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Abstract: This paper investigates the performance of two different adaptive control schemes for
controlling the angular position of an electronic throttle (ET) plate. The adaptive backstepping
controller and adaptive sliding mode backstepping controller are the controllers under consideration.
The control design based on these adaptive controllers is firstly addressed and the stability analysis of
each controller has been presented and the convergence of both position and estimation errors for both
controllers have been proved. A comparison study of the performance of both controllers has been
conducted in terms of system transient characteristics and the behavior of their associated adaptive
gain. The simulation has been implemented within the environment of the MATLAB package.

Keywords: electronic throttle valve; adaptive backstepping control; adaptive sliding mode
backstepping control

1. Introduction

Internal combustion engines require the regulation of airflow to control engine output speed,
output torque, spark timing and the air-fuel ratio. Until the end 1980s, the driver was in direct control
of engine speed and power. The throttle valve was controlled by a wire connected directly to the
accelerator pedal. The cruise control systems have also the technology of controlling the speed of
the engine by connecting the throttle body by a wire, which is controlled with vacuum or electronic
motor. The electronic throttle control (ECT) system driven by wire technology has appeared in 1998.
The series-7 of BMW-manufactured cars was the first series, which involved with the technology of
electronic throttle body (ETB). However, recent advances in control and technology have enabled the
throttle valve to be operated by electric actuators and control systems. Vehicle production companies
are interested in developing electronic control systems for the throttle body. Replacing the cable with
an electronic system would increase the response time and improve the overall performance of the
throttle [1,2].

The electronic throttle control (ETC) system is one beneficial technology that replaces
drive-by-wire technology and it has emerged in the automotive industry due to the increased
regulations in terms of emission control, fuel consumption, drivability and safety [1,2]. The system
consists of a throttle plate attached with a preloaded spring and driven by an electronic-controlled dc
motor such as to regulate the intake airflow. For minimizing emissions and maximizing fuel economy
in modern vehicles, an optimal air-fuel mixture in the combustion chambers is achieved using the
engine control unit, which maps and computes the angle of the throttle plate to many entries such
as engine speed, accelerator pedal position, cruise control command, and so forth. The ETC system
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has to respond to the prescribed reference from the engine control unit with fast transient and precise
control to regulate the angular position of the throttle plate [3,4].

As shown in Figure 1, the electronic throttle valve consists of a DC motor, driven by a driver,
a motor pinion gear, an intermediate gear, a sector gear, a valve plate, a nonlinear spring and
position sensor.

A backstepping control algorithm is a powerful procedural control strategy. It is established
according to iterative steps which end when the control action reaches the channel of desired state.
Throughout the design procedure of the backstepping control algorithm, virtual controllers are
assigned to intermediate state variables [5]. However, the design of this procedural algorithm requires
a prior knowledge of both systems’ uncertainty and parameters. As such, the concept of convergence
in the presence of uncertainty, like an exertion of disturbance, will be different from that in the case
of no uncertainty. Adaptive backstepping control (ABSC) is an extended version of a backstepping
control strategy. The certainty equivalence adaptive control is one of several recent adaptive strategies
based on adaptive law, which works to estimate the unknown parameters to represent the real value
of the unknown ones. The combination of adaptive law based on Lyapunov stability analysis with
backstepping control strategy yields almost the same performance characteristics as that resulting
from a non-adaptive backstepping controller with robustness capability [6].
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Figure 1. Electronic throttle valve (a) Actual Throttle Valve (b) Schematic Throttle valve.

Sliding mode control (SMC) is a discontinuous control strategy, which is designed based on
variable structure synthesis. The milestone in designing SMC is the existence of sliding surface.
Whenever the trajectory of error state is enforced to reach this sliding surface, it asymptotically slides
to an equilibrium point. The SMC has good robust characteristics against uncertainty in its system
parameters and also resists external disturbance with its bounded matched property [7]. However,
the necessity of knowing the upper bound of uncertainty and the nominal values for the uncertain
parameters has imposed restrictions to the robustness against uncertainty in parameters.The robustness
capabilities may be altered when dealing with a totally unknown disturbance level. The integration
of SMC strategy with adaptive control theories lead to the emergence of what is called “Adaptive
Sliding Mode Control (ASMC)”. This combination provides the SMC with the powerful features
given by both methodologies, i.e., the robustness characteristics gained by SMC together with the
adaptive capability acquired by adaptive control theory to cope with totally unknown parameters [8,9].
Furthermore, combining the features of adaptive sliding mode control with backstepping control
acquires the benefits of performance characteristics and robustness of the three strategies and yields so
called Adaptive sliding mode backstepping control (ASMBC).

