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Abstract: The demand for video traffic is increasing over mobile networks that are taking another
shape by its heterogeneity. However, the wireless link capacity cannot cope with the traffic demand.
This is due to the interference problem that can be considered as the most important challenge in
heterogeneous networks. Consequently, it will result in poor service for the quality of video streaming
such as the bad quality delivery, service interruption, etc. In this paper, we propose a solution for
interference mitigation in the context of heterogeneous networks through power control mechanism,
while guaranteeing the Quality of Service of the video streaming. We derive a model for adapting the
video bit rate to match the channel’s achievable bit rate. Our results demonstrate a high satisfaction
for video streaming in terms of delay and throughput.

Keywords: HetNet; interference; adaptive video

1. Introduction

Networks of the future will be heterogeneous as they will shape the landscape of the wireless
environment through offering different kinds of services like data rates, Quality of Service (QoS)
capabilities and mobility. Such kind of network is introduced in Long-Term Evolution Advanced
(LTE-A). The reason behind introducing Heterogeneous Networks (HetNet) LTE-A is to cope with the
increasing number of mobile broadband data subscribers and bandwidth-intensive services competing
for limited radio resources in 5G networks [1]. Since the sole macrocell cannot meet the requirements of
mobile users in terms of QoS, HetNet architecture consists of different types of Radio Access Networks
(RANs) or cells: a collocated macrocell, picocells, femtocells and relay nodes. In our case, we focus
on the integration of femtocells and macrocells as a case study. However, in the scenario when the
Macrocell Base Station (MBS) and Femtocell Base Station (FBS) use the same spectrum, a cross-tier
interference will occur and will cause a severe interference to the Macrocell User Equipment (MUEs).
especially when they are not registered with the operator of the FBS. The major issue that should be
considered is how to mitigate the interference in a scenario when FBSs use the Close Subscriber Group
(CSG) for Femtocell User Equipments (FUEs) and cause a severe interference to MUEs, leading to a
bad quality of Signal-to-Interference Noise Ratio (SINR) received by the MUEs [2]. The Downlink
(DL) direction of LTE specifications uses an Orthogonal Frequency Division Multiple Access (OFDMA)
modulation technique where the basic unit of resource allocation is called Resource Block (RB), and it
is assigned by the scheduler every 1 ms [3]. The bad quality of the SINR affects the QoS of the different
ongoing applications regardless of their type in HetNet scenario. However, in this article, we are more
focused on the Video Streaming application as an example of an application suffering from bad channel
quality caused by interference. We selected the video streaming because it has a special character
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that overcomes the problem of interference by Scalable Video Coding (SVC) technique, which is the
Annex G extension of the H.264/MPEG-4 AVC video compression standard. It implements the bit rate
adaptivity. It encodes the raw video clip into a base layer and a number of enhancement layers with
different priorities. Naturally, the base layer has the highest priority since it contains the video bits with
the highest importance, which can provide a minimum video quality. The enhancement layers with
lower priorities may be progressively encoded to further refine the quality of the base-layer stream.
Scalable video coding and adaptive streaming techniques can be jointly combined to accomplish
effectively the best possible quality of video streaming services. Hence, we can dynamically adjust the
number of SVC layers depending on the current link status.

However, before using any mechanism of adaptation between video rate and link status, it is
important to know the link status that is playing a great role for delivering a good quality video service.
Since, in our context, the user channel is experiencing an interference, it should be mitigated. Once the
quality of channel is known, the rate of the video should be adapted to it.

In this article, we propose a complete framework of HetNet Integration between macrocell and
femtocells. Since such integration raises the challenge of interference, we then suggest a solution based
on power adjustment in order to mitigate interference. A solution is suggested based on a distributed
Power Allocation (PA) method to reduce the cross-tier interference caused to the MUEs by the FBSs.
Firstly, we classify the interfering femtocells into clusters depending on the Received Signal Strengths
(RSSs) reports that are sent periodically by MUEs on the Uplink (UL) transmission. This will help each
FBS to identify the average number of MUE victims of interference. Whenever this number becomes
statistically greater than those of the neighbors that are interfering femtocells, the FBS is then instructed
directly from the MBS to adjust its transmitted power. Conversely, the FBSs work independently to
decrease their transmitted power by using the RSSs report sent by the closest MUEs. In the first case,
the FBS is instructed centrally by the MBS; however, in the second case, the FBS works autonomously
and in a distributed way for adjusting their transmission power. Upon mitigating interference and in
order to test our solution, we initiate video streaming applications through the MUEs and FUEs in
order to investigate the effect of our power adjustment on the QoS of this application.

This article is organized as follows: starting with the main assumptions of the system model
in Section 3, the proposed power adjustment scheme is presented in Section 4. This is followed by
introducing the adaptive method of rate matching in Section 5 and the simulation environment is
defined and results are presented in Section 6. Conclusions are presented in Section 7.

2. Related Work

According to the Cisco Visual Networking Index, a video will continue to dominate IP traffic and
overall Internet traffic growth—representing 80% of all Internet traffic by 2021, up from 67% in 2016 [4].
Many research works investigated characteristics of video streaming and its ability to be adapted to
channel variation nature, especially in the context of interference. However, no significant attention
has been given to tackle the context of HetNet and investigate the behaviour of video streaming when
interference occurs. An adaptive video streaming architecture was proposed together with a resource
allocation framework in [5]. However, the main aim of the paper was to improve the Quality of
Experience (QoE) with handling the resource allocation problem with Integer Linear Programming
(ILP) formulation.

