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Abstract: The internal structure of XML documents can be viewed as a tree. Trees are among the
fundamental and well-studied data structures in computer science. They express a hierarchical
structure and are widely used in many applications. This paper focuses on the problem of
processing tree data structures; particularly, it studies the XML index problem. Although there
exist many state-of-the-art methods, the XML index problem still belongs to the active research areas.
However, existing methods usually lack clear references to a systematic approach to the standard
theory of formal languages and automata. Therefore, we present some new methods solving the XML
index problem using the automata theory. These methods are simple and allow one to efficiently
process a small subset of XPath. Thus, having an XML data structure, our methods can be used
efficiently as auxiliary data structures that enable answering a particular set of queries, e.g., XPath
queries using any combination of the child and descendant-or-self axes. Given an XML tree model
with n nodes, the searching phase uses the index, reads an input query of size m, finds the answer in
time O(m) and does not depend on the size of the original XML document.
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1. Introduction

Extensible Markup Language (XML), which became a World Wide Web Consortium (W3C)
Recommendation in 1998, still belongs to the main methods of exchanging data over the Internet.
It also plays an important role in many aspects of software development, often to simplify data storage
and sharing. Thus, efficient storing and querying of XML data are key tasks that have been extensively
studied during the past few years [1–15].

To be able to retrieve the data from XML documents, various query languages such as XPath [16],
XPointer [17] and XLink [18] have been designed. However, without a structural summary, query
processing can be quite inefficient due to an exhaustive traversal on XML data. To achieve fast
searching, we can preprocess the data subject and construct an index.

Basically, the problem of XML data indexing is constructing a data structure able to efficiently
process XML query languages, such as XPath. There are two crucial issues connected with all indexing
methods: first, the requirement for a small size of the index; second, very fast query processing,
which ideally means that the answers to the queries are found in time linear to the size of the query
and do not depend on the size of the subject where the queries are located. If these requirements are
fulfilled, the index structure allows one to answer a number of queries with low requirements for both
time and space complexity.

However, the flexibility of the specifications of XML queries adds to the challenge of indexing
methods, and the creation of a universal index that is able to process all of the possible XML queries
efficiently is a very challenging area. Using only the two most commonly-used XPath axes (child
axis and descendant-or-self axis), the number of potential queries is exponential (e.g., O(2.62n) for
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a simple linear XML tree with n nodes [19]). Therefore, there is always a tradeoff between the size
and the power of an XML index. It either needs to be large to perform well or performs poorly as a
consequence of saving space.

In this paper, we propose three indexing methods that are all based on finite state automata.
These methods are simple and allow one to efficiently process a small subset of XPath. Therefore,
having an XML data structure, our methods can be used efficiently as auxiliary data structures that
enable answering a particular set of queries.

All automata presented in this paper support some fragments of linear XPath queries. In particular,
we focused on the two common axes (i.e., child and descendant-or-self) with name tests. However,
the techniques described here may be also relevant to the general XPath processing problem.
First, we believe that a similar approach can be used to build automata that support other XPath axes
(e.g, an automaton supporting the parent and ancestor axis). Second, processing linear expressions is a
subproblem of processing more complex queries, as we can decompose them into linear fragments.
Third, this can be seen as a building block for more powerful processors able to process branching
queries. Moreover, it is easy to combine our indexes presented in this paper with other automata-based
indexes using standard methods of automata theory.

First, we present Tree String Paths Automaton (TSPA) and Tree String Path Subsequences
Automaton (TSPSA; introduced in [20]), aimed at assisting in evaluating XPath queries with either
child or descendant-or-self axes only. Then, we present Tree Paths Automaton (TPA; introduced in [21]),
which is designed to process XPath queries using any combination of child and descendant-or-self axes.

The rest of this paper is organized as follows. Section 2 discusses state-of-the-art methods
for XML data indexing. Section 3 gives the necessary theoretical background including a brief
description of both XML and XPath. Next, in Section 4, we introduce our approach to XML data
indexing using automata theory. The theoretical time and space complexities of the proposed
methods and experimental evaluation are discussed in Section 5 and Section 6, respectively. Finally,
we summarize the contributions of our research, discuss our future work directions and conclude the
paper in Section 7.

2. Related Work

An XML document can be simply treated as a stream of plain text. Thus, stringology
algorithms [22,23] are applicable in this field. The theory of text indexing is well researched and
is based on many sophisticated data structures, such as suffix tree, suffix array or factor automaton.
However, the internal structure of XML documents can be also viewed as a tree in a natural way.
Trees are among the fundamental and well-studied data structures in computer science. They naturally
express a hierarchical structure and are widely used in many applications.

The algorithmic discipline interested in processing tree data structures is called arbology [24],
which was officially introduced at the London Stringology Days 2009 conference. Arbology solves
problems such as tree pattern matching, tree indexing and finding repeats in trees. For its algorithms,
arbology uses a standard pushdown automaton as the basic model of computation, unlike stringology,
where a finite state automaton is used.

Nowadays, many methods solving the problem of XML data indexing exist. According to their
approaches, we can classify them as follows:

• Graph-based methods construct a structural path summary that can be used to improve query
efficiency, especially for single path queries. In this category, we can classify, for instance, the
following methods: DataGuides [1], 1-Index [6], Hierarchical Indexing Approach to Support
XPath Queries (PP-Index) [4], Forward and Backward (F&B)-Index [5], An XML XPath Graph
Index (MTree) [2] or Compact Tree (CTree) [3].

• Sequence-based methods transform both the source data and query into sequences. Therefore,
querying XML data is equivalent to finding subsequence matches. Into this category we can
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classify, for instance, the following methods: Virtual Suffix Tree (ViST) [11], Prüfer sequences for
Indexing XML (PRIX) [7] or that of [12].

• Node-coding methods (see [25]) apply certain coding strategies to design codes for each node,
in order for the relationship among nodes to be evaluated by computation. Into this category,
we can classify, for example, the XML Indexing and Storage System (XISS) [10], XR-tree [13],
Dewey numbering schema [14] or relative region coordinate [15].

• Adaptive methods can adapt their structure to suit the query workload. Therefore, adaptive
methods index only the frequently-used queries. Into this category, we can classify, for instance,
the following methods: Adaptive Path index for XML data (APEX) [9] and Adaptive Index for
Branching XML Queries (AB-Index) [8].

Generally speaking, every method has its own advantages; however, shortcomings do exist.
Graph-based methods usually do not support complex queries; sequence-based methods tend to
generate approximate solutions, thus requiring a great deal of validation; node-coding methods are
very difficult to apply to an ever-changing data source; and adaptive methods have low efficiency on
non-frequent query.

