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Abstract: This article discusses how computational intelligence techniques are applied to fuse spectral
images into a higher level image of land cover distribution for remote sensing, specifically for satellite
image classification. We compare a fuzzy-inference method with two other computational intelligence
methods, decision trees and neural networks, using a case study of land cover classification from
satellite images. Further, an unsupervised approach based on k-means clustering has been also taken
into consideration for comparison. The fuzzy-inference method includes training the classifier with a
fuzzy-fusion technique and then performing land cover classification using reinforcement aggregation
operators. To assess the robustness of the four methods, a comparative study including three years
of land cover maps for the district of Mandimba, Niassa province, Mozambique, was undertaken.
Our results show that the fuzzy-fusion method performs similarly to decision trees, achieving
reliable classifications; neural networks suffer from overfitting; while k-means clustering constitutes
a promising technique to identify land cover types from unknown areas.
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1. Introduction

The main objective of this study is to discuss the suitability of different computational intelligence
methods for studying land cover spatiotemporal modifications, mainly for improving land usage and
management. This paper is based on a preliminary conference paper [1] where we presented a novel
fuzzy image fusion technique and compared it with two other computational intelligence methods,
decision trees and neural networks, for fusing images and performing classification of terrains as
waterbody, river bank, bare area, cropland, grassland, shrubland and forest. In this article, we extend
the previous work by reproducing a spatiotemporal case study with three years (1989, 2002, 2005)
run by Temudo et al. [2] where the changes of land cover usage in the post-war period (>1992) in the
district of Mandimba, Niassa province, Mozambique, were studied (http://earthexplorer.usgs.gov).
In our article, we also include an unsupervised approach for enriching the comparative study. The aim
of this extension is to strengthen the claims about the accuracy of the fuzzy-fusion approach and to
demonstrate its suitability for spatiotemporal image fusion.
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Nowadays, with the free availability in web repositories of multispectral satellite images from
Earth observation missions, we can efficiently classify terrain types and, therefore, contribute to studies
and improved analysis of the Earth environment. These studies fall into the domain of remote sensing
analysis and cover topics such as deforestation, degradation of coastal areas, wildfires and shifting
cultivation, among others [3]. The term remote sensing is understood as a technique for identifying,
classifying and determining an object’s properties through the analysis of data acquired remotely,
without physical contact with the object itself [4].

There are several works in the literature about applying Computational Intelligence (CI)
techniques to satellite images for feature extraction and classification, with the aim of improving
land cover analysis. For example, CI techniques such as fuzzy logic [5–7], Decision Trees (DT) [8–10]
and Artificial Neural Networks (ANN) [11–14] are already applied in many classification problems
and in particular in some cases of remote sensing [15–17].

The discussed fuzzy-fusion inference method, instead of just using a basic fuzzy inference
model, is improved with reinforcement aggregation operators to perform the inference reasoning [1,
18]. Reinforcement aggregation operators have been applied in decision making methods and
data fusion [19–22], but here, they are used in the inference scheme to ensure positive or
negative reinforcement in the classification. The fuzzy-fusion inference method includes three steps:
(i) fuzzification of the spectral information (bands); (ii) creation of the rule set for the land cover classes;
(iii) evaluation of the rules using aggregation operators. To create the fuzzy membership functions
(Step i), we generated histograms from the training data and then built the membership functions by
fitting Gaussian functions to the histogram’s clusters (clustered with Otsu’s thresholding method [23])
using a hybrid algorithm that combines the Levenberg–Marquardt optimization method [24] and
the classic mean and standard deviation approach [16]. For the classification process (Step ii),
seven rules were defined, one for each class to be classified, having seven inputs each, corresponding
to the spectral bands’ membership functions. For the inference scheme (Step iii), we followed the
Takagi–Sugeno model of fuzzy inputs, crisp output [25] and tested four types of aggregation operators:
average; minimum; and two reinforcement operators: Fixed Identity Monotonic Identity Commutative
Aggregation (FIMICA); Fuzzy-Fusion (FF)-Uninorm [21,26,27].