In the present work, the performance of two adaptive controllers named the adaptive backstepping
controller and Adaptive sliding mode backstepping controller are investigated for plate angular
position control of electronic throttle valve system.
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The work of the paper has been motivated by the recent researches in nonlinear and robust
adaptive control theories presented by (Humaidi and Hameed 2017–2018) [9–11].

In what follows, some recent relevant control methodologies for throttle valve are briefly discussed.
Chen et al. (2012) proposed an adaptive fuzzy logic based sliding mode controller to enhance the
control strategy robustness with respect to parameter variations and external disturbances for electronic
throttle [12]. Caruntu et al. (2012) has adopted Smith-predictor control, which is used to control the
electronic throttle body. There have been experiments conducted to implement the control strategy
of throttle valve over a delayed-driven network [13]. Xinghua et al. (2017) presented a stabilizing
controller based on stochastic dynamic systems. The stability concept is analyzed in terms of probability
and the proof of stability is established by a control design based on sliding mode technique. The
proposed control design is applied to automotive throttle valve and it is verified using experimental
data [14]. Kurihara and Yamaguchi (2017) designed a back-stepping control to improve the dynamic
response and resolution of electronic control throttle valve system in the presence of nonlinearities
such as static friction and backlash of gear train. The stability of backstepping controlled systems has
been proved and the simulated results of two steps backstepping algorithm showed that this advanced
control strategy outperforms a conventional PID controller in terms of resolution and transient
characteristics [15]. Jiao et al. (2018) designed and implemented an adaptive finite time servo control
strategy for real electronic throttle valve systems. This work has presented an integrated framework
of the adaptive backstepping algorithm based on the stability theory of finite convergence time to
guarantee the trajectory tracking of throttle valve opening [16]. Rui et al. (2018) presented a nonlinear
backstepping tracking control strategy, taking into account the unknown external disturbances and
input saturation. Throughout the control design, an auxiliary design system is included to overcome
the input saturation and sliding mode control is used to compensate for the unknown external
disturbance. The desired tracking performance based on nonlinear controller is verified based on
simulated results [17]. Nia and Nagamune (2018) suggested a switching gain-scheduled PID control
strategy. The design of controller consists of multiple gain scheduled PID controllers, which are
instantaneously switched to appropriate regions defined for battery voltage and varying velocity
of throttle valve. The experimental results showed that this control strategy has better reference
tracking performance than classical controllers for different scenarios [18]. Yang et al. (2018) proposed
a new novel nonlinear controller for electronic throttle valve systems with an unknown state and
disturbance level. The controller is based on using a Leunberger-sliding mode observer to estimate the
throttle vale opening change and utilized fuzzy logic control to approximate the total uncertainty. The
stability and convergence of a controlled system has been proved based on Lyapunov method and
the effectiveness of proposed nonlinear controller is verified, via numerical simulation, in terms of
transient characteristics, precision and robustness [19]. Eski and Yildirim (2017) made a performance
comparison among four controllers such as PID controller, model-based neural network controller,
adaptive neural network-based fuzzy inference controller and robust adaptive neural-based fuzzy
inference controller in terms of transient characteristics of position-controlled electronic throttle valve
system. The simulated results showed that robust adaptive neural-based fuzzy inference controller
outperforms the other suggested controllers [20]. Wang et al. (2016) proposed a robust adaptive
scheme for position control of electronic throttle (ET) valve. Design of robust adaptive sliding mode
(RASM) control scheme has been developed to adapt, estimate and compensate nonlinearities due
to gear backlash, return-spring limp frictions and parameter uncertainties. A satisfactory dynamic
performance has been presented by RASM controller for position control of ET system [21]. In
reference [22], Xiao-Jian Li and Guang-Hong Yang focused on the adaptive decentralized control
problem for a class of interconnected nonlinear systems, where the interconnections are assumed to
be unknown and completely nonlinear. The adaptive law is established by introducing a smooth
switching function. The stability of closed-loop system based on adaptive decentralized controller is
analyzed using graph theory and Lyapunov method. The work proved that all states of closed-loop
system are globally bounded and the tracking errors converges to a compact set.
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One of the problems in adaptive control schemes is the bound availability of disturbance.
This problem has been addressed in the present work. In an adaptive backstepping algorithm,
the bound of disturbance is a prerequisite for the adaptive controller to work properly and estimate
the disturbance. On the other hand, the adaptive backstepping sliding mode controller works to
estimate this bound and therefore the problem of disturbance bound has been solved or avoided with
this controller.