An energy-video aware multipath transport protocol (EVIS) for HetNet has been proposed
and a mathematical model developed to analyse the energy per frames for multi-homed video
communication over multiple communication paths in [6]. They also developed scheduling algorithms
for prioritized frame scheduling and unequal loss protection to achieve target video quality with
minimum device energy consumption, showing that EVIS has a significant improvement in energy
conservation, video peak signal-to-noise ratio (PSNR), end-to-end delay, and goodput compared to
other works in the literature.
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Real-time video traffic splitting strategies were introduced for heterogeneous wireless networks
composed of WiFi and cellular networks to maximize the needed energy consumption with
reducing delay, solutions were presented for resource management in [7]. Lyapunov drift-plus-penalty
optimization was utilized for cellular/WiFi network over a test bed implementation.

The development of an energy-efficient bandwidth aggregation scheme for video transmission over
wireless channel has been addressed as another challenging issue [8] . For this, an Energy-quaLity
aware Bandwidth Aggregation (ELBA) scheme is introduced integrating energy-minimized rate
adaptation, delay-constrained unequal protection, and quality-aware packet distribution. The method
could minimize energy with regards to the quality of video streaming within imposed deadlines.
Video distortion in the decision process of a multipath data transfer is introduced and a distortion-aware
concurrent multipath transfer (CMT-DA) solution has been proposed to analytically formulate the data
distribution over multiple communication paths to minimize the end-to-end video distortion and derive
the solution based on the utility maximization theory [9].

In order to prevent freezes at the clients, a network-based framework was introduced where a
network controller prioritizes the transmission of specific video segments. Furthermore, a Machine
Learning (ML) engine based framework was elaborated and, under various video streaming scenarios,
an ML-based framework’s performance was compared with many HTTP Adaptive Streaming (HAS)
based solutions [10]. For video streaming, Dynamic Adaptive Streaming over HTTP was used in
both wired and wireless environments, but video quality oscillation and video freeze in wireless
environments cause poor user experience. The Wireless Quality Adaptation (WQUAD) algorithm
was developed to provide stable performance [11]. The presented algorithm eliminated bandwidth
estimation from quality adaptation and provided video freeze prevention and high video quality on
average. For each Dynamic Adaptive Streaming over Hypertext Transfer Protocol (HTTP) (DASH) user,
a wireless resources allocating scheduler was presented. The scheduler worked with the QoE-aware
cross-layer and improved the video quality [12].

Authors in [13] introduced an extensive review of HAS techniques across multimedia and
networking domains. They addressed the major issue that the users can perceive from the multimedia
streaming, which is the QoE, along with the challenges that influence the QoS just like the variation
of channel condition, which is normally ignored by the HAS technologies. As the number of users
increases, it is hard to satisfy their needs in terms of throughput. This is why authors in [14] proposed a
Software Defined Network (SDN)-based Transmission Control Protocol (TCP) throughput management
algorithm to provide fairness to competing users over a wireless network. The main ideas are to avoid
oscillation of the video quality and stable buffer length. Authors showed significant improvement of
fairness among users.

A playback length changeable 3D video data chunk segmentation (PLC3DCS) algorithm and
a hybrid-priority based 3D video P2P data scheduling algorithm were presented for heterogeneous
networks. Bandwidth-adaptive 3D video P2P streaming was applied to gain better error-resilience and
network utilization performance with improving the chunks’ success delivery rates [15]. A high-quality
video streaming technique was proposed [16]. The presented technique provides remotely formed
content to be gained and streamed to multi-tile display environments on a heterogeneous wide area
network. To minimize the entropy and needed bandwidth of the video stream, video compression
was used. Thus, 1080p resolution and multimedia rich content with bandwidth requirements below
10 Mbps was delivered. A QoS supporting video streaming system over heterogeneous wireless
networks was presented and the system was tested on real Wireless Local Area Network(WLAN)
and LTE networks [17]. Fountain code was utilized to decrease errors and losses on unstable wireless
network with consolidating many physical paths in a cost-effective way. An adaptive multi-interface
selection video streaming system was proposed with a prototype that was improved on iOS (iPhone 5s)
over LTE and WiFi network in [18]. Basically, the system was composed of a reliable cloud-based video
delivery scheme together with the split-layer SVC encoding and real-time adaptive multi-interface
selection. The system was tested in various real-world networks about improving the video quality.
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Video streaming to mobile devices is an example of content-on-the-move, which has gained a
great increase in volume together with multimedia traffic in recent years. Thus, research on video
streaming presents remarkable progress. In 2013, 53% of the global mobile Internet traffic was
composed of video content delivery. Furthermore, by 2018, it is expected to reach 67% of the global
mobile Internet traffic [19]. A distributed and adaptive resource management controller that allows the
optimal exploitation of Cognitive Radio and soft-input/soft-output data fusion in Vehicular Access
Networks has been designed and the problem of resource management through the use of stochastic
network utility maximization for reducing the energy of the vehicular nodes through offloading traffic
towards the cloud has been solved [20].