This paper is organized as follows. Section 2 provides an overview of techniques used in remote
sensing, with special consideration of approaches based on the techniques of computational intelligence.
In Section 3, the case study and the proposed classification method are presented. In Section 4,
a comparative study of the results obtained with our approach, DT, ANN and unsupervised k-means
clustering is given. Finally, in Section 5, we provide some conclusions and future work.

2. Related Work in Remote Sensing Analysis

Land cover classification from satellite images constitutes a typical problem related to remote
sensing. It can be performed in a supervised way (having a preclassified training set) or an
unsupervised way (where no additional information regarding the content of the image is provided).
This means that the unsupervised algorithm extracts class labels for each image region (or individual
pixel), being equivalent to a clustering task. Both classic statistical approaches and others based
on Computational Intelligence (CI) techniques have been successfully applied for this clustering
task. The classic statistical approach involves algorithms such as k-means [28], c-means [29] or the
expectation-maximization method [30]. On the other hand, the approaches based on CI frequently
employ nature-inspired heuristics like genetic algorithms [31] or particle swarm optimization [32].
These CI supervised methods represent an alternative solution to the aforementioned clustering
techniques, where the algorithms are supplemented with additional knowledge related to the
assignment of pixels/regions to different classes. Among the most common approaches of this
type are DT, ANN and fuzzy inference systems. As the paper studies a supervised variant of a remote
sensing method and employs the aforementioned techniques for comparison, they will be covered
below in more detail.
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Decision Tree (DT) classifiers divide data into smaller subsets with some similar features, until subsets
are homogeneous. A DT is composed of nodes (root and interior) and leaves (terminal nodes). Each node
represents a rule that is applied to the data and that controls the path to be followed to the next node.
The design of a tree can be done manually, when it is based on a priori knowledge, or automatically using
mathematical evaluation algorithms, such as ID3 (Iterative Dichotomiser 3), C4.5 or CART (Classification
And Regression Tree) methods. Friedl and Brodley [3] and Fauvel et al. [17] used DTs to perform terrain
classification and concluded that they are adaptable to noisy and nonlinear relations between land cover
classes and remotely-sensed data.

Artificial Neural Networks (ANN) form a classification technique where neurons are trained
to detect patterns in the training dataset and then the trained classifier is applied to unknown data.
In a multi-layer ANN, the number of neurons in the input and output layers is determined by the data
being analyzed (external elements), while the number of hidden layers is determined mainly by trial
and error, allowing the network to solve more complex problems [15]. This classification technique
has some drawbacks, in particular a long learning time, lack of transparency on the reasoning process
(typically presenting a black-box behavior) and a tendency to produce overfitting. One of the first
applications of ANN in remotely-sensed data was the work of Kanellopoulos and Wilkinson [33].
In their article, a set of best practices for applying ANN in remote sensing data was presented.
Later, Ayhan and Kansu [15] conducted a study, comparing three multispectral image classification
techniques, namely ANN, the maximum-likelihood estimator and fuzzy logic, using images from
IKONOS II and Landsat. They concluded that ANN is a robust method, but with the drawback that
determining the optimum network structure is a hard and fundamental task to ensure good results.

Finally, Fuzzy Inference Systems (FIS) are rule-based models described by logic operators in rules
that establish relationships between fuzzy sets [34]. The set of rules, which can be provided either by
experts or by creating all possible combinations between input variables [35] are composed by a set of
propositions, antecedents (inputs) and consequents (outputs). FIS include three main processes [34]:
inputs’ fuzzification; fuzzy rules’ definition and inference scheme selection to obtain the outputs.
The fuzzification process refers to the representation of all input variables on the [0, 1] domain through
the use of fuzzy sets. The most common fuzzification processes [34] are performed through: intuition,
inference or induction. Induction uses observation data to generate membership functions, and this is
the chosen method in this work. Regarding the inference scheme, the most well-known models are
those of Mamdani [36] and Takagi–Sugeno [25]. The Mamdani model requires defuzzification and
is more computationally intensive, while Takagi–Sugeno is more suitable for mathematical analysis
because it is computationally efficient and produces crisp outputs. In this work, and due to its efficiency,
we use the weighted average of the Takagi–Sugeno model, but substituting the classical algebraic
operators by the reinforcement aggregation operator. Throughout the literature, there are several
published works where fuzzy logic classifiers were applied in remote sensing problems, but none
with our specifications. Some, like [7,15,37], train the classifier (fuzzification) using simple Gaussian
membership functions, which are defined only with the data’s mean and standard deviation, and use
a discrete max-min operator for the inference scheme. This method will be hereafter referred to as the
classical method.