In the present work, the main contribution is to design two adaptive nonlinear controllers for
angular position control of the throttle plate to satisfy the following objectives:

1. To robustly control the position of the throttle plate of the throttle valve using adaptive
backstepping control and adaptive sliding mode backstepping control.

2. To robustly control the position of the throttle plate of the throttle valve.
3. To cope the unknown (upper bounded) exerted disturbance based on adaptive backstepping

control, where disturbance upper bound is needed.
4. To cope the unknown upper bound of exerted disturbance using adaptive sliding mode

backstepping control, where disturbance upper bound is estimated.

Moreover, throughout the application of both controllers, the constrained control effort
represented by the supplied battery has been considered, which is a limitation avoided by almost all
the aforementioned researchers.

The whole paper comes with five sections: Section 2 presents the dynamic modeling of the throttle
valve, Section 3 focuses on the controller design and proof of error convergence based on Lyapunov
stability analysis, Section 4 discusses the computer simulation results and finally Section 5 highlights
the main concluded points due to applications of two adaptive control strategies.

2. Mathematical Model

The detailed schematic diagram of throttle valve system is illustrated in Figure 2.
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Figure 2. The schematic diagram of throttle valve.

Applying Kirchhoff’s voltage law around armature circuit, one can get the equation

ua = Kd u = R ia + L dia/dt + ea (1)

where, R is the armature resistance, L is armature inductance, Kd is the drive gain, ua is applied voltage,
ia is the current passing through the motor winding, ea is the back e.m.f voltage which is expressed by

ea = Kb dθm/dt (2)

where, Kb is the back e.m.f constant and θm is the shaft angular position of motor. Using Equation (1),
one can have

Kd u = R ia + L dia/dt + Kb dθm/dt
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It has been shown that the coil inductance L has no effect on the dynamic response and it can be
neglected [1,12]. As such Equation (3) can be written as;

ia = (Kd/R) u− (Kb/R) dθm/dt (3)

The developed torque of DC motor is given as

Tm = Kt ia (4)

where, Kt is motor torque constant. The generated torque is used to compensate the motor shaft
motion, the load torque TL, viscosity and friction damping:

Tm = Jmd2 θm/dt2 + Bmdθm/dt + Bmo + TL (5)

where, Bm and Bmo denotes the viscosity damping and static friction coefficients of motor shaft,
respectively, Jm is the motor shaft inertia.

On the other part of gear, the transmitted toque Tt tries to overcome the throttle plate motion,
spring torque, viscosity damping and static friction of throttle valve;

Tt = Jtd2θt/dt2 + Btdθt/dt + Bto + Tsp + Ta f (6)

where, Bt and Bto represents the viscosity damping and static friction coefficients of the throttle,
respectively, Ta f is the torque due to airflow, Jt is the throttle inertia and Tsp is the return spring torque
defined by [23]

Tsp = Ksp (θt + θto) (7)

where, Ksp is the elastic coefficient of the spring, θto is throttle angle of throttle plate.
Using the gear ratio N = θm/θt = Tt/TL, Equations (3)–(7) can be combined to give

d2θt/dt2 = −a1θ − a2 dθ/dt + b1u− f1 − f2 − f3 (8)

The airflow torque Ta f which has no significant effect on the behavior of electronic throttle and
hence it can be treated as unknown external disturbance.

If one set x1 = θ, x2 =
.
θ and y = x1, then the state variable representation can be written as

.
x1 = x2

.
x2 = −a1x1 − a2x2 + b1 u + w

(9)

where,

a1 = Ksp/
(

Jm N2 + Jt
)
, b1 = NKt Kd/

(
R
(

Jm N2 + Jt
))

,
a2 =

[(
N2 Kb Kt + R

(
Bm N2 + Bt

))
/
(

R
(

Jm N2 + Jt
))]

, w = − f1 − f2 − f3,
f3 = (NBmo + Bto) /

(
Jm N2 + Jt

)
, f2 = Ta f /

(
Jm N2 + Jt

)
, f1 = Ksp θ0/

(
Jm N2 + Jt

)
In matrix form Equation (9) becomes[ .

