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Abstract: Facial beauty prediction (FBP) is a burgeoning issue for attractiveness evaluation,
which aims to make assessment consistent with human opinion. Since FBP is a regression problem,
to handle this issue, there are data-driven methods for finding the relations between facial features
and beauty assessment. Recently, deep learning methods have shown its amazing capacity for
feature representation and analysis. Convolutional neural networks (CNNs) have shown tremendous
performance on facial recognition and comprehension, which are proved as an effective method
for facial feature exploration. Lately, there are well-designed networks with efficient structures
investigated for better representation performance. However, these designs concentrate on the
effective block but do not build an efficient information transmission pathway, which led to
a sub-optimal capacity for feature representation. Furthermore, these works cannot find the inherent
correlations of feature maps, which also limits the performance. In this paper, an elaborate network
design for FBP issue is proposed for better performance. A residual-in-residual (RIR) structure is
introduced to the network for passing the gradient flow deeper, and building a better pathway for
information transmission. By applying the RIR structure, a deeper network can be established for
better feature representation. Besides the RIR network design, an attention mechanism is introduced
to exploit the inner correlations among features. We investigate a joint spatial-wise and channel-wise
attention (SCA) block to distribute the importance among features, which finds a better representation
for facial information. Experimental results show our proposed network can predict facial beauty
closer to a human’s assessment than state-of-the-arts.
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1. Introduction

As a burgeoning issue [1], facial beauty prediction (FBP) has attracted more and more
attention from researchers and users, which is a comprehensive topic of face recognition [2,3] and
comprehension [4–6]. An example of an FBP problem can be demonstrated in Figure 1. There are
application potentials for FBP with attractiveness, such as makeup recommendation, and face beautification.

In FBP problem, facial features play an important role for assessment. After extraction, the features
are explored and summarized for aggregate analysis. To find a better representation of facial features,
there are various data-driven models for FBP with hand-crafted or adaptive learned descriptors [7–9].
With extracted features, these models perform the assessments with elaborate predictors, which are
trained in a statistic manner.

Lately, deep learning has been proved as an efficient tool for signal and image processing [10–12].
The revival of deep learning methods, especially, convolutional neural networks (CNNs),
provides a new perspective for FBP problem. CNN performs much better performances in
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plentiful computer vision tasks than traditional methods [13–15], such as text localization [16],
image classification [17], facial landmark regression and analysis [18,19], emotion recognition [20,21],
time series forecasting [22], and semantic segmentation [23]. With the adaptive feature extraction and
exploration, CNN demonstrates superior capacities on the high-level computer vision tasks. To our best
knowledge, AlexNet [24] is the first CNN-based method for real-world image recognition, which was
proposed for image classification task in ImageNet. After AlexNet, VGGNet [25] explored a deeper
and wider design for better feature exploration and network performance. There are various effective
network designs for better performance on different tasks, which lead to a blossom of deep learning.

More
Beautiful

Less 
Beautiful

Figure 1. An example of facial beauty prediction. From top to the bottom, there are four kinds of facial
images for prediction: Asian Female (AF), Asian Male (AM), Caucasian Female (CF), and Caucasian
Male (CM). From left to the right, the predicted ranks are decreased gradually.

ResNet [26], proposed by He et al., has turned out to be a remarkable design pattern for CNN
architectures. While building a deeper network, there is gradient vanishing problem which limits the
performance. In ResNet, a shortcut is designed as bypath, connecting the inputs and outputs for better
gradient transmission. The component design with shortcut is termed as residual block, which aims to
learn the residual information from main path. Based on the residual learning, it is able to build a very
deep network.

There are varieties of ResNet focusing on efficient network representation. In ResNeXt [27],
group convolutions were introduced to introduce the cardinality of the network, which means
the size of transformations. From the investigation, it is more efficient to improve the
cardinality than depth and width. ResNeXt holds a similar structure to InceptionNet [28].
However, there are identical topology structures in ResNeXt, which reduce the design burden. With the
splitting-transformation-merging strategy, ResNeXt achieved competitive performance compared to
ResNet with much fewer parameters.