3. Materials and Methods

3.1. Input Data

As mentioned, our case study covers the 1989–2005 period because there is a previous study [2]
where the authors studied the population return to one Mozambique district (Mandimba), after the
1992 peace accord, which resulted in observable changes in land usage. Mainly, a change was observed
for shifting cultivation, a known agricultural technique, sometimes called slash and burn [38], where
deforestation allows new cultivation areas, which are well observed from satellite imagery.
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The imagery used was borrowed from Temudo et al. [2], which included Landsat 5 (1989) and
7 (2002 and 2005) high-resolution satellite images (8-bit data), taken over the district of Mandimba,
province of Niassa, in Mozambique (Figure 1a). The choice of dataset was due to the existing expert
land classification, on the mentioned study, that could act as the ground-truth. Landsat 5 used a
Thematic Mapper (TM) multispectral scanning radiometer and Landsat 7 the Enhanced Thematic
Mapper Plus (ETM+), which has similar resolution (28.5 m/pixel) and the same spectral bands (seven)
plus a panchromatic one (15 m/pixel), and each image covers the same area. The satellite images were
acquired in 1989, 2002 and 2005 and cover a region of approximately 16,831 km2 (4605 × 4500 pixels
with a 28.5-m/pixel effective resolution). A mask of the Mandimba district and areas not covered
by nebulosity in any of the three images was created (Figure 1b), reducing the total covered area to
3367 km2. We used five spectral bands, namely Green-Band 2, Red-Band 3, Near-Infrared (c)-Band
4, Short Wave Infrared 1 (SWIR-1)-Band 5 and SWIR-2-Band 7, together with two vegetation indices,
to ensure the distinction of vegetation types: the Normalized Difference Vegetation Index (NDVI) [39]
and the Vegetation Index (VI) proposed in [40], respectively depicted by Equations (1) and (2). In their
original equations, they provide normalized values in the interval [−1, 1], but here, they were rescaled
to a normalized 8-bit unsigned scale [0, 255]. These vegetation indices have the advantage of being
less dependent on illumination and having a good discrimination between different land cover types.
They show higher values for vegetation, positive low values for water and bare soils and negative
index values for clouds and snow.

NVDI = 127× NIR − RED
NIR + RED

+ 127 (1)

VI = 127× NIR − SWIR 2
NIR + SWIR 2

+ 127 (2)
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Figure 1. (a) Landsat 5 image taken in 1989 over the district of Mandimba (RGB-Bands 743) and (b) in
black, the mask of the Mandimba district and areas not covered by clouds in the 3 images.

Our case study encompassed a total of seven land cover classes, as described in Table 1. However,
we will follow the general analysis procedure of Temudo et al. [2], merging similar classes, reducing
its number to five (Table 1, column “merged”) to facilitate understanding the comparative results.
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Table 1. Classes used for classification and merged 5-class distribution.

ID Class Name Abbreviation Class Description Merged Samples

1 Waterbody WaterB Areas covered by water
(e.g., rivers, lakes) 1
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3.2. Overview of the Fuzzy-Fusion Uninorm Method

The fuzzy-fusion classifier is a supervised system using an inference scheme with specialized
reinforcement aggregation operators. The output of each rule is the result of the aggregation of its
antecedents, i.e., each rule represents a class, which evaluates a given pixel using its seven spectral
information bands. The classification result is the class that obtained the maximum score. To build
a classifier based on the fuzzy-fusion approach, three stages are required: (1) create the training set
and build the inputs’ membership functions; (2) define the rule-base system; and (3) implement the
inference scheme with reinforcement aggregation operators.