In this paper, we present some new methods for XML data indexing using finite state automata.
To our knowledge, although a number of automaton formalisms were proposed for XML, they usually
deal with different problems than XML data indexing (see [26]). For instance, finite state automata
or tree automata [27–29] are used for the pattern matching (e.g., filtering of XML documents),
which basically means that instead of preprocessing the XML data, they preprocess a set of queries
(patterns) [28,30–33]. Automata are also often connected with the XML validation problem [28,34,35].
In [36], finite state automata are used to represent rewritten regular XPath queries, which enables
answering queries posed on virtual views of XML documents.

3. Theoretical Background

3.1. Basic Notions

An alphabet A is a finite non-empty set whose elements are called symbols. A Nondeterministic
Finite State Automaton (NFSA) is a five-tuple M = (Q, A, δ, q0, F), where Q is a finite set of states,
A is an alphabet, δ is a state transition function from Q × A to the power set of Q, q0 ∈ Q is an
initial state and F ⊆ Q is a set of final states. A finite state automaton is Deterministic (DFSA) if
∀a ∈ A, q ∈ Q : |δ(q, a)| ≤ 1.

For a NFSA M1 = (Q1, A, δ1, q01, F1), we can construct an equivalent DFSA M2 =

(Q2, A, δ2, q02, F2) using the standard determinisation algorithm based on subset construction [37].
Every state q ∈ Q2 corresponds to some subset of Q1. We call this subset a d-subset (deterministic
subset). The d-subset is a totally ordered set; the ordering is equal to ordering of states of M1 considered
as natural numbers.

Let M1 = (Q1, A, δ1, q01, F1) and M2 = (Q2, A, δ2, q02, F2) be two finite state automata.
We define a finite state automaton M∪ such that L(M∪) = L(M1) ∪ L(M2). We can build the
automaton M∪ by running the automata M1 and M2 in “parallel” by remembering the states
of both automata while reading the input. This is achieved by the product construction [37]:
M∪ = (Q1 ×Q2, A, δ, (q01, q02), (F1 ×Q2) ∪ (Q1 × F2)), where δ((q1, q2), a) = (δ1(q1, a), δ2(q2, a)).

A rooted and directed tree T is an acyclic connected directed graph T = (N, E), where N is a
set of nodes and E is a set of ordered pairs of nodes called directed edges. A root is a special node
r ∈ N with in-degree zero. All other nodes of a tree T have in-degree one. There is just one path from
the root r to every node n ∈ N, where n 6= r. A node n1 is a direct descendant of a node n2 if a pair
(n2, n1) ∈ E.

A labeling of a tree T = (N, E) is a mapping N into a set of labels. T is called a labeled tree if
it is equipped with a labeling. T is called an ordered tree if a left-to-right order among siblings in T
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is given. Any node of a tree with out-degree zero is called a leaf. The depth of a node n, denoted as
depth(n), is the number of directed edges from the root to the node n.

3.2. XML

XML is a markup language that defines a set of rules for encoding documents in a format that is
both human-readable and machine-readable. The set of marks of an XML document is not fixed and
can be defined in various ways for each document. The key constructs of an XML document are tags,
elements and attributes. We will illustrate these constructs by means of an example.

Example 1. Consider the sample of an XML document below, which displays some basic information about
noble houses of the Seven Kingdoms in Westeros (Westeros is a fictional continent of an American fantasy drama
named Game of Thrones).

<HOUSES>
<HOUSE name="Stark">
<LORD>Eddard Stark</LORD>
<SIGIL>Direwolf</SIGIL>
<SEAT>Winterfell</SEAT>
<VASSALS>
<HOUSE name="Karstark">
<LORD>Rickard Karstark</LORD>
<SEAT>Karhold</SEAT>

</HOUSE>
</VASSALS>
</HOUSE>
<HOUSE name="Targaryen">
<LORD>Daenerys Targaryen</LORD>
<SIGIL>Dragon</SIGIL>
</HOUSE>

</HOUSES>

We can see that HOUSES is the most outer element. A start-tag of this element is of the form <HOUSES>,
whereas the corresponding end-tag, indicating the end of the element, is </HOUSES>. Therefore, the content
between and including the tags <HOUSES> and </HOUSES> constitutes the HOUSES element.

Elements can be arbitrarily nested inside other elements. For instance, the HOUSES element has two HOUSE
elements as its sub-elements. Every HOUSE element includes LORD as its first sub-element and optionally SIGIL,
SEAT and VASSALS as its second, third and fourth sub-element, respectively.

Another key construct of an XML document is comprised by attributes. For instance, <HOUSE
name="Stark"> indicates that the value of the name attribute of that particular HOUSE element is "Stark".

3.3. XPath

XPath [16] (XML Path Language) is one of the XML query languages. It gets its name from its use
of a path notation for navigating through the hierarchical structure of an XML document and operating
on its tree structure. It is a query language for selecting nodes from an XML document, but can also be
used to compute values (e.g., strings or numbers) from the content of an XML document.

The following examples of XPath expressions refer to the sample XML document described in
Example 1 and illustrate a few key constructs of XPath, which we will refer to later.

Example 2. Consider an XPath query Q1 = /HOUSES/HOUSE/LORD. The query selects all LORD elements
having HOUSE as the parent element and HOUSES as the grandparent element, whereas HOUSES must also
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match the most outer element of the document. The resulting set of elements satisfying Q1 is {<LORD>Eddard
Stark</LORD>, <LORD>Daenerys Targaryen</LORD>}.

Example 3. Consider an XPath query Q2 = //VASSALS//LORD. The query selects all LORD elements having
VASSALS as an ancestor element, whereas the VASSALS element can be located anywhere in the document.
The resulting set of elements satisfying Q2 is {<LORD>Rickard Karstark</LORD>}.

Example 4. Consider an XPath query Q3 = //HOUSE/LORD. The query selects all LORD elements having
HOUSE as the parent element, whereas the HOUSE element can be located anywhere in the document. The resulting
set of elements satisfying Q3 is {<LORD>Eddard Stark</LORD>, <LORD>Rickard Karstark</LORD>,
<LORD>Daenerys Targaryen</LORD>}.

4. Automata Approach to XML Data Indexing

In this section, we introduce three new methods for the problem of XML data indexing using
the automata theory and show that automata can be used efficiently for the purpose of indexing
XML documents. These methods are simple and allow one to efficiently process a small subset of
XPath. Therefore, having an XML data structure, our methods can be used efficiently as auxiliary data
structures that enable answering a particular set of queries. Given an XML document and an input
XPath query, the searching phase finds the answer of the query in time linear in the size of the query
and does not depend on the size of the original XML document.

This section is organized as follows. First, we provide some common preliminaries.
Next, we introduce the Tree String Paths Automaton (TSPA) representing an index for all linear
XPath queries using the child axis (i.e., /) only, denoted as XP{/,name−test}. After that, we present the
Tree String Path Subsequences Automaton (TSPSA), an index for all XP{//,name−test} queries using the
descendant-or-self axis (i.e., //) only. Finally, we introduce the Tree Paths Automaton (TPA), which is
designed to process all XPath queries with any combination of child (i.e., /) and descendant-or-self
(i.e., //) axes, denoted as XP{/,//,name−test}.

