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Abstract: Comments are used to explain the meaning of code and ease communications between
programmers themselves, quality assurance auditors, and code reviewers. A tool has been developed
to help programmers write readable comments and measure their readability level. It is used to
enhance software readability by providing alternatives to both keywords and comment statements
from a local database and an online dictionary. It is also a word-finding query engine for developers.
Readability level is measured using three different formulas: the fog index, the Flesch reading ease
score, and Flesch–Kincaid grade levels. A questionnaire has been distributed to 42 programmers
and 35 students to compare the readability aspect between both new comments written by the tool
and the original comments written by previous programmers and developers. Programmers stated
that the comments from the proposed tool had fewer complex words and took less time to read
and understand. Nevertheless, this did not significantly affect the understandability of the text,
as programmers normally have quite a high level of English. However, the results from students show
that the tool affects the understandability of text and the time taken to read it, while text complexity
results show that the tool makes new comment text that is more readable by changing the three
studied variables.

Keywords: Flesch–Kincaid; Flesch reading ease score; fog index; readability; software code; software
comment software quality

1. Introduction

Code writing, when developing a software life cycle, is considered an important phase. This is
because the next phases depend on the current one, especially in the software maintenance phase,
which needs to take code maintainability, readability, and reusability into consideration. Because of
this, we should be careful with code readability, which is related to the three terms mentioned before.
In addition, readability becomes a key factor in software quality [1]. On one hand, the readability of
source code is grouped with its documentation to influence software maintainability. On the other hand,
researchers noted that it takes a long time to understand the code after or while developing compared
with other software maintenance activities [1,2] and that source code readability and documentation
readability are both critical to the maintainability of a project. Other researchers have noted that the
act of reading code is the most time-consuming component of all maintenance activities. Among the
factors that affect this are comments, which are defined as embedded documents and useful artifacts
related to code quality [2,3]. The existence of these comments is necessary for program comprehension,
especially when the maintainers differ from the programmers or main developers. For example,
comments were involved in about 15–20% of Mozilla source code [2].
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This research is concerned with developing a tool for enhancing source code readability, using
predefined formulas to amend the source code’s quality by increasing the readability level of code
comments. This tool will provide the programmer with suggestions to improve the readability level of
written comments. This tool will be a “comments readability system” (CRS). This is a tool that can
be used by programmers to perform two main actions—to verify the current comment readability
levels and to provide suggestions of alternatives for readability improvements to make comments
more understandable.

This tool will use three different formulas to check the current comment complexity level; by this
immediate evaluation, new terms or words will be suggested to the programmer. The Flesch reading
and Gunning fog formulas, with modified measuring parameters, alongside a database of the suggested
complex words, will be used to assess the writing of comments. Then, the system will mark each word
that does not satisfy the preconfigured criteria and score each comment statement. This will provide an
opportunity for the programmer to go through each marked word and provide readable alternatives
from the database or corpus, which will be directly connected to the tool. This tool was evaluated
by several programmers and developers who we requested to use the tool and provide their own
feedback; a results analysis is shown in the analysis section. The following sections will discuss the
motivation behind this research and its contribution to the state of the art, the methodology conducted,
the results, the discussion and the research conclusions.

2. Literature Review

2.1. Software Quality

Software quality (SQ) is an important factor in the software life cycle, affecting the cost, time and
user requirements of software development. Developers always aspire and exert efforts to develop
software of high quality, which is free of faults and errors [1,2,4–6].

The software quality definition, according to the International Organization for Standardization
(ISO 9126) varies from matching system requirements to the capability of covering dynamic changes.
Previously, software quality was used to measure defects in software and check the potential of
systems to match user requirements, required functions, and the capability of systems to accept future
requirements or changes [6–9].

SQ is normally assessed by user experience who is interested in external quality and software
features and the programmer or developer who is interested in software development especially about
the code [4,6,8–10].

The software development time is short if its compared with code maintenance and enhancements
which consumed over 70% of the total life cycle and cost of a software product as shown in Figure 1 [5,6,11].
Code maintenance becomes more difficult without comments or text documentation about the program.
The probability of software development bugs occurrence increases if there are no communications
tools among programmers to explain their code. Therefore, the comments are an essential factor that
help and support programmers to understand the code especially if the software is used in critical
fields [1,11].