ResNeSt [29] is another effective design derived from ResNet. With channel separation and
attention, ResNeSt block designs several identical cardinals in the computation unit. Similar to
SENet [30] and SKNet [31], there are channel attentions in each cardinal unit for better feature
map representation. Considering the inherent correlation of different features, ResNeSt has become
state-of-the-art for image recognition and beyond.

Residual connection and its varieties demonstrate the superior performance of network
representation ability. To build the network deeper and establish a more robust gradient flow,
residual-in-residual (RIR) is proposed by grouping residual blocks with a higher level shortcut.
With the high level residual connection, gradient and information will be transmitted from the
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shallow layers to the deeper. RIR structure has proved its performance on image super-resolution [32],
restoration [33], classification and other computer vision tasks, which turns out to be an efficient
design pattern.

Besides effective network designs, some works focus on the inherent correlations of features.
Channel attention in SENet is one of the successful mechanisms for finding better representation
of features. In SENet, information from different channels is evaluated by global average pooling
and is processed by several full connection layers. Besides channel attention, spatial attentions are
introduced by considering the dual attention maps both on channel-wise and spatial-wise features.
Non-local attention [34], which is a special pattern for global information consideration on features,
has become a success for image restoration and comprehension.

This paper proposes a novel CNN design for the FBP problem. In the proposed network, we
investigate an RIR block design with an attention mechanism. To build the network deeper, multi-level
skip connections are introduced to compose a better gradient transmission flow. An attention
mechanism is devised to find the inherent correlation among feature maps. In an attention mechanism,
both channel-wise and spatial-wise attentions are considered for a better correlation representation.
Experimental results show that our network holds a better performance than other CNN-based
methods, which is more consistent with the assessment of humans.

The contributions of this paper can be demonstrated as follows:

• We propose a network for the facial beauty prediction (FBP) problem. Specifically, residual-in-residual
(RIR) groups are designed for building a deeper network. To devise a better gradient transmission
flow, multi-level skip connections are introduced.

• To find the inherent correlations among features, a joint spatial-wise and channel-wise attention
mechanism is introduced for better feature comprehension.

• Experimental results demonstrate our network can achieve a better performance than other
CNN-based methods and make the assessment more consistent with human opinion.

2. Related Works

2.1. Facial Beauty Prediction

Facial beauty acts as an essential influence factor in daily life. Facial beauty prediction (FBP)
has attracted more and more attention from researchers, which is a composite study of psychology,
computer science, evolutionary biology, and so forth. Recently, there are data-driven methods for
the FBP issue, which adaptively extract the facial features and perform the analysis with defined
mathematical models. The models are supposed to be consistent with a human’s assessment as
much as possible. Besides plentiful prediction methods, databases proposed for the FBP problem
have also become a spotlight in this area. SCUT-FBP5500 [9], to our best knowledge, is one of the
most popular open benchmarks widely used for evaluation. In SCUT-FBP5500, there are diverse face
pictures containing both males and females. The ages of the persons vary from 15 to 60, which acquires
a large interval for a richer representation of real facial beauty situation. There are 2000 Asian females,
2000 Asian males, 750 Caucasian males and 750 Caucasian females in SCUT-FBP5500, resized to
350 × 350 resolution. The scores are ranked by 60 volunteers between 1–5, meaning the attractiveness
from low to high.

2.2. Convolutional Neural Networks

Convolutional neural networks (CNNs) are one of the most remarkable successes in the deep
learning area, which demonstrate superior performances on a large amount of computer vision tasks,
such as detection [35–37], denoising [38], recognition [39,40], and better feature representation [41–43].
To our best knowledge, AlexNet, as the champions of the ImageNet competition in 2012, is one of
the successful CNN designs developed on GPU. After AlexNet, there have been numerous efficient
designs for better performances, composed of wider or deeper networks with elaborate and fancy
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layer connections. VGGNet, which is widely applied for various GAN-based works, is one of the
representative design patterns for deep networks. InceptionNet proposed by Google is another
effective design which achieved the first prize of ILSVRC 2014. In InceptionNet, the authors designed
an inception module to improve the parameter utilization. The inception module applied 1 × 1
convolutional layers to organize the information across different channels. Features from convolutional
layers with different filter sizes and max-pooling operations were aggregated by concatenation.
By utilizing the Inception module, the network improved the performance and avoided the over-fitting
with more branches. Furthermore, batch normalization (BN) and dropout strategies were applied in
InceptionNet for training speed improvement.

