.34
7 0.67 0.02 0.21 0.86 2.99 2.14 1.94 15.82 16.22 12.28 1.75 13.84
8 0.43 0.24 1.88 2.24 0.3 0.49 1.73 3.66 16.86 10.35 3.54 11.05
9 0.02 0.71 2.36 0.73 0.76 5.33 5.75 7.89 27.93 5.95 1.85 13.99

10 0.08 0.82 0.47 2.60 5.64 3.66 8.29 12.83 14.64 15.14 2.81 12.71
M 0.44 0.39 0.83 1.0 1.62 4.43 4.74 6.73 13.34 16.40 2.4 15.02
SD 0.45 0.26 0.79 0.77 1.57 3.75 3.87 5.84 6.83 10.4 2.22 7.02

8. Conclusions

Proliferation of smartphones that integrate increasingly sophisticated sensors creates new
opportunities for instrumentation and quantification of standard monitoring and diagnostic procedures.
This is particularly important for the monitoring of elderly and chronic patients. In this paper,
we describe a suite of smartphone applications we developed to automate standard recommended
mobility assessment tests: TUG, 30SCS, and 4SBT. The applications provide instantaneous feedback to
the user and automatically upload the test results to the mHealth server. The application has been
tested on a group of healthy volunteers and elderly patients with recent falls and showed promising
results. By utilizing commodity smartphones, the application suite offers an affordable tool for
instantaneous quantification of the mobility assessment. Analysis of the parameters collected over
longer periods of time may help in longitudinal monitoring of mobility of subjects and quantify the
effectiveness of exercise programs and therapies.
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