2.2. Code Review

A code review is considered an important stage, role function in modern software development [12]
which is used to identify bugs or errors in source code and to improve code quality [13,14]. Software
quality is the function of the degree of reviews made during the early life of a software development process
which requires comments to easily understand the software and fasten the maintenance process [15].
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2.3. Code Readability and Comments

Software readability or “code readability” is an important part to assess software maintainability:
“How quickly can a new developer understand the code?” [4,6,10,16–18]. It has various definitions;
i.e., it is the human judgement of how easy a source code is understood by programmers, or the process
by which a programmer makes sense of a programming code [8,16,19–22]. Most companies’ developers
are working as a team instead of working individually, thus most of the software codes are written by
different teams; the code must be reusable and maintainable, so it is important that this code must be
understandable. Therefore, readability becomes a priority, also it has always been the reason behind the
maintainable code, so readability is needed. Thus, readability becomes a dominant topic in software
engineering especially in software quality [3,11,23]. “Maintenance programmers” tasks are analogous
to those of archaeologists who investigate some situations, trying to understand what they are looking
at and how it all fits together. To do this, they must be careful to preserve the artifacts they find and
respect and understand the cultural forces that produced them” [16]. The difficulty of understanding
code influences the high cost of software maintenance [5]. Moreover, reducing the reusability of this
source code especially a source code may be considered a readable one for a programmer but it might
not be for another. This can be applied in two situations when others need to understand the code or
the author of the code after a while (month, year), he/she could not remember the written code or took
a long time to do. Most researches show that the reading the code and understanding it, takes a longer
time compared to maintenance activities [16,21,22].

“Unfortunately, computer system documentation is difficult to understand, badly written, out-of-date
or incomplete.” [24]

The complexity of the code and readability are not the same although they are closely interrelated;
complexity is code property based on the problem domain, the method behind solving each scenario
will not be avoided completely in developing the process. Whereas readability is, an accidental property
that can be avoided independent of the problem domain or problem complexity [21]. Code readability is
not easy to measure by a deterministic function similar to maintainability, reliability, and reusability.
Readability measures formula care about and changed by independent individual elements, such as
identifiers, statements, comments, indentation, and program style. However, complexity measurements
depending on static components as well as dynamic interactions among program components [21,25,26].
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Although most of the evidences show the importance of commenting on the code, some
programmers adopt the opposite point of this view. They say the good code does not need to
comment on it because the code itself is clear and understandable [8,27] says “The frequency of
comments sometimes reflects the poor quality of code. When you feel compelled to add a comment,
consider rewriting the code to make it clearer”. Developers don’t need to comment on every line of
code, because when the programmer needs to comment on every line of code to make it understandable,
this might indicate that the code is low quality or have lacked in structure, in this case, programmers
should rewrite it instead of commented it. However, as mentioned before comments are necessary for
the development process and maintenance and also to make the code more readable even when the
code itself is low quality [4,11,19,21,28].

Students study codes from examples in textbooks, outline documents, other colleague’s code; these
resources and others are used as learning tools in academic environments. These codes or programs can
be unhelpful if their readability is too high or if it is too low. That makes understanding the code hard
and increases the difficulty of maintainability or reusability of these codes [25].

Software code is divided into two types: the code itself, and comments on the code. Comments
are a block of source that the compiler ignores in the compilation process, so you can put in it any
information that you desire. However, a programmer should keep in mind that the main aim of using
these comments are notation of the source code and help the developer and other software implementer
team members to understand the source code in the process of upgrading or bugs fixing or to make
software fits with new or modified requirements. In other words, to aid in software maintenance and
therefore reduce maintenance costs. Several researchers have conducted experiments showing that
commented code is easier to understand than code without comments. Besides, these comments are
used as internal documentation for code and system [19,29].

We should keep in mind that the comments are used to make the code more readable not to
replace it. In addition, if the code is inadequate we should make changes to have an adequate code not
to have a good comment. However, we can say that bad comments are worse than no comments at
all, for this, “We should only be writing comments when they really add meaning” [29]. By the way,
some concerns should be taken into consideration when writing comments as [10,29] mentions:

i Quality of the comments is more important than quantity.
ii Good comments explain why and how.
iii The code should not be duplicated in the commenting.
iv Comments should be clear and concise.
v Functions should start with a block commenting
vi Comments should be indented the same way as the rest of the code
vii Comments should be used in a way that reads naturally before a function, not below.

There are different styles used in commenting, each language almost has its own commenting
style. Most of which are set in green color, i.e., C language comments come in blocks between /*
and */ and can span any number of lines. C++, C#, Java add the single line comment that follows //,
and vb.net used single comma [29].