For variable available transmission capacities presenting multicasting video, SVC technology
was proposed as a remarkable mechanism. For real-time dissemination of video, wireless video
multicasting was proposed as an effective solution. Wireless video multicasting utilizes its own
broadcast structure and SVC is a good solution for the heterogeneity problem of networks. One base
layer and many higher layers form the SVC-encoded video stream. Video’s main quality is given
by the base layer. More than one higher layer presents identical video with rising qualities. On the
transmitting side, variable Modulation and Coding Schemes (MCSs) are implemented on variable
video layers. Thus, a subset of layers is received that is available for channel conditions [21].

Lately, high-definition video data utilization in cellular networks has risen because of the
ever increasing high-end smart phone usage. To be able to provide the best device capabilities,
mobile service providers work on presenting high-quality video service in a bandwidth-efficient
manner. For LTE broadcast/evolved multimedia broadcast multicast service and terrestrial broadcast
TV/ATSC 3.0 services, an open-loop multi-input multioutput (MIMO) scheme was proposed with
considering the SVC. A well known video compression technique SVC supports simulcasting.
A high-quality video sequence is divided by SVC into bit-stream layers. Thus, a better service
degradation will be decoded under variable reception scenarios. These scenarios may be H.264/SVC
and H.265/SHVC. In SVC, the QoS is based on the highest enhancement layer, which will be mainly
processed. The main aim of the presented scheme was to provide the minimum vital information
together with gaining additional information to develop the quality of video [22].

In this work, we propose to (i) mitigate significant interference for MUE victims in a HetNet
scenario where its SINR is unsatisfied; (ii) to match the data rate of the interfered channel with the
video rate in a way that the best quality video service is delivered by an adaptive resource allocation
scheme; and (iii) to allocate RBs in an optimized way to deliver higher QoS (Table 1 describes all the
acronyms used in the article).

Table 1. Table of acronyms.

Acronym Meaning

BL Base Layer
CMT-DA Distortion-Aware Concurrent Multipath Transfer
CQI Channel Quality Indicator
CSG Close Subscriber Group
DASH Dynamic Adaptive Streaming over HTTP
DL Downlink
EL Enhancement Layer
ELBA Energy-QuaLity Aware Bandwidth Aggregation
EVIS Energy-Video Aware Multipath Transport Protocol
FBS Femtocell Base Station
FDD Frequency Division Duplex
FUE Femtocell User Equipment
HAS HTTP Adaptive Streaming
HetNet Heterogeneous Networks
HTTP Hypertext Transfer Protocol
ILP Integer Linear Programming
LTE Long-Term Evolution
LTE-A Long-Term Evolution Advanced
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Table 1. Cont.

Acronym Meaning

MBS Macrocell Base Station
MCS Modulation and Coding Scheme
MIMO Multi-Input Multioutput
ML Machine Learning
MOS Mean Opnion Score
MUE Macrocell User Equipment
OFDMA Orthogonal Frequency Division Multiple Access
PA Power Allocation
PLC3DCS Playback Length Changeable 3D Video Data Chunk Segmentation
PLR Packet Loss Ratio
PSNR Peak Signal-to-Noise Ratio
QoE Quality of Experience
QoS Quality of Service
RAN Radio Access Network
RB Resource Block
RSS Received Signal Strength
SDN Software Defined Network
SDQA Streamlined DP-based Quality-level Allocator
SINR Signal to Interference Noise Ratio
SVC Scalable Video Coding
TCP Transmission Control Protocol
TDD Time Division Duplex
UL Uplink
WLAN Wireless Local Area Network
WQUAD Wireless Quality Adaptation

3. System Model and Assumptions

Our system model is represented by video streaming over HetNet. The HetNet is mainly
composed of two components; macrocells and femtocells (cf. Figure 1), where the former provides
mobility capability while the latter tries to extend coverage and capacity. The mobile device can be
connected to the HetNet first, then the Internet, and finally the cloud computing where video streaming
services are located. We assume a centralized Mobile Cloud Computing paradigm as it is the most
conventional. The macrocell is controlled by the MBS, which is responsible for regulating traffic in the
macrocell, while the small cells are operated by FBSs. Here, a distinction between user equipment,
which is connected to MBS as they are called MUEs or Macrocell User Equipment, and the users who
are connected to small cells, which are called FUEs or Small User Equipment, is essential [23].

Figure 1. Video streaming system architecture with HetNet.



Information 2018, 9, 22 6 of 18

Video streaming over wireless networks faces many challenges due to the nature of the wireless
channel, which is time varying and has limited resources in terms of bandwidth, making it hard
to guarantee any specific video QoS. However, when considering the context of HetNet, the main
problem can be represented by the interference, which influences the quality of video delivered by the
network (Table 2 describes all the symbols used in the article with their meaning).

Table 2. List of variables.