x1
.
x2

]
=

[
0 1
−a1 −a2

][
x1

x2

]
+

[
0
b1

]
u +

[
0
w

]

y =
[

1 0
][ x1

x2

] (10)
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3. Controller Design and Stability Analysis

3.1. Backstepping Control

If it is assumed that the uncertainty w is known, the following analysis is followed. Let z1

represents the error between the actual state x1 and the desired trajectory xd described by [5]:

z1 = x1 − xd (11)

The time derivative of above equation gives

.
z1 =

.
x1 −

.
xd

or,
.
z1 = x2 −

.
xd

(12)

Defining the error z2 as follows;
z2 = x2 − α (13)

Equations (12) and (13) gives
.
z1 = α + z2 −

.
xd (14)

Using,
α = −c1z1 +

.
xd (15)

Equation (4) becomes
.
z1 = −c1z1 + z2 (16)

Taking the time derivative of Equation (13) gives

.
z2 =

.
x2 −

.
α

or,
.
z2 = −a1x1 − a2x2 + b u + w− .

α

(17)

The control action can be chosen as

u =
1
b
(
a1x1 + a2x2 − w +

.
α− c2z2 − z1

)
(18)

Substituting Equation (18) into Equation (17) to obtain

.
z2 = −c2z2 − z1 (19)

Using Equation (15), one can obtain the expression for
.
α,

.
α = −c1x2 + c1

.
xd +

..
xd (20)

and substituting it into Equation (18), the control law becomes

u =
1
b
(
(−a1 − c1c2 − 1) x1 − (a2 + c1 + c2) x2 + (c1c2 + 1) xd + (c1 + c2)

.
xd +

..
xd − w

)
(21)

To investigate the stability, the following Lyapunov candidate is chosen

V(z1, z2) = z2
1/2 + z2

2/2 (22)
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The derivative of Lyapunov function gives

.
V(z1, z2) = z1

.
z1 + z2

.
z2

or,
.

V(z1, z2) = −z2
1 − z2

2 ≤ 0
(23)

Therefore, one can conclude that the control law described by Equation (21) leads to an
asymptotically stable system.

3.2. Adaptive Backstepping Control

If the uncertainty w is assumed to be bounded and unknown, then by employing the certainty
equivalence principle the actual value of uncertainty w is replaced by its estimate ŵ and the difference
between them is defined as the estimation error w̃ = w− ŵ. Therefore, the control law is based on
uncertainty estimate rather than the actual value [6], i.e.,

u =
1
b
(
−a1x1 − a2x2 − ŵ +

.
α− c2z2 + z1

)
(24)

Then, Equation (19) becomes
.
z2 = −c2 z2 − z1 + w̃

To develop the adaptive law, the following Lyapunov function is selected;

V(z1, z2, w̃) = z2
1/2 + z2

2/2 + w̃2/2β (25)

The time derivative of candidate Lyapunov function can be given as

.
V(z1, z2, w̃) = −z2

1 − z2
2 + w̃ z2 − w̃

.
ŵ/β

or,
.

V(z1, z2, w̃) == −z2
1 − z2

2 + w̃
(

z2 −
.

ŵ/β
) (26)

To enforce the above equation to be negative definite, then the following adaptive law is deduced

.
ŵ = βz2

or,
.

ŵ = β
(
x2 + c1x1 − c1 xd −

.
xd
) (27)

The adaptive backstepping control scheme for electronic throttle valve system is sketched in
Figure 3.
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3.3. Adaptive Sliding Mode Backstepping Control

Considering the error equations of Equations (11)–(17) the sliding surface can be written as [24]:

s = c z1 + z2 (28)

where c > 0 is a constant. Equation (28) can be rewritten as:

z2 = s− c z1

Taking the derivative of Equation (28), one can have

.
s = c

.
z1 +

.
z2

or
.
s = c(−c1z1 + z2)− a1x1 − a2x2 + b u + w− .

α

(29)

The disturbance term is revisited here as |w| ≤ λ > 0 which means the disturbance is bounded
and to make the scenario more conflictive, the disturbance bound is assumed to be unknown. Hence the
adaptive sliding mode backstepping is presented also based on certainty equivalence where an estimate
of the disturbance bound is used λ̂.