2.4. Comment Types

2.4.1. Documentary Comments

This type focuses on the history of the file system and main properties of this file like author,
date, updated date, copyright, the introduction of class or source file.
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2.4.2. Functional Comments

These types of comments are used to serve a single process in the development cycle. This famous
example used here is “to do”. In addition, there are three positions we can find it [18]:

i Bug description;
ii Notes to co-developers;
iii Performance/feature;
iv improvement possibilities.

2.4.3. Explanatory Comments

This type of comment is the most commonly used one. Its function comes tied with its name to
give more details about the item commented. However, there are many items, which have this type of
comment [27] as follows:

i Startup code;
ii Exit code;
iii Subroutines and functions;
iv Long or complicated loops;
v Weird logic;
vi Regular expressions.

2.5. The Case against Commenting

2.5.1. Programmer’s Hubris

Many programmers see that nothing is hard to do, everything is possible and easy to understand
and will be developed easily. But in reality, this is not 100% correct; many programmers can’t remember
their code after a year for example. “Truth is, most of the time it will take a lot of time and effort to
understand the undocumented code, even if the code has not been obfuscated intentionally” [18].

2.5.2. Laziness

“All-time saved by not commenting during the coding process is made up more than twice at least
by inserting comments and providing documentation after the coding process is finished” [27]. Because
nowadays there is software used to generate documentation by the automatic collection of comments,
the writing comment will save the time of writing documentation after software development is
completed [18].

2.5.3. The Deadline Problem

The project deadline will not be the problem of omitting comments, because the time taken to
write comments that the developer wishes to save while he is in the development phase will be less
than that one needed to fix bug with an uncommented code after a while [18,30].

2.6. Readability Formulas

2.6.1. Flesch Reading Ease

This formula designed by Rudolph Flesch to measure the difficulty of text document context,
and is used as an indicator for grading the difficulty of understanding reading content in English.
This grading depends on several factors that affect the text content, such as word length, sentence
length, word form, and syllables or letters. This formula produces scores determining the readability
level of the text as shown in Table 1 below [17,21,26,31].
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Table 1. Flesch reading ease score to assess the ease of readability in a document [31].

Score School Level Notes

100.0–90.0 5th Grade Very easy to read. Easily understood by an average 11-year-old student.

90.0–80.0 6th Grade Easy to read. Conversational English for consumers.

80.0–70.0 7th Grade Fairly easy to read

70.0–60.0 8th & 9th Grade Plain English. Easily understood by 13- to 15-year-old students

60.0–50.0 10th to 12th Grade Fairly difficult to read.

50.0–30.0 College Difficult to read

30.0–10.0 College Graduate Very difficult to read. Best understood by university graduates

10.0–0.0 Professional Extremely difficult to read. Best understood by university graduates

The following is the algorithm to determine Flesch reading ease [17,21,31].

3 Calculate the average number of words used per sentence.
3 Calculate the average number of syllables per word.
3 Multiply the average number of syllables per word multiplied by 84.6 and subtract it from the

average number of words multiplied by 1.015.
3 Subtract the result from 206.835.

Algorithm: 206.835 − (1.015 × average_words_sentence) − (84.6 × verage_syllables_word)

2.6.2. Flesch Kincaid

This is another formula of text readability measurement designed by Rudolph Flesch to use the
same core measures (word length and sentence length) as Flesch reading ease but it uses different
weighting factors. The following is the algorithm to determine the Flesch–Kincaid grade level [31,32].
Table 2 shows the scores generated and the correspondent meaning.

Table 2. Formula of Flesch–Kincaid [4].

Score Note

90–100 Easily understood by an average 11-year-old student
60–70 Easily understood by 13- to 15-year-old students
0–30 Best understood by university graduates

3 Calculate the average number of words used per sentence.
3 Calculate the average number of syllables per word.
3 Multiply the average number of words by 0.39 and add it to the average number of syllables per

word multiplied by 11.8.
3 Subtract 15.50 from the result.
3 Algorithm: (0.39 × average_words_sentence) + (11.8 × average_syllables_word) − 15.9

In the Flesch reading ease test, higher scores indicate the text is easier to read; lower numbers
scores indicate the text is difficult to read. Scores can be interpreted as shown in Table 2 [1].

2.6.3. Gunning Fog Index Formula

This is a readability formula used to measure English text readability and generate scores, which
indicate the level of education year required to understand the text as shown in Table 3 [6,32].
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Table 3. Gunning’s fog-index level [31].

Fog Index Reading Level by Grade

20+ Post-graduate plus

17–20 Post-graduate

16 College senior

15, 14, 13 College junior,
sophomore, freshman

11–12 High school senior, junior

10 High school sophomore

9 High school freshman

8 8th grade

7 7th grade

6 6th grade

The following is the algorithm to determine the Gunning fog index.