4.1. Preliminaries

We model an XML document as an ordered labeled tree where nodes correspond to elements
and edges represent element inclusion relationships. Hence, we only consider the structure of XML
documents and, therefore, ignore attributes and the text in leaves.

A node in an XML tree model is represented by a pair (label, id) where label and id represent a
tag name and an identifier, respectively. We use a preordered numbering scheme to uniquely assign an
identifier to each of the tree nodes. Unique tag names of an XML document form its XML alphabet,
formally defined as follows.

Definition 1 (XML alphabet). Let D be an XML document. An XML alphabet A of D, represented by A(D),
is an alphabet where each symbol represents a tag name (label) of an XML element in D.

Example 5. Let D be the XML document from Example 1. The corresponding XML alphabet A is
A(D) = {HOUSES,HOUSE,LORD,SIGIL,SEAT,VASSALS}. Figure 1 shows its corresponding XML tree
model T(D).

Given an XML tree model, we can preprocess it by means of its linear fragments called string
paths. The branching structure of the XML tree model can be omitted, since only path queries will
be considered.

Definition 2 (String path). Let T be an XML tree model of height h. A string path P = n1n2 . . . nt (t ≤ h) of
T is a linear path leading from the root r = n1 to the leaf nt.
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HOUSES,1

HOUSE,2

LORD,3 SIGIL,4 SEAT,5 VASSALS,6

HOUSE,7

LORD,8 SEAT,9

HOUSE,10

LORD,11 SIGIL,12

Figure 1. XML tree model T(D) from Example 5.

Definition 3 (String path alphabet). Let P be a string path of some XML tree model. A string path alphabet
A of P, represented by A(P), is an alphabet where each symbol represents a node label in P.

Definition 4 (String paths set). Let T be an XML tree model with k leaves. A set of all string paths over T is
called a string path set, denoted by P(T) = {P1, P2, . . . , Pk}.

Example 6. Consider the XML tree model T illustrated in Figure 1. We show the content of the corresponding
string path set P(T) below. Each node of T is represented by its label and identifier, which is shown in parenthesis.

• P1 = HOUSES(1) HOUSE(2) LORD(3),
• P2 = HOUSES(1) HOUSE(2) SIGIL(4),
• P3 = HOUSES(1) HOUSE(2) SEAT(5),
• P4 = HOUSES(1) HOUSE(2) VASSALS(6) HOUSE(7) LORD(8),
• P5 = HOUSES(1) HOUSE(2) VASSALS(6) HOUSE(7) SEAT(9),
• P6 = HOUSES(1) HOUSE(10) LORD(11),
• P7 = HOUSES(1) HOUSE(10) SIGIL(12).

The corresponding string path alphabets are as follows:

• A(P1) = A(P6) = {HOUSES,HOUSE,LORD},
• A(P2) = A(P7) = {HOUSES,HOUSE,SIGIL},
• A(P3) = {HOUSES,HOUSE,SEAT},
• A(P4) = {HOUSES,HOUSE,VASSALS,LORD},
• A(P5) = {HOUSES,HOUSE,VASSALS,SEAT}.

4.2. Tree String Paths Automaton

The Tree String Paths Automaton (TSPA) is a finite state automaton that speeds up the evaluation
of linear XPath queries XP{/,name−test} using the child axis (i.e., /-axis) only. Formally, we can represent
such a fragment of XPath queries over an XML document D by the following context-free grammar:

G = ({S}, A(D), {S → SS | /a, such as a ∈ A(D)}, S)

Definition 5 (Tree string paths automaton). Let D be an XML document. The tree string paths automaton
accepts all XP{/,name−test} queries of D, and for each query Q, it gives a list of elements satisfying Q.

Since a systematic approach is used in the construction of TSPA, the index is simple and well
understandable for anyone who is familiar with the automata theory. We need to point out that TSPA is
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very similar to strong DataGuides [1] and CTree [3]. Nevertheless, since a similar systematic approach
to the construction is used in further, more complex methods, we will demonstrate the basics of our
approach using TSPA.

For the XML tree model T, we first of all obtain its string path set P(T). Since XPath queries
containing only the child axis are basically prefixes of individual string paths, a prefix automaton
for a set of strings (i.e., string paths) can be used. To build a prefix automaton for a string path set
P(T), we need to build a prefix automaton for all Pi ∈ P(T); see Algorithm 1 and Figure 2. Figure 2
illustrates transition diagrams of the prefix automata constructed by Algorithm 1 for all string paths of
the XML tree model T from Figure 1.

Algorithm 1: Construction of a deterministic prefix automaton for a single string path.
Data: A string path P = n1n2 . . . n|P|.
Result: DFSA M = (Q, A, δ, 0, F) accepting all XP{/,name−test} queries of P.

1. Q← {0, id(n1), id(n2), . . . , id(n|P|)},
2. A = {/a : a ∈ A(P)},
3. δ(0, /label(n1))← id(n1), ∀i ∈ {1, 2, . . . , |P| − 1} : δ(id(ni), /label(ni+1))← id(ni+1),
4. F ← Q \ {0}.

0start 1 2 3
/HOUSES /HOUSE /LORD

0start 1 2 4
/HOUSES /HOUSE /SIGIL

0start 1 2 5
/HOUSES /HOUSE /SEAT

0start 1 2 6 7 8
/HOUSES /HOUSE /VASSALS /HOUSE /LORD

0start 1 2 6 7 9
/HOUSES /HOUSE /VASSALS /HOUSE /SEAT

0start 1 10 11
/HOUSES /HOUSE /LORD

0start 1 10 12
/HOUSES /HOUSE /SIGIL

Figure 2. Prefix automata for individual string paths of the XML tree model T from Figure 1.

To build TSPA, we can run all prefix automata, constructed by Algorithm 1, for all string paths
“in parallel” by remembering the states of all automata while reading the input. This is achieved by
the product construction (see Section 3.1). This way, we construct the TSPA for an XML tree model;
see Algorithm 2 and Figure 3. Figure 3 illustrates TSPA constructed by Algorithm 2 for the XML
document D and its XML tree model from Example 5 and Figure 1, respectively.

To compute the positions of all occurrences of an input query in the XML tree model, we simply
run TSPA on the input query. Eventually, the answer for the input query is given by the d-subset
contained in the terminal state of the automaton. If there is no transition that matches the input symbol
(i.e., child axis with a name-test), the automaton stops and rejects the input. Therefore, there are no
elements in the XML document satisfying the query. See Example 7.
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Example 7. Consider the XML document D and its XML tree model T(D) from Example 5 and Figure 1,
respectively. Suppose we want to evaluate the following XPath query Q = /HOUSES/HOUSE/LORD using TSPA
in Figure 3. Starting in the initial state, the automaton follows the transition for the first symbol of the input
(i.e., /HOUSES) and goes to the state (1). Next, the automaton continues reading the second symbol (i.e., /HOUSE)
and goes from the state (1) to the state (2, 10). Then, it reads the last part of the input, i.e., /LORD, and ends
in the state (3, 11). Since the whole input is read and the automaton is in a final state, it returns the d-subset
(3, 11) as the answer for the input query Q. Finally, the appropriate set of XML elements is returned to a user.