Symbol Meaning

M A macrocell
Fl A femtocell l
L Set of femtocells
I Set of MUEs
J Set of FUEs
K Set of RBs
k A RB k
MUEi A macrocell user i
FUEj A femtocell user j
N0 Power of the additive White Gaussian noise
SINRk

M,MUEi
SINR of a given MUEi associated with MBS M on RB k

Gk
M,MUEi

Channel fast fading gain between M and MUEi on RB k
Gk

Fl ,MUEi
Channel fast fading gain between MUEi and the neighboring Fl on RB k

Zi,k Set of all interfering FBSs on user MUEi on RB k
Pk

M,MUEi
Transmit power allocated on RB k by the serving cell M

RSSk
M,MUEi

Received signal strength by MUEi from MBS M on RB k
RSSk

Fl ,MUEi
Received signal strength by MUEi from FBS Fl on RB k

Pk
Fl

Transmit power allocated on RB k by the serving femtocell Fl

P
′k
Fl

New value of transmission power of femtocell Fl on RB k
CLSy Clusters
y Index of the cluster
PTFl Geographical position of the femtocell
RPPTFl

Repeated position
TMUE Total number of MUE
µ̄i Average traffic rate for video connection i
Q Operational mode set of the video encoder
L(dT,R) Path loss exponent with the distance dT,R between T and R
S(dT,R) Shadowing component
F(v) Fast fading component
X Total number of MUEs and FUEs
µ̄c Average traffic rate for video connection
uk Average data rate for the RB k
X Total number of MUEs and FUEs
RELs Rate of enhancement layer
RBL Rate of base layer

In this structure, I MUEs are uniformly distributed within the MBS coverage area and they are
not allowed to access femtocell Fl , (l = 1, ..., L) during their mobile tour, i.e., all the outdoor users are
non-CSG users for Fl operators. An Fl covers J randomly distributed FUEs. The MUEs and FUEs use
a common frequency band divided into k RBs with OFDMA-based transmissions. We also assume that
the macrocell M is full up and cannot provide any intra-channel allocation to mitigate the probable
interference caused to MUEs users. Both M and FBSs need a periodical report as Channel Quality
Indicator (CQI). in terms of SINR to check the signal quality of their UEs and provide the resource
allocation of their RBs. The receiver DL SINR of a given MUEi, (i = 1, ..., I) related with M on resource
block k can be defined as:
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SINRk
M,MUEi

=
Pk

M,MUEi
|Gk

M,MUEi
|2

N0 + ∑Fl∈Zi,k
Pk

Fl ,MUEi
|Gk

Fl ,MUEi
|2

, (1)

where Pk
M,MUEi

is the present transmit power allocated on RB k by the serving cell M, and |Gk
M,MUEi

|2

is the channel gain between MUEi and its macrocell M on RB k. In the same way, Pk
Fl ,MUEi

is the
transmit power of neighboring femtocell Fl on RB k. N0 is the white noise power spectral density and
Zi,k represents the set of all interfering FBSs on MUEi on RB k. |Gk

Fl ,MUEi
|2 is the channel gain between

the MUEi and the neighboring Fl on RB k.
In general, the average channel |GT,R|2 between the transmitter (T) represented by M/Fs and the

receiver (R) represented by MUEi/FUEj is formulated as follows:

|GT,R|2 = L(dT,R) · S(dT,R) · F(ν), (2)

where L(dT,R) is the path loss exponent with the distance dT,R between T and R, S(dT,R) and F(ν)
are the shadowing and fast fading components, respectively, and ν is a factor related to speed of
users. Using preambles in several RBs by the MUEs assist in knowing the average RSSM,MUEi by the
serving cell M and all neighboring Fs. This means that Fs can capture this information according to
RSSM,MUEi report sent back by the MUEs during uplink transmission. We suppose that M knows
the RSSk

M,MUEi
on each RBs k, as well as the RSSk

Fl ,MUEi
from an Fl according to some conditions

detailed in the following sections. Consequently, the Fs can detect also a MUEi whether it is in the
neighborhood or not by receiving the MUEi’s report, which includes the RSSk

Fl ,MUEi
from the UL

transmission. At the same time, we assume that the average channel gain |GMUEi ,Fl |
2 from an MUEi

to a neighboring Fl is the same as |GFl ,MUEi |2 that was sent from an Fl to MUEi. Since the path loss
and shadowing components are the same, then the channel gain |GFl ,MUEi |2 is known easily from an
Fl even though this possibility is not used neither in Frequency Division Duplex (FDD) nor in Time
Division Duplex (TDD) system [24], while the |Gk

Fl ,MUEi
|2 on a specific RB k can be calculated directly

when the RSSk
Fl ,MUEi

is known from a neighboring Fl .

4. A Hybrid Algorithm for Power Allocation in Macrocell/Femtocell Architecture

Giving the fact that all the femtocells are deployed within the umbrella of the macrocell using
a full frequency reuse scheme, the transmission signal from FBSs will cause a strong interference to
neighboring MUEs, leading to a large degradation of their received SINRk

M,MUEi
. The aim of the

femtocell power adjustment is to maximize the sum of the macrocell and femtocells’ throughputs,
while satisfying both MUEs’ and FUEs’ SINR requirements.