3 Calculate the average number of words used per sentence.
3 Calculate the percentage of difficult words in the sample (words with three or more syllables).
3 Add the totals together, and multiply the sum by 0.4.
3 Algorithm:(average_words_sentence + number_words_three_syllables_plus) × 0.4

2.7. Source Code Comments Assessment

In the coding area, many tools used previous formulas or create their own formula. An approach
for quality analysis and assessment of code comments by [8]. The provided approach defined a
model based on categories of the comments. Researchers applied a machine learning technique on the
developed application which is programmed in Java and C/C++. Authors used a metric to evaluate
the coherence between codes and comments of methods, for example, the name of the routine and its
related comment. In addition, they used another metric that investigates the length of experimented
comments. As for coherence, authors compare the words in comments with ones that founded in the
method name. Moreover, the aim of using the length of the comment is coming from the assumption
that the short inline comment may contain less information compared with long ones. To apply this
study, they use surveys that distributed over 16 experienced software developers. This work is related
to our work by assessing the source code comment, but authors do not care about the readability level
of comments as written text; they only care if there is a relation between the code and the comment
itself. However, in our research, we focus on readability level of comments and its words completion
to achieve the purpose of existence of these comments [26,32].

The authors of [33], in their research collected methods for java programs from six popular
open-source applications. They applied analyses on comments from collected datasets; to do this they
conducted two preliminary studies on words appearing in comments and on amounts of comments.
The results demonstrated that most of the comments were categorized as short sentences that contain
at most 10 words. Besides, the methods that inner code has more lines of comments could need
more changes in the feature. Therefore, it would require more time to fix, especially after the product
is released as a production version. This result may conflict with the work that we can use good
comments besides good source code. In addition, if these comments are not as the user expected,
we can improve the readability without affecting the code quality itself.

According to [19], the researchers developed the Javadoc Miner tool to assess the quality of
one type of comment, which is in-line documentation by using a set of heuristics. To assess the
quality of language and consistency between source code and its related comments. Authors measure
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the readability of comments by assessing the quality of language that comments were written with
heuristics by counting the number of tokens, nouns, and verbs, calculating the average number of
words, or counting the number of abbreviations. In addition, they used the fog index or the Flesch
reading ease level to assess the readability level of comment text. The main aim of authors in this
research is to detect inconsistencies between code and comments, by checking all properties of methods
and even these properties documented in comments and explained as others can understand it. Authors
found that the comments are not up to date which caused misunderstanding in the working of these
methods. In addition, authors noticed that the codes which are well commented have less faults or
problems reported than ones that have a bad comment that has more fault and bugs.

Researchers in [34] were created two data sets from tow corpora which were Penn Discourse
Treebank and the Simple English Wikipedia corpora to be used as a sample in their research and apply
the researched feature that used to assess the complexity of the text. These features were divided into
five groups as surface, lexical, syntactic, cohesion and coherence features. They found that coherence
features are needed to be in combination with others and if these features dropped from combination
there is a significant decrease in accuracy, this led to result as there is a strong correlation between text
coherence and text complexity [35].

Researchers of [33] amid to prove the relationship between the fault-proneness and the commenting
manner in methods declared in Java classes. They focus on two types of comments which were: documentation
comments and inner comments. To achieve their aim they used two methods (Analysis-1 and Analysis-2).
The results of this research were that a function with inner comments is faultier than a non-commented
method; in addition, using comments may indicate that programmers write poor code or faulty code.

2.7.1. Proposed Methodology of Code Comments Evaluation

The main goal of our research is to enhance code comments readability, therefore to make
understanding the code and related works processes (maintainability, reusability, and reviewing)
easier and this will achieve the purpose of the existence of the comments. We go into building
CRS “comments readability system” as a tool to be used by programmers to verify the readability
of their comments in the development phase and suggest improvements to enhance the comments
readability level to be more understandable and valuable to anyone who will be in process of using
this code. This tool will use three formulas to check the current comment complexity level, by this
immediate evaluation, new terms or words will be suggested to the programmer. The Flesch Reading
and Gunning fog formulas with modification of their measuring parameters beside database of the
suggested complex word will be used to assess the writing comment. Then each word that does
not satisfy the preconfigured criteria will be marked and scored. This will provide an opportunity
for the programmer to go through each marked word and provide readable alternatives from the
database or corpus, which will be directly connected to the tool. The prosed system has been evaluated
using GitHub data, which was collected manually as we search for open source project and get the
comment in file to put them in our system to check if we can change the readability of these comments.
In addition, we used a survey, which was distributed through email, and form was created on Google
form. Therefore, we sent the link to many companies and also to many student groups, especially in
computer science, within Birzeit University club groups.