3.2.1. Training Set

Since the satellite images for the three years were not calibrated, different supervised training
sets for each year were created. Further, as mentioned before, since there is no ground-truth
data available, we used the training sets built manually by the experts, Temudo et al. [2], through
visual inspection of Landsat and SPOT satellite images and supported by land cover statistics
produced by Mozambique National Cartography and Remote Sensing Centre (CENACARTA)
(available at http://www.cenacarta.com). They selected a total of 10,840, 9950 and 10,106 sample
pixels (seven bands each), representing the seven aforementioned classes, respectively for the years
1989, 2002 and 2005.

After defining the training set, seven intensity histograms (one per band or vegetation index) were
defined for each class using the spectral intensity information of the sample pixels. To each histogram,
one or more membership functions were assigned according to a fitting process, as illustrated in
Figure 2, for Waterbodies and Forests and Woodlands classes.

http://www.cenacarta.com
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Figure 2. Example of histograms and unimodal and bimodal membership function fits for classes
Waterbodies and Forests and Woodlands.

There are several methods to create fuzzy membership functions. A good overview can be
found in [34]. In our case, we followed an inductive method using histograms and fitted Gaussian
functions, which on the one hand, can be generated automatically from the training set and, on the
other hand, provide a smooth model of the histogram distribution. Knowing that histograms describe
the frequency of pixel values within a class, pixels more likely to appear have higher membership
values, while the inverse applies to pixels with lower occurrences.

Since the area covered by one pixel (28.5 m × 28.5 m) may contain more than one land type or,
in other words, the class selected can be composed of multiple land or vegetation types (example of
Shrublands that are a mixture of bushes and soil), these histograms are not always smooth, unimodal
or symmetrical. Bimodalities and asymmetries may occur like the ones illustrated in Figure 2. Fitting
just one single Gaussian function did not always converge to the best solution. Therefore, we devised
five steps to obtain the pseudo-optimal membership functions:

1. Fit the histogram with one asymmetrical Gaussian membership function;
2. Apply Otsu’s thresholding method [23] to the histogram to find the two main clusters;
3. Obtain for each cluster an asymmetrical Gaussian membership function, using the cluster’s mean

and standard deviation values above and below the mean value;
4. Fit each cluster by an asymmetrical Gaussian membership function;
5. Use the root mean square error to select the membership function that best fits the cluster

(choosing the resulting membership function of Step 1, 3 or 4).

For the fitting process, the Levenberg–Marquardt optimization algorithm [24] was used. It solves
non-linear least square problems, reducing the sum of square differences between the original data
points (histogram) and the model function (membership function), by adjusting the model parameters.
Our model uses asymmetrical Gaussian functions. Other topologies such as triangular and trapezoidal
were also tested; however, Gaussian functions achieved better fitting for the data. In the case of classes
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with few samples (bare areas) or in some VI histograms where sparsity occurred due to rounding
effects, a final manual adjustment of the Gaussian fitting was required.

3.2.2. Rule-Based System

The rule set defined for our method is composed of seven rules, one for each land cover class.
The fuzzy variables are the spectral bands, with a specific membership function for each class.
In general, if a class receives high scores through all N bands, then it should be assigned to the
pixel. A set of K rules (K-number of classes) is then automatically identified in the fuzzy rule-based
inference system. It should be noticed that when classes contain a mixture of land or vegetation types
and it is possible to have a more detailed training set, it is better to have more rules for each land type,
although the output class is the same. In our case, the rule-set is composed of seven rules:

Rule 1: If Band 1 is Waterbody (WaterB) and Band 2 is WaterB . . . and Band 7 is WaterB Then output is WaterB;
Rule 2: If Band 1 is River Bank (RiverB) and Band 2 is RiverB . . . and Band 7 is RiverB Then output is RiverB;
Rule 3: If Band 1 is Bare Area (BareA) and Band 2 is BareA . . . and Band 7 is BareA Then output is BareA;
Rule 4: If Band 1 is Cropland (CropL) and Band 2 is CropL . . . and Band 7 is CropL Then output is CropL;
Rule 5: If Band 1 is Grassland (GrassL) and Band 2 is GrassL . . . and Band 7 is GrassL Then output is GrassL;
Rule 6: If Band 1 is Shrubland (ShrubL) and Band 2 is ShrubL . . . and Band 7 is ShrubL Then output is ShrubL;
Rule 7: If Band 1 is Forest and Woodlands (ForestW) and Band 2 is ForestW . . . and Band 7 is ForestW Then output is ForestW.