In order to proceed, we propose an algorithm to achieve the above-mentioned objective through
the following steps: (i) defining clusters according to the geographical locations of interfering
Fs; (ii) dividing clusters into sub clusters of Master/Slave-Fs; (iii) applying centralized power
allocation in Master-Fs clusters; and (iv) applying distributed power allocation to Slave-Fs clusters.
Our aim is to increase the spectral efficiency of MUEs, decrease the signaling overhead caused
by the fully centralized power allocation method and decrease the time calculation in M which
is needed to allocate RBs to all interfering femtocells (Figure 2 shows the flow diagram of the
proposed framework). Initially, the MUEs are randomly positioned in M and in active mode i.e.,
they are sending back periodically the SINRk

M,MUEi
on each RB k during the UL transmission before

executing the RB allocation procedure based on a scheduling strategy. As a consequence, M verifies
the users’ quality channels based on the returned measurement reports SINRk

M,MUEi
resulted from the

following comparison:
SINRk

M,MUEi
< SINRThreshold, (3)

where SINRThreshold is the SINR threshold by which a minimum QoS can be guaranteed. If condition (3)
is fulfilled, M asks the concerned users to send another measurement report in terms of RSS, which
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contains the received pilot signal of the current serving cell and all neighboring cells regardless their
types (M or FBSs). The RSS reports help M in identifying the source of interference and checking
whether it is caused by neighboring cells or the consequence of another sources such as fast fading or
some noise signals. For this purpose, condition (4) is checked to determine if the RSSk

Fl ,MUEi
of a user

MUEi from neighboring cell Fl is greater than the RSSk
M,MUEi

of the serving cell. If so, M identifies the
Fl as interfering and MUEi as a victim:

RSSk
M,MUEi

≤ RSSk
Fl ,MUEi

. (4)

If Equation (4) is fulfilled, M identifies the received RSSk
Fl ,MUEi

on Fl as the interfering signal and
then keeps tracking each of the F′l s position, i.e., PTFl , the MUEi victims are placed into a temporary table.

The hybrid algorithm proceeds in mitigating interference through the following steps
(see Algorithm 1):

Step 1: Defining clusters. Initially, M starts to group the interfering Fs into clusters CLSy

depending on the F′l s geographical position, which is referred to as PTFl . In the case where F’s PTFl

are far from each other (depending on the street width, etc.), M subdivides the Fs into more than one
cluster CLSys as y represents the index of the clusters. The M will count the repeated position (RPPTFl

)

and the total MUEs (TMUE) verifying the condition (4) in every CLSy, respectively. The objective of
this step is to find the average number of the MUEs that are impacted by each interfering femtocell.
In order to proceed, M calculates the average AVG(RPPTFl

,TMUE)
for each CLSy as follows:

AVG(RPPTFl
,TMUE)

=
∑

MUEX
MUEi

, RPPTFl

TMUE
(5)

where MUEX is the number of MUEs fulfilling the condition (5) with a PTFl , so

RPPTFl
=

{
1, i f PTFl has equal positions to Fl ,

0, otherwise.

Step 2: Dividing clusters into sub clusters of Master-Slaves Fs. Once the AVG(RPPTFl
,TMUE)

is

found for each F in the main CLSy clusters, M will sort all the elements of a cluster according to the
value of the AVG(RPPTFl

,TMUE)
in a descending order. Afterwards, M will divide the main cluster into

sub-clusters within a Master and Slave Fs. M removes all the MUEs in the sorted list that belong to the
first calculated AVG(RPPTFl

,TMUE)
, and group them in a sub-cluster called master-cluster. Then, M will

remove all the MUEs from the list according to the PTFl , which is/are located in the neighborhood
of the Master-cluster, and gather them in a subcluster called Slave-clusters. Note that the list of the
interfering femtocells will change dynamically when the average AVG(RPPTFl

,TMUE)
for each femtocell’s

position PTFl is changed depending on the mobility of the MUEs. The main objective of this step is to
find and choose the interfering femtocells that have the minimum and/or the maximum number of
victims within each sub-cluster.

Step 3: Centralized power allocation in Master-Fs. In this step, M proceeds in the power
allocation by dealing first with the MUEs that are impacted by the Master− Fl by first computing the
maximum interference MIk

MUEi
that can be allowed by the victim’s MUEi as follows:

MIk
MUEi

=
RSSk

M,MUEi

SINRThreshold − N0. (6)

Then, the macrocell M asks an Fl that belongs to PTFl Master− Fl to decrease their transmitting
power from PFl to P

′
Fl

according to
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P
′k
Fl
= MIk

MUEi
.

RSSk
Fl ,MUEi

∑L
l=1

RSSk
Fl ,MUEi︸ ︷︷ ︸

Ik
Fl ,MUEi

.
Pk

Fl

RSSk
Fl ,MUEi︸ ︷︷ ︸

|Gk
Fl ,MUEi

|2

, (7)

where ∑L
l=1RSSk

Fl ,MUEi
represents all the Fs fulfilling Equation (5), Ik

Fl ,MUEi
is the maximum interference

that Fl can cause to an MUEi victim, and |Gk
Fl ,MUEi

|2 is the gain between them.
Step 4: Distributed power allocation in Slave-Fs. In this step, we define a distributed power

allocation scheme for the Fls that are selected as Slaves. Whenever an Fl has an AVG(RPPTFl
, TMUE)

less than its neighbors, then M neglects calculating the P
′k
Fl

(step 3) and allows the Fl to calculate and
allocate its transmitted power independently. The main motivation behind this step is to enhance
the spectral efficiency of the MUEi victims without any need for calculation and instruction report
from M to the interfered Fl , which was adopted in the counterpart (Master − Fl). The main issue
here is that the (Slave − Fl) will still depend drastically on the RSS that is reported by the MUEs.
Therefore, the pioneer difference of this method regarding the centralized power allocation is the
migration of most of or a part of the power allocation calculation from M to Fl . As a consequence,
we reduce tremendously the signaling overheads exchanged among the elements (M/Fs) because of
the centralized method. This can be achieved through the following parts:

• Consider the case when a (Slave− Fl) captures the RSSk
Fl ,MUEi

report generated by a MUEi where
the SINRk

M,MUEi
is fulfilling the Equations (4) and (5), respectively. In addition, when a MUEi

is close to the neighboring Fl , it is considered that the channel gain |Gk
Fl ,MUEi

|2 is known from
a Fl ; however, there is a lack of shadowing S(dTx,Rx) and fast fading F(α) components, thus the
RSSk

Fl ,MUEi
can be represented as follows:

RSSk
Fl ,MUEi

=
Pk

Fl

|Gk
Fl ,MUEi

|2
, (8)

where |Gk
Fl ,MUEi

|2 = L(dFl ,MUEi ). Subsequently, the distance dFl ,MUEi between MUEi and an
Fl is known too, hence an Fl can detect if the attenuation wall WLoss is counted within the
aforementioned |Gk

Fl ,MUEi
|2 or not.

• It is expected that an Fl finds the RSSk
M,MUEi

or it can capture it directly from an MUEi. Then, an Fl

minimizes the transmitted power Pk
Fl

in a certain context in order to ensure the required QoS of
a victim MUEi. To do so, the RSSk

M,MUEi
must be greater than the RSSk

Fl ,MUEi
as in Equation (9):

RSSk
M,MUEi

> RSSk
Fl ,MUEi

. (9)

• Then, Fl can adjust the allocation from Pk
Fl

to P
′k
Fl

according to Equation (9) based on RSSk
M,MUEi

and RSSk
Fl ,MUEi

and substituting them in Equation (9):

Pk
Fl

|Gk
Fl ,MUEi

|2
>

P
′k
Fl

|Gk
Fl ,MUEi

|2
. (10)

Equating the RSSs on each side implies that

P
′k
Fl ,MUEi

=
Pk

Fl
.|Gk

Fl ,MUEi
|2

|Gk
Fl ,MUEi

|2
. (11)
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Algorithm 1 Hybrid Power Allocation

InitiateSINRThreshold

if SINRk
M,MUEi

< SINRThreshold then
calculate RSSk

M,MUEi

end if

for all Fl ∈ L do
if SINRk

M,MUEi
< SINRThreshold then

calculate RSSk
Fl ,MUEi

end if

if RSSk
M,MUEi

≤ RSSk
Fl ,MUEi

then
M identifies the received RSSk

Fl ,MUEi
on Fl as the interfering signal

end if

end for

for all MUEi ∈ I do
find the average number of the MUEs impacted by femtocell

AVG(RPPTFl
,TMUE)

=
∑

MUEX
MUEi

RPPTFl
TMUE

where

RPPTFl
=

{
1 i f PTFl has equal positions to Fl

0 otherwise
end for

for all Fl ∈ L do
sort AVG(RPPTFl

,TMUE)
in a descending order

create Master and Slave clusters according to PTFl

calculate the maximum interference allowed by the victims MUEi

MIk
MUEi

=
RSSk

M,MUEi
SINRThreshold − N0

for all Fl ∈Master-Fs do
calculate power adjustment

P
′k
Fl
= MIk

MUEi
.

RSSk
Fl ,MUEi

∑L
l=1

RSSk
Fl ,MUEi︸ ︷︷ ︸

Ik
Fl ,MUEi

.
Pk

Fl

RSSk
Fl ,MUEi︸ ︷︷ ︸

|Gk
Fl ,MUEi

|2

end for

for all Fl ∈ Slave-Fs do
calculate power adjustment

P
′k
Fl ,MUEi

=
Pk

Fl
.|Gk

Fl ,MUEi
|2

|Gk
Fl ,MUEi

|2
end for

end for
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Figure 2. Flow diagram of the work.

5. Adaptive Resource Allocation for Video Streaming

According to our architecture, a centralized MBS has all the updates of the quality of channel
through maintaining a database that is updated every 1ms or the duration of the LTE frame.
The database contains the last update of RSS and SINR and the last instruction of power modified
value. The MBS is connected to the cloud computing through the Internet where servers offering
streaming service is residing there. Each user regardless its type, either MUE or FUE, has an agent
in the cloud. The agent adaptively adjusts its streaming flow with a scalable video coding technique
based on the feedback of link quality provided by the MBS for each user after mitigating interference if
it occurs. We assume that the average bit rates of video quality levels are known, and this would avoid
another calculation for the predicted bandwidth for the video streaming. Generally, service providers
are often responsible for encoding video clips. They can therefore easily obtain the video quality level
information from the encoding profiles. In this work, we are only interested in the change in quality
levels for adapting to the network conditions, especially the channel quality.

Each time the interference mitigation is achieved through the hybrid algorithm, the data rate
of each user will be matched to the video streaming rate. Such information is sent from MBS to the
multimedia servers that have an agent for each user. As it is obvious, in SVC, a combination of the
three lowest scalability is called the Base Layer (BL), while the enhanced combinations are called
Enhancement Layers (ELs). Regarding this, if BL is guaranteed to be delivered, while more ELs can be
also obtained when the link can afford it, a better video quality can be expected. By using SVC encoding
techniques, the server doesn’t need to concern the client side or the link quality. Even some packets are
lost, the client still can decode the video and display. However, this is still not bandwidth-efficient
due to the unnecessary packet loss. Thus, it is necessary to control the SVC-based video streaming at
the server side with the rate adaptation method to efficiently utilize the bandwidth. The adaptation is
done through the agent that receives the channel quality and estimate the number of RB corresponding
to that user, and then makes its decision of matching between the number of RBs and the rate of video.