Residual connection from ResNet is another well-known structure for network design. In VGGNet
and InceptionNet, there is a limitation of network performance with the increase of network depth,
which is caused by the gradient vanishing. To solve this issue, residual representation was introduced
in ResNet. The blocks were designed based on the residual learning, which makes it easier to learn the
mapping between inputs and outputs.

Densely connection [44], as another efficient design pattern for CNN, has become one of the
popular choices for various tasks. Different from ResNet, DenseNet applied dense connections to
connect features from shallow layers to deeper, which are more effective than residual connection.
Furthermore, features are reused in DenseNet via the concatenation of channels, which saves the
parameters with fewer computation costs.

3. Method

As shown in Figure 2, the proposed network holds a pyramid structure to progressively extract the
feature from images. We devise a residual-in-residual group termed RIRG to build the network deeper.
There are five stages in the network. For each stage, the feature maps are down-scaled by max-pooling
operation as the output. Finally, a global average pooling is utilized to shrink the resolution to 1× 1.
Let us denote the input image as I0, then for i-th stage, the operations can be described as,

feati = RIRGi
N(· · · RIRGi

1(I
i) · · · ),

Ii+1 = MaxPool(feati),
(1)

where RIRGi
n(·) denotes the n-h RIRG in i-th stage, and MaxPool(·) denotes the max

pooling operation.
The proposed network will be introduced in the following manner. Firstly, we will introduce

the structure of the proposed RIRG. Moreover, the spatial-wise and channel-wise joint attention
mechanism applied in RIRG will be demonstrated in detail, which is termed SCA. Finally, the settings
of the proposed network will de described with discussions.

Input
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Figure 2. Network structure. There is a progressive design for facial feature exploration. With the
increase of channel number, the resolution of feature maps will be decreased with a fixed ratio.
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3.1. Residual-In-Residual Group

RIRGs are devised from the perspective that a deeper network will lead to better performance.
Since residual connection can survive from the gradient vanishing problem, residual-in-residual
connections are introduced to pass the shallow features and gradients to deeper with a long shortcut.
There are multi-levels in RIRG to build the flow more effective. The design of RIRG is shown in
Figure 3.
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(a) RIRB (b) RIRM (c) RIRG

Figure 3. Structure of proposed RIRG. The RIRG is built in a residual-in-residual way for better
information transmission.

The basic block in RIRG, termed RIRB, as shown in Figure 3a, is composed of two convolutional
layers with a ReLU activation and SCA block. The residual connection in RIRB can be regarded as the
first level skip path, which connects the features at a distance of two convolutional layers. By stacking
RIRBs, the residual-in-residual module (RIRM) is designed with a padding structure. The second
level skip path is introduced to RIRM connecting the input and output features. Beyond the second
level skip connection, residual-in-residual group (RIRG) is devised in a recursive way like the RIRM,
which stacks the RIRM as the main path with a same padding structure. The third level skip connection
in RIRG crosses a large spacing of convolutional layers, which makes the shallow features become
deeper more efficiently.

The RIRG holds a similar structure to dense connection. If we expand the three-level residual
connections, and regard the stacked layers as an entire operation, then the features from different layers
are densely connected via residual learning. On one hand, the densely-like design is able to deliver
the features and information more efficiently. On the other hand, the mixture of dense and residual
connections reuses the features with limited parameters and computation complexity, which indeed
improves the network performance.

Although the RIR design can build an efficient information transmission pathway, it requires
a large number of parameters and high computation complexity with the increase of network depth.
From this point of view, we propose a modified convolution operation to substitute the vanilla
layer. For each convolution step, there are two 1 × 1 convolution operations for channel squeeze and
excitation, and one depth-wise convolution for spatial exploitation. The shrunken channel number is set
as 32. With this substitution, the computation complexity and parameters will be substantially saved.