2.7.2. The Proposed Approach

The proposed system used consists of two modules, the measurement readability module, and the
replacement words module. As the following Figures 2 and 3 show, the general processes that are
executed in each phase of comment text readability measurement and alternative terms suggestion.
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In each part of the system, there is a sub-process executed to get to the final stage the required
text with simple words and terms the following diagram. The overall system process shows how text
passes through system modules and what is happing in each stage.

The main two modules that the system consists of are measurement readability and the replacement
module. The following two sections explain what is happening at each module stage.

The measurement readability module is used to measure the comment text readability level by
using three equations from the three formulas used in this research. To assess the readability level for a
text of target comment and extend the complex words from the text and set those as recommended
words that should be replaced. This replacement module is used to replace the suggested word from
a local database or an online database consumed from Application Programming Interface (API).
The replacement term retrieved locally was replaced automatically but when online it gives the user a
list of suggestions selected manually, and for which terms are more readable for him/her. On the other
hand, the listed term is scored by API teams to show the most suitable term for the requested word as
semantic or as generally used in daily life. By combining these two ways we will get more options



Information 2020, 11, 430 10 of 25

for the current text to determine the best alternative word, which gives other people the chance to
understand what the writer means from these comments.

Figure 3 shows the text readability enhancement process which will be applied to generate the
proposed system. The readability measurement module is considered the heart of the proposed tool.
It depends on three formulas to measure the level of text readability (fog index, Flesch reading-ease,
Flesch–Kincaid). Figure 4 shows the internal process done from entering text, and checking readability,
from three formulas as functions. Finally, we get the level of readability as a number with a listing of
complex words that could be replaced with simple ones.
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Each calculation formula is created as an individual function called from the main screen, in addition
to supported functions used to extract entrances and extract words from each sentence.

The following code for the fog index formula calculated:

Dim indexval As Double = 0.4 × ((CDbl(wordcount)/sentencecount) + 100 * (CDbl(complexwords)/wordcount))

As we see, the formula depends on word count, the count of sentences, complex word (this part
depends on the count of syllables where we use three and more), and the word count in the submitted
text. The score as we mentioned before, while it increased the readability also increased.

The Flesck Incaid index is calculated using the following formula:

Dim indexval As Double = 0.39 × ((CDbl(wordcount)/sentencecount) + 11.8 × (CDbl(syllablescount)/wordcount) − 15.59)

This formula depends on different parameters in which fog depends on which is syllables count.
Furthermore, there is a SyllableCount function, which is used to get the complex words, in addition

to the syllable count, and return the complex word into an array of words to be changed after the
whole function and process is done for this phase of the module.

By way of the measurement process, the result of text ratability can be evaluated and determined.
The complex words that should be replaced are identified to make the text more readable therefore
more understandable.

2.7.3. An Example of System Use

The following Figure 5 shows the tool main screen, the screen has many parameters with two
windows: the first one is “text body”. The text which is written by programmer “comment” context,
each complex word will be highlighted to indicate that the written word is classified as complex and
draws programmer’s attention to change it. The second window is “suggested text” that suggests
replacing some of the words found to be complex or if there is a simple alternative for it from the local
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database. Figure 6 has many labels that display the result of measuring readability for the formula
used to measure text readability. In addition, there is a list of word complexes in front of it, and there is
a list of words that have been changed in the suggested text.
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Figure 7 shows how the readability level will be displayed to the end-user. It listed the complex
words that should be replaced as it’s measured as complex words and the number of syllables more
than the threshold values.
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In the replacement module, we care about the words used to be a substitution for original ones.
Further, we make sure the term is not complex and usually used. For this reason, we used both local
and online databases for replacement. In this section, we emphasize the main functions used to get the
best result and be sure the enhancing of the readability level is as we imagine.

The local database consists of many complex words with simple alternative words collected from
internet web sites. Table 4 shows a sample of it.

Table 4. Sample complex words with a simple alternative.

Prime Alternative

accrue gain
adjacent to next to

advantageous helpful
allocate divide

apparent dear
ascertain learn

attempted tried
beneficial helpful
capability ability
category group

close proximity near
commence start

comply with follow
component part

concur agree
consolidate combine
constitutes forms

convene meet

The functions of the changing words loop through the text of the comment, and replacing all
words found with an alternative without user intervention. These terms come from the local library,
which will be used as the local corpus, as shown in Figure 8.