The firing level of every rule (i.e., rule output score) is calculated with a reinforcement aggregation
operator, detailed in the next section. This technique also generates a certainty measure for all classes,
thus enabling producing certainty distribution maps.

3.2.3. Reinforcement Inference Scheme

As mentioned before, here, we follow an inference scheme that uses reinforcement aggregation
operators to perform the fusion of images [1]. This fusion process with specialized aggregation
operators is based on other work performed by some co-authors [18]. Reinforcement aggregation
operators penalize results with lower scores (negative reinforcement) and reward high scores (positive
reinforcement) allowing one to discard alternative classes with very low scores (details about these
operators can be seen in [26,27]). Formally, the discussed inference scheme includes, as the premise,
the scores from each band and then the firing level determination (aggregation operation) selection of
the best score, i.e., the class identification is as follows:

Score = maxi
(
⊕jClassi

(
bandj

))
(3)

where:

• ⊕j = aggregation operator;

• i ∈ [0, NClasses] = the class number;
• j ∈ [0, NBands] = the band number;
• Classi = class under evaluation;
• bandj = input bands.

It should be noted that performing inference with reinforcement operators is an innovative
method to determine a more positive or negative reinforcement of the rule’s firing level and respective
classification certainty for each class (for more details, see [1]). In the same article, it was found that
the Uninorm reinforcement aggregation operator was better for classification of satellite images; hence,
it is the one considered in this comparative study.

4. Assessment and Discussion

In the next sub-sections, we discuss the details of the four methods for: (1) the classifiers’ training
performances and (2) the results comparison of the four land cover classifications of the district of
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Mandimba. In the ground-truth study [2], the inputs were preprocessed by a mean filtering to produce
more homogenous land cover maps. Then, the authors used a decision tree classifier to generate their
land cover maps. The effect of filtering on the land cover maps can be seen in Figure 3 where the
original image was compared with the FF-Uninorm method before and after applying a 3 × 3 mean
filtering. Figure 3b contains a noisier image than the ground-truth one, and Figure 3c contains the
same level of smoothness as Figure 3a. Following this observation, we preprocessed all the images in
the same fashion.
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The Decision Tree (DT) ground-truth classifier was created with the CART algorithm, while the
ANN and k-means algorithms were developed using MATLAB Toolboxes. The ANN configuration
was a feedforward network composed of seven input neurons, one hidden layer with eight neurons
and seven output neurons fully interconnected. The k-means was configured to detect eight clusters,
being this extra one the background mask, and then, it was applied to the full image. Its training
accuracy was computed by locating in the image the training samples, obtaining their outputs and
computing the accuracy scores. Since the ground-truth study [2] aggregates the seven classes into a
smaller set of five classes, we merged the classes according to the same merged column in Table 1.

4.1. Comparison of Training Results

We compare our fuzzy-fusion model, configured with the Uninorm reinforcement aggregation
operator (FF-Uninorm), against other CI techniques, namely with DT (ground-truth study), ANN and
k-means (an unsupervised approach). All techniques share the same training sets, previously presented
on Section 3.2.1, one for each year. The accuracy was computed as the rate of correct classifications
versus the total number of training samples.

The classifier training accuracies are shown in Table 2 for each training set (year). In the “training
samples” row are presented the percentage of samples for each class within the training set, which in
addition are used to weight the total average calculation. From the results shown, ANN consistently
produced more accurate classifications along the three years (95.6%, 91.8% and 92.1%), although
less consistent along the several classes, as can be seen in 2002, where only 22.4% accuracy for
Shrublands was achieved. On the opposite side, k-means, being an unsupervised technique, in the
1989 subset obtained very reasonable results (78.8%), but decreased the accuracy in the subsequent
training sets (63.0% and 53.7%). Fuzzy-fusion with Uninorm and DT obtained good classification
accuracies (78.1–88.2% for FF-Uninorm and 85.5–90.2% for DT). It can also be noticed that all techniques
including DT and FF-Uninorm had difficulties correctly classifying Shrublands, which could indicate a
misclassified training set.
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Table 2. Accuracy of classifying the training set with FF-Uninorm, DT, ANN and k-means.