3.2. Spatial-Wise and Channel-Wise Attention

The proposed spatial- and channel-wise attention mechanism (SCA) is shown in Figure 4.
As shown in the illustration, there are two dual paths finding the spatial-wise and channel-wise
attentions separately. There is a convolutional layer to demonstrate the explore the correlation
from features in general. After exploration, two parallel bypaths exploit the different attentions
independently. From the channel-wise attention bypath, the information from different channels
will be evaluated by global average pooling. After pooling, two full connection layers with a ReLU
activation is introduced to dig out the inherent correlation. Finally, a Sigmoid activation is devised for
the non-negativity.
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Figure 4. Structure of proposed spatial- and channel-wise attention mechanism (SCA). There are two
paths for finding the spatial and channel attention jointly. After distribution, the addition of two
features will be regarded as the output.

Similar to the channel-wise bypath, there are two convolutional layers with a ReLU activation to
demonstrate the correlation of spatial-wise features, and a Sigmoid activation is applied at the end of
the processing procedure. Different from the channel-wise bypath, there is no global pooling method
for information evaluation.

After extraction, the two attentions are multiplied with the input features, and the addition is
regarded as the final result. The operation of SCA can be described as,

xSCA = Conv(xin), (2)

xSCA
C = σ(FC(ReLU(FC(AvgPool(xSCA))))), (3)

xSCA
S = σ(DConv(ReLU(DConv(xSCA)))), (4)

xout = xSCA
C ⊗ xin + xSCA

S � xin, (5)

where σ(·) denotes the Sigmoid activation, xin, xout denote the input and output features separately.
⊗ denotes the channel-wise multiplication, which allocates different weights to channels. � denotes
the point-wise multiplication. DConv(·) denotes the depth-wise convolution. In the operation, xSCA

C is
a tensor with size 1× 1× c and xSCA

S is a tensor with size h× w× c, where h, w, and c denotes the
height, width and channel number of the size of xSCA.

3.3. Network Design

The entire network is designed as follows. Firstly, the input image is considered with size
256× 256× 3. Then one convolutional layer expands the channel number to 64 and maintains
the resolution. There are N = 2 RIRGs after the convolutional layers for feature exploration,
and a max-pooling operation is applied to decrease the feature size. For each RIRG, there are five
RIRMs, and five RIRB for each RIRM. There are K = 2 stages in the network. In each stage, the channel
number will be expanded by one convolutional layer at the beginning, and the size of features is halved
by max-pooling at the end. After the stages, there is a global average pooling step to resize the tensors
as 1× 1× 1024. Two fully connection (FC) layers with a ReLU activation is introduced to perform the
prediction, and the output size of final FC is one, demonstrating the rank of facial beauty prediction.

4. Experiment

The network is trained on the SCUT-FBP5500 dataset. To our best knowledge, it is the largest
dataset for FBP problem up to now. We train the network for 1000 iteration with batch size as b = 25.
The parameters are updated by Adam optimizer with learning rate lr = 1e − 4, which is halved
for every 200 iterations. We choose L1-loss as the loss function. Notice that the input size of the
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SCUT-FBP5500 dataset is 224× 224, we rescale the image size to 256× 256 by bicubic interpolation for
training and testing.

4.1. Results

We conduct the comparison with diverse methods including geometric feature based and
deep learning based methods—Linear Regression, Gaussian Regression, SVR, AlexNet, ResNet-18,
and ResNeXt-50. The measurement indexes are chosen as Pearson Correlation, MAE, and RMSE.
The dataset is split with the ratio 0.6 for training and 0.4 for testing. That is, 60% instances of the
dataset are randomly chosen for training and the other 40% are for testing. The results are shown in
Table 1.

PC demonstrates the Pearson Correlation, which is the higher the better. From the table,
our network performs better than other works. With the higher PC, our proposed network is more
consistent with human opinion, which shows the effectiveness of the proposed structure design.

Table 1. Performance comparison of different methods by 60–40% splitting.