The candidate Lyapunov function is constructed as:

V(z1, s, λ̂) = z2
1/2 + s2/2 + λ̃2/2γ (30)

where, λ̃ = λ− λ̂ and
.
λ̃ = −

.
λ̂. The time derivative of the Lyapunov candidate is:

.
V(z1, s, λ̂) = z1

.
z1 + s

.
s− λ̃

.
λ̂/ γ (31)

Equation (31) can be written as,

.
V(z1, s, λ̂) = z1(−c1z1 + z2) + s

(
c(−c1z1 + z2)− a1x1 − a2x2 + b u + w− .

α
)
− λ̃

.
λ̂/ γ (32)

Based on sliding mode theory, the control action is selected to be composed of two parts as follows:

u = un + uasm (33)

where un is the performance part which is given by;

un =
(
−c(−c1z1 + z2) + a1x1 + a2x2 +

.
α− z1 − hs

)
/b (34)

where h > 0 is a design parameter, and the robustness part which is given by

uasm = −λ̂sgn(s)/b (35)

Substituting the control parts un and uasm into Equation (33) leads to the following expression:

.
V(z1, s, λ̂) = z1(−c1z1 + z2)

+c(c(−c1z1 + z2)− a1x1 − a2x2− c(−c1z1 + z2) + a1x1 + a2x2

+
.
α−x1 − hs + w− .

α− λ̂sgn(s))
(36)

Equation (36) can be rewritten as

.
V(z1, s, λ̂) = −c1z2

1 + z1z2 − z1s− hs2 + w s− λ̂ssgn(s)− λ̃
.
λ̂/ γ (37)
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From the fundamentals of linear algebra, the fact of |w.s| ≤ |w|.|s| ≤ λ|s| and s.sgn(s) = |s| can
be utilized such that Equation (37) becomes

.
V(z1, s, λ̂) ≤ −c1z2

1 + z1(s− cz1)− z1s− hs2 + λ|s| − λ̂|s| − λ̃
.
λ̂/ γ

or,
.

V(z1, s, λ̂) ≤ −c1z2
1 − cz2

1 − hs2 + λ̃(λ|s| −
.
λ̂/ γ)

(38)

The time derivative of Lyapunov function can be forced to be negative definite by choosing the
following adaptive law;

.
λ̂ = γ|s| (39)

Equation (38) becomes,
.

V(z1, s, λ̂) ≤ −c1z2
1 − cz2

1 − hs2 ≤ 0 (40)

This makes z1 converges asymptotically to zero, which means that the state x1 asymptotically
tracks the desired trajectory xd.

The schematic diagram of adaptive sliding mode backstepping controlled throttle valve system is
illustrated in Figure 4.
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Figure 4. The schematic diagram of ETV system controlled by adaptive sliding mode backstepping 
controller. 

4. Computer Simulation 

Figure 4. The schematic diagram of ETV system controlled by adaptive sliding mode backstepping
controller.

4. Computer Simulation

The Throttle valve model has been implemented for simulation using MATLAB/SIMULINK.
The throttle valve parameters are listed in Table 1 [12].

Table 1. Lists the numeric values of ETV parameters.

Parameters Value Parameters Value

R 2.1 Ksp 0.32
L 0.0017 N 4

Kd 0.075 Kt 0.072
Bm 0.03 Bt 0.007
Bmo 6× 10−3 Bto 4× 10−3

Jm 0.02 Jt 0.01

Simulation is based on sinusoidal desired trajectory represents an acceleration demand above the
engine idle. The sinusoidal desired trajectory oscillates at frequency of 0.5 rad/s and swings within the
angular limit (10◦–40◦). Also, the sinusoidal desired trajectory starts with an initial condition of 25◦,
while the actual throttle plate angle is initiated with angle 30◦. The design parameters for the adaptive
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backstepping and adaptive backstepping sliding mode control were tuned based on try-and-error
procedure. The selection of design parameter set is made according to the best performance and
convergence rate. Therefore, the following design parameters have been obtained: c1 = 200, c2 = 20,
β = 15, c = 3, h = 20, γ = 0.7.

The disturbance Ta f is simulated by a sinusoidal air flow with height of 0.2 N and frequency of 4
rad/s. The DC motor is energized by 24 Volt battery such that the maximum allowable control action
ranges between (0–24) which a limitation avoided by most of the researchers.