Let Q , Q1, ..., Qa be the operational mode set of the video encoder. The video bit rate
corresponding to the operational mode Qb(b = 1, ..., A) is denoted by pb. Let us assume that
b1 < b2 < ... < bA, which implies that a higher operational mode results in a higher video rate
and hence achieves better video quality. The operational mode is controlled by the encoder parameters.
For an SVC scenario, a scalable video stream consists of a base layer a1 and (A− 1) enhancement
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layers, i.e., a2, a3, ..., aA. The operational mode Qb(b = a, .., A) is defined as the scenario when the first
b layers are selected for transmission [25].

5.1. Estimating Link Data Rate

In this step, the agent estimates the number of resource block for each video connection. The agent
depends mainly on video rate encoding and the date rate of channel after mitigating interference by
proceeding as the following:

• The achievable data rate um for all video connections in the system is calculated according to
their CQIs.

• The number of RBs for video connection in the system is calculated depending principally on
the video and the physical layer data rates. Thus, the calculation of the number of RBs can be
achieved by the following equation:

h = d ui
1
|Mt | ∑j∈Mt uj

µ̄i
1
|Mt | ∑j∈Mt µ̄j

e, (12)

where µ̄i is the average traffic rate for video connection i . In essence, this allocation exploits
multiuser diversity by allocating more RBs to the connection with better channels. For instance,
assuming that average traffic rates of all connection are equal , the factor ui/ 1

|Mt | ∑j∈Mt uj is equal
to one. A connection with relatively good channel conditions, i.e, its µ̄i(t) > ∑j∈Mt µ̄j(t)/|Mt|
will initially be allocated two or more RBs. On the other hand, a UE with relatively bad channel
conditions will initially be allocated only one RB. The role of weighting factor ui/ 1

|Mt | ∑j∈Mt uj is
to weight the allocation proportional to video’s average rate [26].

5.2. Matching between Resource Blocks and SVC Segments

After obtaining the number of RBs for each connection, it should be decided how many video
segments of BL and ELs can be transmitted approximately. We hereby define the term “resolution”
to indicate the level of temporal segmentation and the number of ELs [25]. To this regard, if BL is
guaranteed to be delivered, while more ELs can be also obtained when the link can afford it, a better
video quality can be expected. Let V = (v1, ..., vh) be the set of RBs allocated to each video connection
and RV = (Rv1, ..., Rvh) are the date rate of each RB. Let RBL be the bit rate of BL and REL be the bit
rate of EL. The algorithm starts to allocate RBs to the BL and EL by comparing the sum of RBs data
rate to the sum of both EL and BL data rate by

h

∑
i=1

RVi ≥
J

∑
j=1

RELj + RBL, (13)

where j is the number of then ELs in the connection. If this condition is true, then allocate all the RBs
to the connection; otherwise, if

h

∑
i=1

RVi ≥∑ RBL, (14)

then allocate only RBs to BL, so we can guarantee that the video streaming will be delivered with the
minimum quality of minimum resolution due to the lack of enough RBs allocated to the connection.

6. Simulation Analysis

6.1. Network Topology

We used the LTE-Sim simulator to implement the proposed power allocation approach.
Our network topology consists of multiple cells [27]. Each MUE is randomly positioned and is
moving according to Manhattan walk mobility model. The Fs are located in a street with a rational
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distance from an MBS (>300 m). Each F is placed in one building with four FUEs who are CSG users
having low speed mobility compared to the outdoor users (3 km/h). The simulation parameters are
listed in Table 3 [24]. As for the path loss propagation model, we specified it according to the 3GPP TSG
especially for the channel gain |GT,R|2 between (T) M/Fl and (R) MUEi can be computed as in [28]:

L(dM,MUEi
) = 128.1 + 37.6× log10 (D× 0.001), (15)

L(dFl ,MUEi
) = 128.1 + 37.6× log10 (D′ × 0.001) + B, (16)

where B is the external wall attenuation (20 dBm) if the MUEs is found outside, and D and D′ are the
distance between a MUEi and their M and Fl , respectively.

Table 3. Simulation parameters.

Parameters Values Parameters Values

Macrocells 1 Thermal noise density −174 dBm/Hz
Femtocells 30 Carrier frequency 3.5 GHz

MUEs 15–60 UE noise figure 2.5 dB
FUEs 4 Macrocell radius 500 m

bandwidth 10 MHz FUEs average speed 3 km/h
RB bandwidth 50 MUEs average speed 30 km/h

Macro Tx power 43 dBm SINRtarget 5.7 dB
Femto Tx power 23 dBm Simulation Time 60 s

Regarding the SVC configuration and parameters, H.264/SVC video coding with frame rate
expressed by the number of temporal layer has been used. The video content is encoded to produce
a stream including a base layer and enhancement layers. Each layer, together with all the layers,
depends on a representation of the video content at a certain spatial and temporal (frame rate) and
SINR quality. In our case, we used three layers, 2, 1 and 0, with the frame rate 30, 15 and 5 fps,
respectively. The maximum video rate of the video sequence is 700 kbps and the average is 300 kbps.
The rate adaptation occurs every time there is a change in the SINR and RSS due to the change of
channel condition.