Methods PC↑ MAE↓ RMSE↓ Square Deviation↓
LR [9] 0.5948 0.4289 ± 1.50 0.5531 2.25
GR [9] 0.6738 0.3914 ± 1.42 0.5085 2.03
SVR [9] 0.6668 0.3898 ± 1.41 0.5152 1.99

AlexNet [24] 0.8298 0.2938 ± 1.23 0.3819 1.53
ResNet-18 [26] 0.8513 0.2818 ± 1.21 0.3703 1.48

ResNeXt-50 [27] 0.8777 0.2518 ± 1.20 0.3325 1.45

Ours 0.8780 0.2517 ± 0.65 0.3320 0.43

To further testify the network capacity, we perform the comparison via 5-fold cross validation,
which holds 80–20% splitting for each fold. The results and average for each fold are shown in Table 2.
From the table, our performance is better than state-of-the-arts.

Table 2. Performance comparison of the cross validation.

PC↑ 1 2 3 4 5 Avg

AlexNet [24] 0.8667 0.8645 0.8615 0.8678 0.8566 0.8634
R3CNN [45] 0.8873 0.8741 0.8856 0.8906 0.8779 0.8831
ResNet [26] 0.8847 0.8792 0.8929 0.8932 0.9004 0.8900

ResNeXt [27] 0.8985 0.8932 0.9016 0.8990 0.9064 0.8997
Ours 0.8990 0.8939 0.9020 0.8999 0.9067 0.9003

MAE↓ 1 2 3 4 5 Avg

AlexNet [24] 0.2633 0.2605 0.2681 0.2609 0.2728 0.2651
R3CNN [45] 0.2436 0.2456 0.2428 0.2409 0.2451 0.2436
ResNet [26] 0.2480 0.2459 0.2430 0.2383 0.2383 0.2419

ResNeXt [27] 0.2306 0.2285 0.2260 0.2349 0.2258 0.2291
Ours 0.2300 0.2284 0.2257 0.2345 0.2251 0.2287

RMSE↓ 1 2 3 4 5 Avg

AlexNet [24] 0.3408 0.3449 0.3583 0.3438 0.3576 0.3481
R3CNN [45] 0.3155 0.3328 0.3227 0.3140 0.3294 0.3229
ResNet [26] 0.3258 0.3286 0.3184 0.3107 0.2994 0.3166

ResNeXt [27] 0.3025 0.3084 0.3016 0.3044 0.2918 0.3017
Ours 0.3020 0.3081 0.3013 0.3039 0.2916 0.3014

Square Deviation↓ 1 2 3 4 5 Avg

AlexNet [24] 1.5203 1.5255 1.5304 1.5225 1.5809 1.5359
ResNet [26] 1.4703 1.4731 1.4809 1.4720 1.4850 1.4762

ResNeXt [27] 1.4495 1.4506 1.4552 1.4533 1.4580 1.4533
Ours 1.4308 1.4350 1.4401 1.4420 1.4500 1.4395
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Furthermore, we analyze the distribution of predicted scores from our network, which is shown
in Figure 5. The yellow points are frequencies of prediction, while the blue points denotes the
ground-truth. From the visualization illustrations, the score of male and female are in accordance with
the normal distribution. There is a shift on mean value of male and female predictions. We hold the
notion that the shift is from the bias of sexuality. To prove the hypothesis that our prediction accords
with the normal distribution, we use the Anderson-Darling test for evaluation. It is a modification of
the Kolmogorov-Smirnov (K-S) test and gives more weight to the tails than does the K-S test. We make
the hypothesis H0: samples follow the normal distribution; and the H1: samples do not follow the
normal distribution. After the A-D test, we get the significance level α = 0.043 and the critical value
CA−D = 0.75. Since α ≤ CA−D, we cannot reject the hypothesis H0. From this point of view, we hold
the notion that the prediction values follow the normal distribution.

(a) Male (b) Female

Figure 5. Visualization of prediction distribution. The blue points are the ranks of ground-truth.
The yellow points are the ranks of prediction. The X-axis denotes the rank, and Y-axis is the frequency.

4.2. Ablation Study

Investigation on Network Design. To show the performance of network design, we make the
experiments on different settings of block numbers. Specifically, Km, Kg denote the block and module
number in RIRM and RIRG separately. The results are shown in Table 3. From the table, the depth
of network is one of the most important factors of network prediction performance. When the Km

and Kg are lower, the PC, MAE and RMSE will be worse than the longer network. This accords with
the intuition that a wider and deeper network has better representation ability and processes features
more effectively. Specifically, Km and Kg have a similar influence on the performance. Singly adjusting
the Km and Kg has a similar effect on the results.