Information 2020, 11, 430 13 of 25

Information 2020, 11, x FOR PEER REVIEW 13 of 24 

 

 
Figure 8. Example of using a local database for the replacement of the terms. 

Each word replaced from the original text is highlighted as yellow with changing the color to 
red in both text boxes (text body, suggested text). 

API is another source of word replacement; this source returns a list of suggested words from 
API service consumed by sending the word that we need to replace or check whether this word has 
an alternative simple term. 

The list of words returned as JSON are listed with two fields; the first is the alternative word; 
the second is the score. For this, I quote “for queries that have a semantic constraint, results are 
ordered by an estimate of the strength of the relationship, most to least. Otherwise, queries are ranked 
by an estimate of the popularity of the word in written text, most to least. At this time, the “score” 
field has no interpretable meaning, other than as a way to rank the results” [36]. 

We used the function “getlist” to consume the API and return a list in the dataset as JSON.  
When selecting any word from the text body, the following screen will appear, i.e., the word we 

want to change is “initiate” the list as shown in Figure 9 below: 

 
Figure 9. Alternative words for “initiate.” 

After looping in the text body and getting new text in the suggested text, we can get the final 
text and pass it into the text body text to check the readability level.  

3. Results 

3.1. Results of Software Testing 

Figure 8. Example of using a local database for the replacement of the terms.

Each word replaced from the original text is highlighted as yellow with changing the color to red
in both text boxes (text body, suggested text).

API is another source of word replacement; this source returns a list of suggested words from API
service consumed by sending the word that we need to replace or check whether this word has an
alternative simple term.

The list of words returned as JSON are listed with two fields; the first is the alternative word;
the second is the score. For this, I quote “for queries that have a semantic constraint, results are ordered
by an estimate of the strength of the relationship, most to least. Otherwise, queries are ranked by an
estimate of the popularity of the word in written text, most to least. At this time, the “score” field has
no interpretable meaning, other than as a way to rank the results” [36].

We used the function “getlist” to consume the API and return a list in the dataset as JSON.
When selecting any word from the text body, the following screen will appear, i.e., the word we

want to change is “initiate” the list as shown in Figure 9 below:
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After looping in the text body and getting new text in the suggested text, we can get the final text
and pass it into the text body text to check the readability level.



Information 2020, 11, 430 14 of 25

3. Results

3.1. Results of Software Testing

Testing is an important phase in developing and our research to help testers and Quality
Assurance staff (QAs) to complete their tasks with a short time. In addition, with less effort, the benefit
from the existence of the comments and the documentation of the code is realized as their English
readability level.

For this phase, we use the text as the testing paragraph written by Dr. Majdi Abu Zahra from the
English and translation department in BirZiet University (BZU). This paragraph was tested by our
proposed tool as shown in Figure 10 and was retested by online free calculated text readability using
fox index as Figure 11 shows the result which shows that the indexing value was close to each other.
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3.2. Results of Conducted Survey

3.2.1. Results of Survey with Programmers

Within this scope, the result from the survey was that there are four main languages that developer
set as main programming languages: Java and its percentage was 17.1%, PHP with a percentage of
19.5%, Python with a percentage of 12.2%, and .Net with a percentage of 24.4%. The rest value for 10%
language as a percentage of 2.4% to 5% for each as shown in Figure 12.

http://gunning-fog-index.com/fog.cgi
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encourage others to use comments and they support the existence of comments in a code file, as 
shown in Figure 15.  

Figure 12. Result for the primary programming language of participants.

The following charts (Figure 13), show that most of the programmers have a very high English
level. This is displayed in three parts (reading, writing, and speaking).
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Figure 13. Programmer English level.

The result relating to working in a group was 90.24%, as shown in Figure 14, which means that
most of them preferred to work in a group rather than work individually.
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Figure 14. Working in a team result.

In addition, the results about the comments are shown (Did you use comments in coding? Do you
think the comments in the code are necessary? And do code comments help you in understanding the
code?). After reviewing the overall result, we found that most programmers encourage others to use
comments and they support the existence of comments in a code file, as shown in Figure 15.
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Figure 15. Result about source code comments.

However, the important part of the survey is about the three questions asked about the original
comments which were collected from GitHub projects and the new one, which was the result of our
proposed tool. The chart below shows the first question about which of the two comments: “Has more
complex words”. The results are shown in Figure 16.
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Figure 16. The result of the question: which of the two comments has more complex words? Where “org”
is the original comment from the sample.