6.2. Performance Evaluation

The working performance of our power allocation scheme is computed by combining it with and
without rate control scheme for adapting the rate of video with the channel quality. We compared our
solution firstly to the work proposed by Wang et al. [29] as they introduced a utility function for adapting
rate of the video basing their decision on estimated bandwidth, signal strength and QoS parameters
for the video traffic: we denote it by “utility”—secondly to another solution represented by PA_utility,
which refers to the combination of this solution with our solution for power allocation because the solution
does not take the interference into account. Finally, denote our solution by RC_PA and No_RC_PA, which
refers to the use of rate control for adaptivity with and without power allocation consecutively.

Figure 3 denotes the throughput of the video in all scenarios, and it is evident that the throughput
of the video in our suggested solution is higher than the other methods due to the use of power
allocation for mitigating interference. Furthermore, the adaptive solution is making use of a good
quality of channel, when deciding to match between video rate and channel rate. As for the utility,
it shows less throughput; however, if we combine it with power allocation, it achieves a good
performance. Even though, this solution is using SINR for making the decision of matching; however, it
is using an expected bandwidth for matching the rate that does not give the exact throughput. Both our
solutions and utility do not perform well in terms of throughput when there is no power allocation.

As for the number of control messages exchanged between the device itself and the MBS,
we remarked that it is higher when achieving rate control functionality and power allocation rather
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than its absence. This is a normal case as the measurement reports are sent so often to measure the
quality of channels of FUEs and MUEs according to our algorithm. However, in the case when there is
no rate control and power allocation, there will be almost no negotiation except for the conventional
control messages sent by MBS (Figure 4).

Figure 3. Throughput of the video traffic.

Figure 4. Average number of measurement reports sent by macrocell user equipments and femtocell
user equipments.

The percentage of satisfaction of the users is so important; in our case, it is related to the QoS
guarantee for the parameter of throughput for video application. Figure 5 shows the percentage of
satisfaction, which is from 70 to 90%, while using a rate adaptive algorithm with power allocation,
while it is around 40–50% for the inverse case, i.e., rate control without power allocation, which is
a natural result due to the interference issue.

Figure 6 shows the Packet Loss Ratio (PLR) of all methods regarding the number of users. It is
clear that the PLR is increasing when the number of users is increasing; however, there is no violation
of QoS of video streaming of interfered users using our method. This is due to the power allocation
method that tries to decrease the power according to the Equations (7) and (11). The PLR is so high
when there is no power allocation as interfered users will experience a very bad channel quality,
compared to the utility method.
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Figure 5. Percentage of satisfied users in terms of throughput.

Figure 6. Packet loss ratio vs. number of users.

As for the QoE experienced by the users, the Mean Opnion Score (MOS) was used in relation with
the objective metric mainly the PSNR. According to [30,31], the relationship between PSNR and MOS
may be approximated by the bounded logarithmic function:

MOSx(PSNRx) =


1, : PSNRx ≤ PSNR1.0,

d log PSNRx + e, : PSNR1.0 ≤ PSNRx ≤ PSNR4.5,

4.5, : PSNRx ≥ PSNR4.5,

(17)

with
d =

3.5
log PSNR4.5 − log PSNR1.0

,

e =
log PSNR4.5 − 4.5 log PSNR1.0

log PSNR4.5 − log PSNR1.0
.

(18)

The parameters PSNR1.0 and PSNR4.5 denote the PSNR, which means that the perceived quality
drop to “not acceptable” (MOS = 1.0) and exceeds “very satisfied” (MOS = 4.5), respectively.
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Form Figure 7, it is depicted that the MOS score for our method is higher than the other scores for
other methods even when the number of users is increasing. The hybrid algorithm for power allocation
is playing a good role in having good MOS since it is related to the data rate of the video. Then, as
long as the data rate is high, the MOS score is better. This would mean better quality of PSNR, which
is according to Equation (15), has a strict relation with MOS score. To interpret the simulation results,
it is clear that the algorithms that are not using power allocation have lower MOS scores since the
users who are experiencing interference will not have big data rates, and, consequently, lower PSNR
and MOS scores. The conclusion can be even deduced from the relationship between Figures 6 and 7.

Figure 7. MOS vs. number of users.

7. Conclusions

In this article, we proposed a rate adaptive solution for a video streaming in an interference
scenario based HetNet. We suggested a complete framework that first performs interference mitigation
based on a hybrid method. This hybrid method is based on power control that is achieved in
a combination of centralized and distributed schemes depending on the clustering method used
to divide the network into clusters and sub-clusters of femtocell. Once the interference is mitigated,
then the rate adaptation is carried out through the allocation of an appropriate number of resource
blocks to the base layer of the video streaming traffic. This would guarantee the best quality for the
video in terms of throughput and latency in terms of QoS. As for QoE, we studied the perception of the
end user to the quality of the image that he/she received through a logarithmic relationship between
MOS and PSNR. We proved that our method delivers the best QoS and QoE to the interfered users
comparing to different methods in the literature.
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