Table 3. Ablation on network design.

Method PC↑ MAE↓ RMSE↓

Km = 5, Kg = 5 0.8780 0.2517 0.3320
Km = 3, Kg = 5 0.8491 0.2905 0.3755
Km = 5, Kg = 3 0.8480 0.2892 0.3749
Km = 3, Kg = 3 0.8301 0.2929 0.3800

Investigation on Attention Mechanism. To show the performance of the proposed SCA,
we conduct the comparison with and without SCA blocks. The results are shown in Table 4. From the
table, the attention mechanism leads to a shallow performance improvement due to the restricted
parameters. SCA considers the channel attention and spatial attention jointly, which finds the
correlations from two perspectives for better consideration.
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Table 4. Ablation on attention mechanism.

SCA PC↑ MAE↓ RMSE↓

w 0.8780 0.2517 0.3320
w/o 0.8778 0.2525 0.3322

4.3. Discussion

Comparison on ResNeXt-50. In this paper, our network achieves a better performance
than ResNeXt-50. Our network holds 6.75 M parameters and 34.25 GFlops. ResNeXt-50 has
25.03 M parameters and 5.56 GFlops. From the comparison, our network is lighter than ResNeXt-50.
Although our network is much more deeper than other works, the well-designed convolution operation
can prevent the plentiful number of parameters and computation complexity.

Effectiveness of SCA. In this paper, we propose an attention mechanism termed as SCA.
Since there is only one convolution layer and some depth-wise convolutions in SCA, it is a simple
but effective design for finding the inherent correlation of feature maps. There are few parameters
in SCA with lower computation complexity. From this point of view, it can give a performance
boost with a little increase on complexity. From this perspective, SCA is an efficient component for
performance boost.

Comparison on Effective Network Architecture Designs. Recently, there are different effective
network architecture designs for feature exploitation, such as ResNet and several extensions, DenseNet,
MobileNet series and SqueezeNet. These works concentrate on different block designs for effective
feature exploitation. However, the choreographed works are concentrating on building a deeper or
wider structure for better performance, which lack to build a more efficient information transmission
pathway. The main difference of different networks is the inside blocks, and almost all the networks are
modified based on ResNet-50 or ResNet-101, which provide a fixed information transmission pathway
for fair performance comparison. To address this issue, we introduce the RIR structure for better
information transmission. Furthermore, these lightweight works focus on different blocks, but do not
consider the correlations of features. In this paper, the attention mechanism is introduced to find the
inherent correlations for better feature representation, which is termed as SCA.

Threats to Validity. In this paper, we propose a novel network for the FBP problem.
However, the improved performance is limited by the number of parameters. A deeper or wider
network will lead to better performance, while it will also produce a high computation complexity.
Considering the threats to internal validity, the vital important element is the network depth. From the
ablation study, with the increase of network depth, the performance will be improved at the same time.
There are two aspects about the threats to external validity. On one hand, the labels for training are
assessed by some students in a specific society, which may cannot cover a common opinion. On the
other hand, the trained images are selected from Asian and Caucasian people, which may lead to
a bias on the diversity.

5. Conclusions

In this paper, we proposed a novel network for the facial beauty prediction problem. Traditional
networks focus on the effective block designs with a deeper or wider network for better performance,
which almost neglect the efficient information transmission pathway and the correlations of features.
To address these issues, we proposed a three-level residual-in-residual structure, termed RIRG,
for better information transmission. Since RIRG was designed in a recursive way for multi-level
residual connections, it could provide a more efficient information and gradient transmission style.
Furthermore, a joint spatial and channel attention mechanism—SCA—was introduced in this paper
for finding the inherent correlations of features, which is a tiny component with few parameters for
performance improvement. The experimental results showed that our proposed network achieved
a better performance than other works with restricted parameters. Further, we will find more datasets
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with higher diversity, and compare our works with more recent works. Meanwhile, we will also
tend to build a novel dataset for the FBP problem with more cultures, mentalities, traditions and
economic status.
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