Year Method Other CropL GrassL ShrubL ForestW Total Avg

1989

FF-Uninorm 99.9% 83.0% 81.5% 69.6% 92.5% 88.2%
DT 100.0% 88.8% 86.0% 87.0% 90.4% 90.2%

ANN 97.7% 99.3% 66.8% 70.8% 98.4% 95.6%
k-means 91.4% 89.4% 44.0% 67.0% 75.0% 78.8%

Training samples 7.4% 35.3% 7.1% 3.1% 47.1%

2002

FF-Uninorm 99.9% 91.7% 59.9% 63.1% 76.8% 81.5%
DT 100.0% 87.4% 73.4% 69.3% 85.5% 85.5%

ANN 96.5% 99.6% 73.5% 22.4% 94.6% 91.8%
k-means 92.6% 53.0% 33.3% 41.9% 74.2% 63.0%

Training samples 7.7% 34.5% 10.3% 3.4% 44.2%

2005

FF-Uninorm 99.3% 87.3% 63.8% 67.3% 72.6% 78.1%
DT 100.0% 90.4% 88.4% 78.1% 80.8% 86.4%

ANN 99.7% 98.8% 84.4% 58.5% 94.4% 92.1%
k-means 94.7% 46.3% 21.0% 38.3% 68.0% 53.7%

Training samples 7.6% 34.6% 13.7% 8.0% 36.0%

From these training accuracies, it was expected to have a more reliable classification from ANN,
but to confirm this, we classified the full image and discuss the results in the following section.

4.2. Comparison of Classification Results

The full size image of the Mandimba region was also classified and results compared with the
ground-truth. The comparison was made by analyzing the total areas covered by each land cover type,
computing the Rand Index clustering agreement validity measure (explained in the next section) and
by visual inspection of the land cover classified images. In the study run by Temudo et al. [2], the main
objective was to analyze the land cover changes that occurred in the period 1989–2005. The authors
found that, mainly observed near the border with Malawi (west), there was a shifting in the use of
lands from forest and shrublands to areas devoted to crops.

The land cover area distribution over the three-year study for the four methods can be found in
Figure 4, while Figure 5 demonstrates land cover classified images. Analyzing the areas of ANN and
k-means, only croplands showed the evolution mentioned by the ground-truth study, and all the other
land cover types had irregular behaviors, which does not reflect the reality in this district. In the case
of ANN, which in the training obtained the best accuracy results, the irregularity can be justified by a
possible overfitting. Concluding, ANN does not adapt to small training sets, while other techniques
do. The k-means could identify the main land cover types, as depicted in Figure 5 and in more detail in
Figure 6, where a road is clearly detected, and the other main classes were correctly classified. Perhaps
more tests with a higher number of clusters can identify more subtypes, which can be merged into the
land cover groups previously defined and achieve a higher accuracy.
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Figure 4. Land cover areas distribution along the three-year study for the four classification methods:
(a) FF-Uninorm; (b) Decision Tree; (c) Artificial Neural Network; (d) k-means clustering.

Regarding FF-Uninorm and DT, it clearly depicts the trend presented in the ground-truth study as
croplands area increased (4.5% » 21.9% for FF-Uninorm and 5.0% » 17.8% for DT) and forest decreased
its area (56.5% » 34.0% for FF-Uninorm and 51.3% » 36.5% for DT), while the Others class remained
with approximately the same area (1.2 » 1.1% for FF-Uninorm and 1.0 » 0.9% for DT). When analyzing
the areas of grassland and shrubland, the results differ. FF-Uninorm identified a negative trend
for grassland and a positive trend for shrubland, while DT obtained approximately stable areas for
both types along this time period. These results are difficult to distinguish even by visual inspection
(top row of Figure 7), since small bushes can be interleaved with grasslands and only a detailed
analysis can identify which classification method was more accurate. To improve their classification a
neighboring analysis should be undertaken to detect mixed land cover areas. If we sum the areas of
these two classes, their differences are lower and show a slight positive trend.