0start 1 2, 10 3, 11

4, 12

5

6 7 8

9

/HOUSES /HOUSE /LORD

/SIGIL

/SEAT

/VASSALS

/HOUSE /LORD

/SEAT

Figure 3. Deterministic tree string paths automaton for the XML tree model T from Figure 1.

Algorithm 2: Construction of the tree string paths automaton for an XML document.
Data: String paths set P(T) = {P1, P2, . . . , Pk} of an XML tree model T(D) with k leaves.
Result: DFSA M = (Q, A(D), δ, 0, F) accepting all XP{/,name−test} queries of an XML

document D.

1. For all Pi ∈ P(T), construct a finite state automaton Mi = (Qi, {/a : a ∈ A(Pi)}, δi, 0, Fi)

accepting all XP{/,name−test} queries of Pi using Algorithm 1.
2. Construct a deterministic TSPA M = (Q, {/a : a ∈ A(D)}, δ, 0, Q \ {0}) accepting all

XP{/,name−test} queries of the XML document D using the product construction (union).

4.3. Tree String Path Subsequences Automaton

The Tree String Path Subsequences Automaton (TSPSA) is a finite state automaton that efficiently
evaluates all linear XPath queries XP{//,name−test} where only the descendant-or-self axis (i.e., //-axis)
is used. Again, we can represent such a fragment of XPath queries over an XML document D by the
context-free grammar as follows:

G = ({S}, A(D), {S → SS | //a, such as a ∈ A(D)}, S)
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Definition 6 (Tree string path subsequences automaton). Let D be an XML document. TSPSA accepts all
XP{//,name−test} queries of D, and for each query Q, it gives a list of elements satisfying Q.

As for the TSPA, the construction of TSPSA is very systematic. The given XML tree model T is
preprocessed and the string path set P(T) obtained. However, to satisfy XPath queries with the //-axis,
we are interested in subsequences of a string path rather than its prefixes. Which is why we construct a
subsequence automaton for each string path Pi ∈ P(T) instead of a prefix automaton. The automaton
solving the problem of subsequences for both single and multiple strings is also referred to as the
Directed Acyclic Subsequence Graph (DASG) and is further studied in [38,39]. Therefore, we propose
the XML index problem to be another application area of DASG.

There are three building algorithms for DASG for a set of strings available: right-to-left [40],
left-to-right [41] and on-line [39]. However, none of them is based on a subset construction, which gives
the sets of positions serving as answers for input queries. Therefore, we propose a direct subset
construction of a deterministic subsequence automaton; see Algorithm 3 and Figure 4. Figure 4 shows
transition diagrams of the deterministic subsequence automata constructed by Algorithm 3 for all
string paths contained in P(T), where T is the XML tree model T illustrated in Figure 1.

Algorithm 3: Construction of a deterministic subsequence automaton for a single string path.
Data: A string path P = n1n2 . . . n|P|.
Result: DFSA M = (Q, A, δ, q0, F) accepting all (non-empty) XP{//,name−test} queries of P

1. ∀e ∈ A(P) compute OP(e).

2. Build the “backbone” of the finite state automaton M = (Q, A, δ, q0, F):

(a) Q← {q0, q1, . . . , q|P|}, A← {//a : a ∈ A(P)}, F ← Q \ {q0}, q0 ← 0

(b) ∀i, where i← 1, 2, . . . , |P|:

i. set state qi ← OP(label(ni)),

ii. add δ(qi−1, //label(ni))← qi,

iii. OP(label(ni))← ButFirst(OP(label(ni))).

3. Insert “additional transitions” into the automaton M:

∀i ∈ {0, 1, . . . , |P| − 1}, ∀a ∈ A(P):

i. add δ(qi, //a)← qs, if there exists such s > i where

δ(qs−1, //a) = qs ∧ ¬∃r < s : δ(qr−1, //a) = qr

ii. δ(qi, //a)← ∅ otherwise.

Definition 7 (Set of occurrences of an element label in a string path). Let P = n1n2 . . . n|P| be a string path
and e be an element label occurring at several positions in P (i.e., label(ni) = e for some i). A set of occurrences
of the element label e in P is a totally ordered set OP(e) = {o | o = id(ni) ∧ label(ni) = e, i = 1, 2, . . . , |P|}.
The ordering is equal to ordering of element prefix identifiers as natural numbers.

Definition 8 (ButFirst). Let P and OP(e) = {o1, o2, . . . , o|OP(e)|} be a string path and a set of occurrences
of an element label e in the string path P, respectively. Then, we define a function ButFirst(OP(e)) =

{o2, . . . , o|OP(e)|}.
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Figure 4. Subsequence automata for individual string paths of the XML tree model T from Figure 1.

Theorem 1. Given a string path P = n1n2 . . . n|P|, Algorithm 3 correctly constructs a deterministic finite
state automaton M accepting all XP{//,name−test} queries of P.

Proof. We will prove the following equivalence: M accepts a string X if and only if X is the
XP{//,name−test} query of the string path P.

1. If M accepts a string X, then X is the XP{//,name−test} query of P.
2. If X is the XP{//,name−test} query of P, then M accepts X. Assume to the contrary that

X = //x1//x2 . . . //x|X| over the alphabet A = {//a : a ∈ A(P)} is the XP{//,name−test} query
of P and M does not accept X. If this is the case, either M reads the whole input and terminates in a
non-final state or M does not read the whole input. In the first case, terminating in a non-final state
means to stop in the initial state, contradicting our assumption that X is non-empty. The second
case, reading just part of the input, means there exists such a symbol //xi that M has no transition
leading from the current state labeled by //xi.

However, if the automaton reads some symbol, it always goes from the current state to the
closest higher state representing an occurrence of that symbol. During Step ii, in Phase 2,
all transitions added lead to the neighbor state, and during Step i, in Phase 3, we choose suitable
higher state qs using two conditions. First, the state has to correspond to the correct symbol,
which is satisfied by the first condition: there exists such s > i where δ(qs−1, //a) = qs).
Second, we need to ensure that the state is the closest possible, which is satisfied by the second
condition: ¬∃r < s : δ(qr−1, //a) = qr. Therefore, no subsequence is missed.