Figure 5 shows the throttle plate angle responses for both adaptive backstepping and adaptive
sliding mode backstepping controller. The figure shows that the adaptive sliding mode control gives
better transient response and robust characteristics as compared to an adaptive backstepping controller.
Figure 6 shows the error response resulting from both adaptive control schemes. The performance of
controller in terms of error is evaluated by measuring root mean square of error (RMSE) over entire
simulation run. The best controller is the one which gives less RMSE. Based on the simulation shown
in Figure 6, it can be seen that the adaptive sliding mode backstepping controller gives less RMSE
compared to an adaptive backstepping controller, as indicated in Table 2.
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Figure 5. The dynamic response of throttle valve angular position based adaptive backstepping and
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Figure 6. Error response of plate angular position based on adaptive backstepping and adaptive sliding
mode backstepping controllers.

Figure 7 depicts the angular speed response for the throttle plate, where a faster response is shown
with the adaptive sliding mode backstepping than that based on an adaptive backstepping controller.
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Figure 7. Plate angular speed response based on adaptive backstepping and adaptive sliding mode
backstepping controllers.

Figure 8 shows the behavior of control efforts given by both controllers, where the adaptive
backstepping controller requires less control effort at transient than that needed by the adaptive sliding
mode one. However, it is interesting to measure the root mean square of control effort over the entire
simulation time. It has shown that the RMS of voltage signal required by adaptive sliding mode
controller is less than required by adaptive backstepping controller as reported in Table 2. The main
problem that has been observed with an adaptive sliding mode controller is the chattering behavior
seen in its control effort envelope. However, Table 2 reports the performance numerical evaluation of
both controllers.
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Figure 8. Control action response based on adaptive backstepping and adaptive sliding mode
backstepping controllers.

Table 2. The performance report of controllers.

Tracking Error Time
Variance

0.5 3 5 8 10

ABSC −0.6 −0.02 0.05 0.04 0.27 0.2562
ASMBSC −0.04 0 0.001 0 0.1 0.1316

Control Action
Time

Variance
0.1 2 5 8 10

ABSC 14.5 1.1 1.2 0.1 3.7 10.3
ASMBSC 24 0 0 0.1 3.7 11.7

Figure 9 shows disturbance estimator response resulting from adaptive backstepping controller
due to exerted disturbance. It is clear from the figure that the estimated disturbances represented
by the adaptive gain tries to converge to the exerted disturbance. The sliding surface response is
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illustrated in Figure 10 shows, in which the sliding surface reaches zero dynamic error in a satisfactory
and robust manner.

In response to applied disturbance, Figure 11 shows the response of disturbance estimator
resulting from adaptive sliding mode backstepping controller. The figure indicates that in spite of
the bounded adaptive gain obtained with this controller, the adaptive gain does not track the exerted
disturbance as the performance given by adaptive backstepping controller. The reason behind this can
be attributed to the task prescribed and designed for an adaptive sliding mode backstepping controller,
where the bound of adaptive gain has been dominated rather than the tracking error. Figure 12
shows the adaptive sliding mode backstepping controller sliding surface versus its time derivative,
which shows the big rate of change in the sliding surface as it approaches zero.
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Figure 9. Adaptive backstepping disturbance estimator response with exerted disturbance.
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Figure 10. Sliding surface response based on adaptive sliding mode backstepping controller.
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sliding mode backstepping controller
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5. Conclusions

Three contributions has been highlighted by the present work. The main contribution is to develop
two adaptive control algorithms based on the design of adaptive backstepping control strategy and
the design of adaptive backstepping-based sliding mode control scheme, for angular position control
of electronic throttle valve plate. The second contribution is to prove the stability of the electronic
throttle valve system based on these two adaptive control schemes using Lyapunov theory. The third
contribution is to present a comparison study between adaptive backstepping control and adaptive
sliding mode backstepping control strategies.

The effectiveness of an adaptive backstepping controller and adaptive backstepping-based
sliding mode controller have been examined using computer simulation based on MATLAB software.
The performance comparison between the two adaptive controllers has been made and the simulated
results showed that the adaptive sliding mode backstepping controller results in better performance
in terms of both the transient and steady-state characteristics. However, the adaptive gain due to an
adaptive backstepping controller showed closer convergence to real values, while an adaptive sliding
mode backstepping controller could successfully estimate the upper bound of adaptive gain rather
than tracking its real value. In an adaptive backstepping algorithm, the bound of disturbance is a
prerequisite for the adaptive controller to work properly and estimate the disturbance. On the other
hand, the adaptive backstepping sliding mode controller works to estimate this bound and therefore
the problem of the need of the disturbance bound has been solved or avoided based on this controller.
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