Another validity measure, especially to assess k-means performance, was the use of the Rand
Index (RI) cluster agreement measure. RI is an external clustering validity measure based on pairwise
comparison of clustering assignments of points belonging to the same/different clusters (in both of
compared clustering solutions) [41]. A value of one of RI indicates that both investigated clusterings
are identical and zero that they do not agree on any pair of points. In Table 3, the agreements between
the four methods for each year and the average along the three-year study can be seen.

The agreement results reinforced the conclusion that FF-Uninorm and DT are the most similar ones
among them (0.8 on average). Furthermore, it showed that the k-means clustering technique, although
being an unsupervised technique, was quite consistent along the study and obtained relatively high
scores when compared with FF-Uninorm and DT (0.73–0.84 with FF-Uninorm and 0.69–0.76 with DT).

In summary, our model with the FF-Uninorm operator produced results that are adaptable and
consistent with DT (bottom row of Figure 6). k-means was shown to be an adequate technique
whenever there is no prior knowledge on the land cover classes.

Table 3. Rand Index agreement validity measure among FF-Uninorm, DT, ANN and k-means.

1989 2002 2005 Average

DT ANN k-Means DT ANN k-Means DT ANN k-Means DT ANN k-Means

FF-Uninorm 0.77 0.73 0.75 0.85 0.79 0.73 0.80 0.71 0.84 0.80 0.74 0.77
DT 0.75 0.69 0.75 0.74 0.75 0.76 0.75 0.73

ANN 0.65 0.62 0.70 0.65
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5. Conclusions

In this work, we extended previous work where a fuzzy-fusion approach with reinforcement
aggregation operators, for land cover classification from multispectral satellite images, was proposed.
The main aim of the approach was to fuse spectral information (from a multispectral satellite
imagery source or other) to produce land cover maps and compare the preliminary approach with
two others from the computational intelligence realm. In this article, we improved the preliminary
study with two additions. First, we enriched the comparison assessment by introducing a new
example composed of a three-year period of satellite images (taken in the years 1989, 2002 and 2005)
enabling comparing the evolution of the land cover area distribution with the results of a study,
acting as the ground-truth, run in this region. Second, we included another promising method on
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our comparison study, the k-means unsupervised clustering technique, to assess its suitability as an
alternative classification method.

Our fuzzy-fusion approach improved the training of common fuzzy classifiers by: (a) proposing a
hybrid algorithm that performs clustering of the pixel intensity histograms and fits them with Gaussian
functions; (b) uses a reinforcement operator (Uninorm) as a novel inference scheme for the rule-based
classification. Furthermore, this method can produce classification certainty maps that help to assess
the results and detect possible improvements (although this functionality was not used in this study).

When comparing the accuracy of our FF-Uninorm approach with the other three computational
intelligence techniques (decision trees, artificial neural networks and k-means), the general accuracy
was lower than DT and ANN. However, when applied to the full images, it performed similarly to
DT, and we manage to successfully reproduce the ground-truth results. A higher disparity in the
classification of grassland and shrubland between FF-Uninorm and DT was noticed, although this
might be due to these classes being composed of a mixture of bare and vegetation areas, and these
methods are not able to process this spatial distribution just with a single pixel classification.

The introduction of the k-means unsupervised technique in this study gave positive insights on the
ability of the method to analyze unknown areas or to prepare training sets for other methods. In most tests,
it produced reasonable classifications and obtained a good agreement with FF-Uninorm and DT.

As future directions, we can identify the need for improvements on the training set generation
and consequent improvements on the membership function creation, mainly to deal with the small
number of samples of less frequent classes. Furthermore, we plan to introduce a pixel neighboring
analysis upon the pixel classification, to improve the classification of land cover classes that have a
mixture of land types (ex. Shrublands).
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