Thus, M reads x1 . . . xi−1, and the current state of M is qj. Due to Steps 2 and 3, there exists no
transition from state qa to a state qb where a ≥ b (i.e., to the “left”); therefore, j ≥ i− 1. Because of
(2b)i., each state qk of M corresponds to a node nk of P. Because of (2b)ii. and 3i., there exists a
transition from qj for xi such that xi occurs right of xi−1, as every transition leads from qj to the
state with the incoming transition labeled with xi (the nonexistent part of 3i.). Therefore, x1 . . . xi
is not the XP{//,name−test} query of P, which is a contradiction.

We can run all subsequence automata “in parallel” using the product construction (see Section 3.1)
and obtain the index for all XP{//,name−test} queries of the particular XML document; see Algorithm 4
and Figure 5. Figure 5 illustrates TSPSA constructed by Algorithm 4 for the XML document D and its
XML tree model T(D) from Example 5 and Figure 1, respectively.
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The searching phase of TSPSA evaluates input queries in the same way as TSPA. Again, the answer
for the input query is given by the d-subset contained in the terminal state.

Algorithm 4: Construction of TSPSA for an XML document D.
Data: String paths set P(T) = {P1, P2, . . . , Pk} of XML tree model T(D) with k leaves.
Result: DFSA M = (Q, A(D), δ, 0, F) accepting all XP{//,name−test} queries of the XML

document D.

1. For all Pi ∈ P(T), construct a finite state automaton Mi = (Qi, {//a : a ∈ A(Pi)}, δi, 0, Fi)

accepting all XP{//,name−test} queries of Pi using Algorithm 3.
2. Construct the deterministic tree string path subsequences automaton

M = (Q, {//a : a ∈ A(D)}, δ, 0, Q \ {0}) accepting all XP{//,name−test} queries of the XML
document D using the product construction (union).
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Figure 5. Deterministic tree string path subsequences automaton for the XML tree model T
from Figure 1.

4.4. Tree Paths Automaton

Tree Paths Automaton (TPA) is a finite state automaton designed to process a significant fragment
of XPath queries, which may use any combination of child (i.e., /) and descendant-or-self (i.e., //)
axes, denoted as XP{/,//,name−test}. The context-free grammar representing such a fragment of XPath
queries over an XML document D is as follows:

G = ({S}, A(D), {S → SS | /a | //a, such as a ∈ A(D)}, S)

TPA combines the principles of both of the formerly introduced automata, i.e., TSPA and
TSPSA. Since both XP{/,name−test} and XP{//,name−test} queries are subsets of XP{/,//,name−test} queries,
they are naturally supported by TPA.
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To provide a solution for XPath queries XP{/,//,name−test}, we first propose a building
algorithm that combines prefix and subsequence automata for a single string path P to answer all
XP{/,//,name−test} queries of P. See Algorithm 5 and Example 8.

Algorithm 5: Construction of the tree paths automaton for a single string path.
Data: A string path P = n1n2 . . . n|P|.
Result: DFSA M = (Q, A, δ, 0, F) accepting all XP{/,//,name−test} queries of P.

1. Construct a deterministic finite state automaton M1 = (Q1, A1, δ1, 0, F1) accepting all
XP{/,name−test} queries of P using Algorithm 1.

2. Construct a deterministic finite state automaton M2 = (Q2, A2, δ2, 0, F2) accepting all
XP{//,name−test} queries of P using Algorithm 3.

3. Construct a deterministic finite state automaton M = (Q, A1 ∪ A2, δ, 0, Q \ {0}) accepting
all XP{/,//,name−test} queries of P as follows:

initialize Q = Q1 ∪Q2;
create a new queue S and initialize S = Q;
while S is not empty do

State q← S.pop;
forall a ∈ A1 do

create a new d-subset d;
forall numbers n in the d-subset of q do

if δ1(n, a) 6= ∅ then
add n into d;

end
end
if d 6= ∅ then

if d /∈ Q then
Q = Q ∪ {d};
S.push(d);

end
δ(q, a)← d ; . add / transitions

end
end
find the smallest number m in the d-subset of q;
find a matching state q2 ∈ Q2 containing m as the smallest number in its d-subset;
∀a ∈ A2 : δ(q, a)← δ2(q2, a) ; . add // transitions

end

Example 8. Let D and T(D) be an XML document and its corresponding XML tree model from Example 5 and
Figure 1, respectively. Given P = HOUSES(1) HOUSE(2) VASSALS(6) HOUSE(7) LORD(8) as the input string
path, Algorithm 5 conducts these steps:

1. constructs a deterministic prefix automaton for P as shown in Figure 6,
2. builds a deterministic subsequence automaton for P as shown in Figure 7,
3. combines these two automata as described in Step 3 of the algorithm. See the resulting Tree Paths

Automaton (TPA) for P in Figure 8. Note that transition rules δ(p,/[/]LABEL) = q represent two
transitions leading from the state p to the state q: δ(p,/LABEL) = q and δ(p,//LABEL) = q.
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0start 1 2 6 7 8
/HOUSES /HOUSE /VASSALS /HOUSE /LORD

Figure 6. Deterministic prefix automaton for the string path P = HOUSES(1) HOUSE(2) VASSALS(6)
HOUSE(7) LORD(8) from Example 8.
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Figure 7. Deterministic subsequence automaton for the string path P = HOUSES(1) HOUSE(2) VASSALS(6)
HOUSE(7) LORD(8) from Example 8.
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Figure 8. Deterministic tree paths automaton for the string path P = HOUSES(1) HOUSE(2) VASSALS(6)
HOUSE(7) LORD(8) from Example 8.

To obtain TPA for a given XML document, we again use the product construction (see Section 3.1)
of the automata that were constructed for individual string paths. Algorithm 6 describes the whole
process in detail, and Example 9 demonstrates the result. Again, the evaluation of input queries using
TPA is very straightforward, and the final answer is given by the d-subset in the terminal state.

Example 9. Let D be an XML document from Example 5. The corresponding TPA accepting all
XP{/,//,name−test} queries, constructed by Algorithm 6, is shown in Figure 9. Again, we note that transition
rules δ(p,/[/]LABEL) = q represent two transitions leading from the state p to the state q: δ(p,/LABEL) = q
and δ(p,//LABEL) = q.
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Algorithm 6: Construction of the tree paths automaton for an XML document D.
Data: String paths set P(T) = {P1, P2, . . . , Pk} of XML tree model T(D) with k leaves.
Result: DFSA M accepting all XP{/,//,name test} queries of the XML document D.

1. For all Pi ∈ P(T), construct a finite state automaton Mi = (Qi, Ai, δi, 0, Fi) accepting all
XP{/,//,name−test} queries of Pi using Algorithm 5.

2. Construct a deterministic tree paths automaton M = (Q, {/a, //a : a ∈ A(D)}, δ, 0,
Q \ {0}) accepting all XP{/,//,name test} queries of the XML document D using the product
construction (union).

0start 1 2, 7, 10 2, 10 3, 11 3, 8, 11 4, 12 5, 9 5

6 7 8 9
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//SEAT

/[/]LORD

/[/]SEAT

Figure 9. Deterministic tree paths automaton from Example 9.