From Figure 16, the replacement function with alternative words makes text words simpler, and
the result was that the original comments have complex words marked as 49.11%. However, the new
one had a percentage of 29.11%. This means that there a differences in complexity between the two
texts as the results show. Further, this may affect the time required for reading the text of the comments.
In addition, the result showed a positive relationship so the factor of a number of complex words takes
more time to read and the reader gets the main idea from the text. Figure 17 below shows the result of
the time taken to read the text of each comment. Programmers see that the text of original comments,
which were mentioned before as having more complex words, took more time to read.
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Figure 17. Result of question: which took more time to read? Where “org” is an original comment
from the sample.

Finally, about the last question which was: “Which one was more understandable?” The results
for the two texts were within the same level, and this is because the advanced level of English and
the complexity of words did not affect the understandability of reading because these programmers
are proficient in English, as we discussed earlier, and this assumption has resulted in [23,37] saying
that there a strong correlation between reading comprehension and vocabulary knowledge. Figure 18
below shows this.
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Figure 18. The result for question: which was more understandable? Where “org” is the original
comment from the sample.

3.2.2. Results of Survey with Students

Birzeit University students from the Faculty of Engineering and Information Technology, as mentioned
in the Section 3.2 were surveyed via random selection. The follow results were obtained from Computer
science students with year levels of 3, 4, and 5. The results, expressed as year level, are shown below
in Figure 19:
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However, we now turn back to the important part of the survey about the three questions asked
about the original comments, (which were collected from GitHub projects and the new ones, which were
the result from our proposed tool). From the first question about which of two comments “has more
complex words”, the result is shown in Figure 20.
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Figure 20. The result of the question: which of the two comments has more complex words? Where “org”
is the original comment from the sample.

From Figure 20 above, the replacement function with alternative words makes text words simpler
and the result was as the original comments have complex words marked as 54%. Whereas the new
was with a percentage of 29%; this means that there is a difference in complexity between the two texts
as result have shown. Further, this may affect the time of reading the text of the comments. In addition,
the result was a positive relationship that the factor of a number of complex words took more time to
read and get the main idea from the text. Figure 21 below shows the result of the time taken to read the
text of each comment. Students believe that the text of original comments mentioned before has more
complex words which took more time to read; the result of this finding was the new comments took
less time to read with a percentage of 23%, whereas the original was with a percentage of 40%.
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Figure 21. Result of question: which took more time to read? Where “org” is an original comment
from the sample.

Finally, in regards to the last question which was: “which one was more understandable?”,
Figure 22 shows that the results almost showed that the new comments were more understandable
with a percentage of 56%, but the original comments were 30%. This gives an indicator that the level of
English and experience may affect readability.
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Figure 22. Result for the question: which was more understandable? Where “org” is an original
comment from the sample.

4. Discussion

For programmers to do data analysis we apply a t-test on data to approved research hypotheses
measuring readability. The result is shown in Table 5. With a 95% confidence interval of the difference,
there is no significant difference for an understanding factor of new text compared with original text
because the value was (0.969) and this value is more than 0.05. Therefore, this result may not be
effected by text complexity because of the high English level of programmers in our random sample.
However, the result of the variable of text complexity (text with more complex words) was (0.00) which
is less than (0.05); this means that there is a significant difference between the original text and the new
text. Furthermore, this evidence supported the research hypothesis that the CRS (with the replacing
module) reduces text complexity level and thus the t value was −4.458; which means the new text
contains fewer complex words than the original one. Finally, the last measured variable was the time
taken to read the text. The result value was (0.01) and this is less than 0.05 which means that there is a
significant difference between compared comments; and also the t value is −3.788, which means that
the new text took less time to read than the original one. Thus, this supported our assumption about
text readability to reduce the time to understand the comments on the source code. Finally, we can
say there is a significant difference in comment readability level using CRS tool in the development
phase and comment readability level without using CRS. This significance was that the new one that
contains a smaller number of complex words and took less time to read.

Table 5. Programmers data—new comment readability t-test values.

One Sample Statistics

Evaluation Criteria N Mean Std. Deviation Std. Error Mean

more_understandable 41 0.0016 0.26977 0.04213

more_complex 41 −0.2016 0.28963 0.04523

more_time_to_read 41 −0.1512 0.25561 0.03992

One-Sample Test

Evaluation Criteria

Test Value = 0

t df Sig. (2-tailed) Mean Difference
95% Confidence Interval

of the Difference

Lower Upper

more_understandable 0.039 40 0.969 0.00163 −0.0835 0.0868

more_complex −4.458 40 0.000 −0.20163 −0.2930 −0.1102

more_time_to_read −3.788 40 0.001 −0.15122 −0.2319 −0.0705
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In addition, we applied the test correlation type between three questions to check if our hypothesis
is true. As the table below shows, there is a relation between the three variables we search for (number
of complex words, text understanding, and the time taken to understand the whole text and get the
idea from it). The results support the research and assumes that the text with more complex words
takes more time to read, and vice versa. In addition, Table 6 shows each variable compared to the other
two variables. If we study the relationship between understanding text and containing a number of
complex words, the relation was revised (more understandable for the less complex words, and vice
versa). On the other hand, more time taken to read means that the text contains more complex words
and more time means less understanding, which is what the study is trying to prove.