5. Discussion of Time and Space Complexities

5.1. Tree String Paths Automaton

TSPA efficiently supports the evaluation of all XP{/,name−test} queries of an XML document D.
The number of such queries is linear in the number of nodes of the XML tree model T(D). For an input
query Q of size m, TSPA obviously performed the searching in time O(m) and does not depend on the
size of the original document.

More precisely, the evaluation process naturally consists of two phases: searching phase
(i.e., finding the state of the TSPSA that contains the answer in its d-subset) and answering phase
(i.e., returning the answer to the user). Therefore, the whole input query Q is evaluated in time
O(m + k), where k is the number of nodes in the XML document D satisfying the query Q. In practice
the number of such nodes is expected to be much smaller than the size of the XML document.

Theorem 2. Let D and T(D) be an XML document and its corresponding XML tree model, respectively.
The number of states of the deterministic TSPA M = (Q, A(D), δ, 0, F), constructed by Algorithm 2, is less
than or equal to n, i.e., |Q| ≤ n, where n is the number of nodes of T(D).



Information 2018, 9, 12 15 of 24

Proof. Each state of a deterministic TSPA corresponds to an answer of a single query. For an XML
tree model T(D) = (N, E) with n nodes, the maximal number of such queries being n, the case is
as follows:

∀n1, n2 ∈ N ∧ n1 6= n2 : label(n1) = label(n2) =⇒ parent(n1) 6= parent(n2)

In all other cases, the number of different queries is strictly less than n.

Theorem 3. Let D and T(D) be an XML document and its corresponding XML tree model, respectively.
The number of transitions of the deterministic TSPA M = (Q, A(D), δ, 0, F), constructed by Algorithm 2,
is equal to the number of states minus one.

Proof. TSPA is an acyclic (tree-like) finite state automaton. Each state (except the initial) has exactly
one incoming transition.

5.2. Tree String Path Subsequences Automaton

TSPSA efficiently supports the evaluation of all XP{//,name−test} queries of an XML document D.
The runtime for a query of length m clearly becomes O(m) and does not depend on the size of the
document D. Again, considering also the answering phase, the whole input query Q is evaluated
in time O(m + k), where k is the number of nodes in the XML document D satisfying the query Q.
In practice the number of such nodes is expected to be much smaller than the size of the XML document.

The number of linear XPath queries using the //-axis only is exponential in the number of nodes of
the XML tree model. For example, consider just a linear XML tree model T with n nodes. The number
of XP{//,name−test} queries is O(2n), which is determined by the following deduction: There are (n

i )

combinations of i elements (1 ≤ i ≤ n). Therefore, the exact number of all possible XP{//,name−test}

queries is given by the following formula:(
n
1

)
+

(
n
2

)
+ · · ·+

(
n
n

)
=

n

∑
j=1

(
n
j

)
= 2n − 1

Each state of TSPSA corresponds to an answer of a single query or a collection of queries. Although
the number of different queries accepted by TSPSA is exponential, usually many queries are equivalent
(i.e., their result sets of elements are equal). Therefore, the equivalence problem of queries is closely
related to the problem of the determination of the number of states of TSPSA. That is, if we know the
number of unique query answers, we can construct a deterministic automaton answering all queries
using exactly this number of states. On the other hand, we can obviously use the TSPSA to decide the
equivalence of two queries and even determine equivalence classes.

From another point of view, we can examine the number of states of a TSPSA as a size of DASG for
a set of strings (see [40,41]). For k strings of length h, the number of states can be trivially bounded by
O(hk), i.e., the size of a product of k automata withO(h) states. Therefore, the number of transitions of
TSPSA is bounded byO(|A(D)|hk). The lower bound for k > 2 strings is not known, while Crochemore
and Troníček in [38] showed that Ω(h2) states are required for k = 2 in the worst case.

However, considering the XML index problem, the set of strings is rather specific. Thanks to the
branching tree structure, we can expect common prefixes in the set of strings, i.e., a lesser number of
states (and transitions) in the resulting automaton. In the context of the XML index problem, k is a
number of leaves in an XML tree model, and h is its height.

When space is more crucial, we do not need to combine the subsequence automata and just
traverse them simultaneously. Finally, we return the union of resulting d-subsets of the automata
that accept the input query as the answer. Given a query of length m, this approach obviously works
in O(k ·m) time complexity and O(h · k) space complexity. For parallel systems, each subsequence
automaton can be handled by a different computing node.
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For a common XML document (XML with the level (l)-property), in which nodes with the same
label can only appear at the same level of the XML tree model, the asymptotic upper bound of the
space complexity is O(h · 2k). The necessary definitions and formal proof follow.

Definition 9 (Level property). Let T = (N, E) be a labeled directed rooted tree. Level property (l-property):

∀n1, n2 ∈ N ∧ n1 6= n2 : label(n1) = label(n2) =⇒ depth(n1) = depth(n2)

Definition 10 (State level). Let M = (Q, A, δ, q0, F) be an acyclic deterministic finite state automaton.
A state level s of a state q is a maximal number of transitions leading from the initial state q0 to q.

Theorem 4. Let D be an XML document and T(D) be its XML tree model satisfying the l-property with
height h and k leaves. The number of states of deterministic TSPSA constructed for the XML document D by
Algorithm 4 is O(h · 2k).

Proof. There are k string paths in T(D), for which we construct a set S of k deterministic subsequence
automata of no more than h states each (due to the l-property). We can run all automata “in parallel”,
by remembering the states of all automata by constructing k-tuples q while reading the input. This is
achieved by the product construction. This way we construct TSPSA M for T.

Due to the l-property of T, it holds that: The target state of a transition labeled with a ∈ A(D) is
either a sink state or its state level is the same in each automaton in S. Hence, the k-tuples (q1, q2, . . . , qk)

are restricted as follows: If the state level of q1 is s, then each of q2, . . . , qk is either a sink state or of state
level s. If q1 is a sink state, then q2 is arbitrary, but each of q3, . . . , qk is either a sink state or the same
state level as q2. In addition, the k-tuples of Levels 0 and 1 are always (01, 02, . . . , 0k) and (11, 12, . . . , 1k),
respectively. Therefore, the maximum number of states of M is 2 + 2k−1 · (h− 1) + 2k−2 · (h− 2).

Theorem 5. Let D be an XML document and T(D) be its XML tree model satisfying the l-property with
height h and k leaves. The number of transitions of deterministic TSPSA constructed for the XML document D
by Algorithm 4 is O(|A(D)|h · 2k).

Proof. The maximum possible number of transitions leading from each state is |A(D)|.

5.3. Tree Paths Automaton

TPA is designed to efficiently evaluate all XP{/,//,name−test} queries of an XML document.
The number of such queries is exponential in the number of nodes of the XML tree model. However,
the running time for searching a query answer is clearly linear in the size of the query and does not
depend on the size of the XML document, i.e., O(m) for a query of size m.

Again, considering also the answering phase, the whole input query Q is evaluated in time
O(m + k), where k is the number of nodes in the XML document D satisfying the query Q. In practice
the number of such nodes is expected to be much smaller than the size of the XML document.

We can examine the number of states of TPA by using our knowledge about smaller automata Mi
constructed for individual string paths. Assume |Mi|max is the maximum possible size of TPA for
a single string path. Therefore, the number of states of TPA for the XML document can by trivially
bounded by O(|Mi|kmax) (size of a product of k automata with a maximum of O(|Mi|max) states).
However, this is the asymptotic upper bound, and we note that the size of the index is according to
our experimental results usually much smaller.

Again when space is more crucial, we do not need to combine individual automata and just
traverse them simultaneously. In parallel systems, each automaton can be handled by a different
computing node.
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For a common XML document (XML with the l-property), in which nodes with the same label
can only appear at the same level of the XML tree model, the asymptotic upper bound is, as in the case
for TSPSA, O(h · 2k).

Theorem 6. Let D be an XML document and T(D) be its XML tree model satisfying the l-property with
height h and k leaves. The number of states of deterministic TPA constructed for the XML document D by
Algorithm 6 is O(h · 2k).

Proof. The similar arguments of the proof of Theorem 4 hold here, as well.

Theorem 7. Let D be an XML document and T(D) be its XML tree model satisfying the l-property with
height h and k leaves. The number of transitions of deterministic TPA constructed for the XML document D by
Algorithm 6 is O(|A(D)|h · 2k).

Proof. The maximal number of transitions leading from each state is 2|A(D)|: |A(D)| transitions for
descendant-or-self axis and |A(D)| transitions for child axis.

6. Experimental Evaluation

This section explores the performance of one of the proposed methods for XML data indexing.
Since TPA is designed to process the largest fragment of XPath queries and covers the power of both
TSPA and TSPSA, we focused on its experimental evaluation only.

6.1. System Architecture

The XML index software was developed using Java SE, JDK 8u73 in the NetBeans IDE 8.1 and is
designed as the Java Class Library called tpalib (see the Supplementary Materials for source codes
and examples of usage). The system architecture of the tpalib is illustrated in Figure 10. Basically,
the library consists of three virtual parts called JDOM (Java-based Document Object Model for XML),
Index Builder and XML Data Index.

Figure 10. System architecture of tpalib. SAX, Simple API for XML; JDOM, Java-based Document
Object Model for XML.

JDOM is used to load and parse an input XML document. During this process, the XML elements
are stored in TPA as org.jdom2.Element objects and are used later during query evaluation so that
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the appropriate subset is returned to a user. Index Builder constructs the automaton (some software
optimization were used in the implementation; see Chapter 7 in [42] for details). The resulting index is
stored as TreePathsAutomaton object containing a list of TPA states, transitions and XML elements.

6.2. Experimental Setup

Our experiments were conducted under the environment of an Intel Core i7 CPU @ 2.00 GHz,
8.0 GB RAM and 240-GB SSD disk with the Windows 10 operating system running.

6.2.1. Datasets

For our experimental evaluation, we selected the datasets shown in Table 1. The XML Benchmark
(XMark) datasets D1, D2, D3, D4, D5 and D6 were generated by xmlgen [43] using scaling factors 0,
0.005, 0.01, 0.1, 0.5 and 1, respectively. XMark is a synthetic on-line auction dataset. It is a single record
with a very large and fairly complicated tree structure. It is also relatively deep with a maximal depth
of 11 and an average depth of 4.5.

Table 1. Characteristics of the datasets.

Key Dataset Name File Name Size (MB) # of Elements # of Leaves Max-Depth Avg-Depth
D1 XMark XMark-f0.xml 0.03 382 247 10 4.64
D2 XMark XMark-f0.005.xml 0.50 8518 6211 11 4.50
D3 XMark XMark-f0.01.xml 1.16 17,132 12,504 11 4.51
D4 XMark XMark-f0.1.xml 11.60 167,865 122,026 11 4.55
D5 XMark XMark-f0.5.xml 57.64 832,911 605,546 11 4.55
D6 XMark XMark-f1.xml 115.75 1,666,315 1,211,774 11 4.55
D7 DBLP dblp.xml 130.73 3,332,130 3,000,839 6 2.90

The DBLP dataset D7 is a real-world dataset obtained from the University of Washington XML
repository [44]. It is a database of bibliographic information of computer science journals and
conference proceedings containing over 3.3 million of elements. It is a shallow and wide document
with high similarity, maximal depth of six and an average depth of 2.9.

6.2.2. Queries

The queries used for our experiments are shown in Tables 2 and 3. For each dataset we used nine
sample queries that differ in length and axes used. The queries were split into categories depending
on the type of axis used. First, the Q1–Q3 queries contain the child axis only; Q4–Q6 include the
descendant-or-self axis only; and the last Q7–Q9 queries use a combination of both axes. The numbers
of elements satisfying individual queries in each of the datasets are shown in Table 4.

Table 2. Set of queries for XMark datasets.

Key XPath Query
Q1 /site/open_auctions
Q2 /site/people/person/name
Q3 /site/regions/europe/item/description/parlist/listitem/text/emph
Q4 //person//watch
Q5 //regions//mail//date
Q6 //site//regions//europe//description//listitem//text//emph
Q7 /site//open_auction
Q8 //people/person//watch
Q9 //regions/europe//item//parlist/listitem//text/emph
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Table 3. Set of queries for DBLP dataset.

Key XPath Query
Q1 /dblp/mastersthesis
Q2 /dblp/inproceedings/title
Q3 /dblp/inproceedings/title/sup/sup
Q4 //author
Q5 //inproceedings//booktitle
Q6 //dblp//article//author
Q7 //inproceedings/author
Q8 //dblp/article//title
Q9 //dblp/inproceedings//title/sup/sup

Table 4. Numbers of elements satisfying the queries in the datasets.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9
D1 1 1 2 1 5 2 1 1 2
D2 1 127 5 247 124 6 60 247 5
D3 1 255 17 488 205 50 120 488 43
D4 1 2550 210 4815 2139 388 1200 4815 350
D5 1 12,750 1235 25,414 10,455 2357 6000 25,414 2099
D6 1 25,500 2335 50,269 20,946 4570 12,000 50,269 4041
D7 5 212,273 1 716,488 212,273 221,465 491,783 111,609 1

6.3. Performance Analysis

Table 5 shows the experimental results on the index size and construction time for the datasets.
The space requirements of the index structure were measured using the size of the file with the
serialized TreePathsAutomaton Java object. Since every TreePathsAutomaton object contains besides
automaton data also all XML elements (org.jdom2.Element objects) to be used later during query
evaluation, the size of the index is bigger than the original XML document. However, the results
suggest that the ratio of the index size to the original XML data size stays linear since the second
column shows that the size of TPA data is only about 2.5-times larger than the size of the original
document size.

Table 5. Experimental results on the index size and construction time.

Key Index Size (MB) Index/XML Size (Ratio) # of States # of Transitions Construction Time
D1 0.08 2.6 306 1189 0.15 s
D2 1.35 2.7 859 2801 1.6 s
D3 2.67 2.3 997 3164 4.41 s
D4 25.97 2.2 1194 3656 5 min
D5 128.67 2.2 1220 3714 2 h
D6 256.43 2.2 1220 3714 10 h (approx.)
D7 370.25 2.8 169 391 20 h (approx.)

In the table, we also show the number of states and transitions of resulting automaton.
These numbers are obviously mainly influenced by the structure of the XML document and by
its size. For example, because of high similarity in data, the largest file (the DBLP dataset) can be
indexed by the automaton with the smallest number of states (i.e., 169) and transitions (i.e., 391).

At the moment, the major drawback of the approach seems to be the index construction time.
For the datasets with the size >100 MB, it took around 15 h to construct the index. This is definitely the
crucial part for our future software optimization. We also plan to develop parallel building algorithm
to speed up the construction. On the other hand, once the index is constructed, it is stored (serialized)
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as TreePathsAutomaton Java object. Therefore, next time the index is ready to use within a minute
(depends on the size of the serialized object).

6.3.1. Performance on Query Processing

The analysis of the performance of the query processing was conducted in comparison with a
well-known reference implementation called Saxon [45] and Xalan [46]. Our measurements reflect
query processing time only. Hence, document loading cost has been excluded from the measurements.

Figure 11 summarizes the experimental results of TPA, Saxon and Xalan on the XMark datasets
D1–D6. The graph is plotted using the logarithmic scale. The x-axis represents the datasets, while the
y-axis shows the response time in milliseconds. We used light dashed lines to display Saxon results,
whereas the TPA score is depicted as dark solid lines and Xalan results are displayed using light
solid lines.

There appears to be a clear upward pattern in the query processing time with the growing size
of datasets. This is most likely caused by the higher number of elements that need to be returned
as the query answer. Overall, the sample queries achieve a better response time using our proposed
indexing method.

0.01

0.1

1

10

100

1000

10000

D1 D2 D3 D4 D5 D6

El
ap

se
d

 t
im

e 
(i

n
 m

se
c)

 /
 lo

ga
ri

th
m

ic
 s

ca
le

Data Key

Q1 (TPA) Q2 (TPA) Q3 (TPA) Q5 (TPA) Q6 (TPA) Q7 (TPA) Q8 (TPA)

Q9 (TPA) Q4 (TPA) Q1 (Saxon) Q2 (Saxon) Q3 (Saxon) Q4 (Saxon) Q5 (Saxon)

Q6 (Saxon) Q7 (Saxon) Q8 (Saxon) Q9 (Saxon) Q1 (Xalan) Q2 (Xalan) Q3 (Xalan)

Q4 (Xalan) Q5 (Xalan) Q6 (Xalan) Q7 (Xalan) Q8 (Xalan) Q9 (Xalan)

Figure 11. Performance comparison of TPA, Saxon and Xalan (logarithmic scale).

Figures 12 and 13 show the experimental results of TPA, Saxon and Xalan on DBLP and XMark
(D6) datasets, respectively. Both graphs are plotted using the logarithmic scale. The tables show
elapsed time in milliseconds for individual queries. Again, TPA achieves a better response time on
all sample queries. The DBLP dataset (and query Q2 =/dblp/inproceedings/title) was also used
for experimental evaluation of CTree (see [3]). CTree evaluated the query Q2 in 50 ms, whereas TPA
evaluated the query in 7 ms.
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Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

TPA 0.03 6.94 3.20 15.05 5.19 4.38 9.73 2.69 2.93

Saxon 4.03 29.18 30.52 17.22 46.43 60.86 74.98 36.47 72.49

Xalan 3,713 3,797 3,998 4,116 4,233 4,029 4,189 4,243 4,287
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Figure 12. Performance comparison of TPA, Saxon and Xalan on DBLP dataset (logarithmic scale).

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

TPA 0.03 2.48 0.58 1.56 0.72 0.22 0.23 1.43 0.32

Saxon 3.47 27.67 17.89 102.71 91.98 88.92 46.85 109.41 78.45

Xalan 2,677 2,432 2,561 2,631 2,647 2,726 2,399 2,577 2,707
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Figure 13. Performance comparison of TPA, Saxon and Xalan on XMark (D6) dataset (logarithmic scale).

7. Conclusions

In this paper, we proposed some new methods for indexing XML documents using the theory
of formal languages and automata. These methods are simple and allow one to efficiently process
a small subset of XPath. In particular, we focused on the two common axes, child (i.e., /) and
descendant-or-self (i.e., //). In the future, we would like to use the similar approach to build automata
that support other XPath axes (e.g, an automaton supporting parent and ancestor axis). Therefore,
having an XML data structure, our methods can be used efficiently as auxiliary data structures that
enable answering a particular set of queries.
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First, we presented the Tree String Paths Automaton (TSPA) and the Tree String Path Subsequences
Automaton (TSPSA), which are aimed at assisting in the evaluation of path queries with either the
child or descendant-or-self axis only. Then, we introduced the Tree Paths Automaton (TPA), which is
designed to process XPath queries using any combination of child and descendant-or-self axes.

Given an XML document D with its corresponding XML tree model T(D), the tree is preprocessed,
and an index, which is a finite state automaton, is constructed. The searching phase uses the index,
reads an input query Q of size m and computes the list of positions of all occurrences of Q in the
tree T(D). The searching is performed in time O(m) and does not depend on the size of the original
XML document.

Although the number of distinct queries is in the case of TSPSA and TPA exponential, the size of
these indexes (number of states) is for a common XML document with l-property O(h · 2k), where h
is the height of the tree T(D) and k is the number of its leaves. In practice, our experimental results
suggest that the size of the index stays linear since the index files were only about 2.5-times larger than
the size of the original documents.

There is also a number of interesting open problems that we hope to explore in the future:

• developing a parallel building algorithm to speed up the construction phase,
• developing an incremental building algorithm for our automata-based indexes to efficiently adapt

their structure to ever-changing XML data sources,
• adapting our indexing methods to be able to support multiple XML documents,
• extending our methods to support more complex queries (e.g., including attributes, wildcards,

branching, etc.).

Supplementary Materials: The supplementary material is available online at http://www.mdpi.com/2078-2489/
9/1/12/s1.
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DASG Directed Acyclic Subsequence Graph
JDOM Java-based Document Object Model for XML
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TPA Tree Paths Automaton
TSPA Tree String Paths Automaton
TSPSA Tree String Path Subsequences Automaton
XML Extensible Markup Language
XPath XML Path Language
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