Table 6. Results from the correlation between the three main questions.

Correlation

More_Complex More_Understandable More_Time_to_Read

more_complex

Pearson correlation 1 −0.674 ** 0.532 **

Sig. (1-tailed) 0.000 0.000

N 41 41 41

more_understandable

Pearson Correlation −0.674 ** 1 −0.497 **

Sig. (1-tailed) 0.000 0.000

N 41 41 41

more_time_to_read

Pearson Correlation 0.532 ** −0.497 ** 1

Sig. (1-tailed) 0.000 0.000

N 41 41 41

** Correlation is significant at the 0.01 level (1-tailed).

For students’ data analysis, we apply a t-test on the data to prove the research hypothesis regarding
measuring readability. The result, as shown in Table 7, with a 95% confidence interval of the difference,
shows that there is a significant difference for the understanding variable of new text compared with
original text because the value was (0.000) and this value less than (0.05). In addition, the t value was
(5.066) which means that the new comment is more understandable than the original one. Another
variable was text complexity (text with more complex words). The result was (0.00) which is less
than (0.05) and this means that there is a significant difference between the original text and the new
text. Furthermore, this evidence supported the research hypothesis that the CRS (with the replacing
module) reduces text complexity level as the t value was (−4.695), which means the new text contains
fewer complex words than the original one. Finally, the last measured variable was the time that it took
to read the text; the result value was (0.01) and this is less than 0.05, which means there is a significant
difference between compared comments. Furthermore, the t value is −3.837 which means that the new
text took less time to read than the original one. Thus, this supported our assumption regarding text
readability as a way to reduce the time to understand the comments on the source code. Finally, we can
say there is a significant difference in comment readability level using the CRS tool in the development
phase and comment readability level without using CRS. This is a significant finding showing that the
new one is more readable than the original text comments.
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Table 7. Student data—new comment readability t-test values.

One Sample Statistics

Evaluation Criteria N Mean Std. Deviation Std. Error Mean

new_has_more_complex words 35 −0.2438 0.30719 0.05192

new_has_more_understandable 35 0.2343 0.27362 0.04625

new_has_more_time_to_read 35 −0.1695 0.26139 0.04418

One-Sample Test

Evaluation Criteria

Test Value = 0

t df Sig. (2-Tailed) Mean Difference
95% Confidence Interval

of the Difference

Lower Upper

new_has_more_complex words −4.695 34 0.000 −0.24381 −0.3493 −0.1383

new_has_more_understandable 5.066 34 0.000 0.23429 0.1403 0.3283

new_has_more_time_to_read −3.837 34 0.001 −0.16952 −0.2593 −0.0797

In addition, we apply the test correlation type between three questions to check if our hypothesis
is true. As the table below shows there is a significant relationship between the three variables we
search for (number of complex words, text understanding, and the time that takes to understand the
whole of text and get the idea from it) because correlation is significant at the 0.01 level. The results that
support the research assume that the text with more complex words takes more time to read and also
the about understanding it was an inverse relationship. In addition, Table 8 shows each variable with
the other two variables. If we study the relation between understanding text and containing a number
of complex words, the relation was a revised relation (more understandable with the less complex
words, and vice versa). On the other hand, more time to read means the text contains more complex
words and thus also leads to less understanding, and this is what this research attempts to prove.

Table 8. Result of the correlation between three main questions.

Descriptive Statistics

Evaluation Criteria Mean Std. Deviation N

new_has_more_complex words −0.2438 0.30719 35

new_has_more_understandable 0.2343 0.27362 35

new_has_more_time_to_read −0.1695 0.26139 35

Correlations

new_has_more_
complex words

new_has_more_
understandable

new_has_more_
time_to_read

new_has_more_complex words
Pearson Correlation 1 −0.699 ** 0.639 **

Sig. (2-tailed) 0.000 0.000
N 35 35 35

new_has_more_understandable
Pearson Correlation −0.699 ** 1 −0.644 **

Sig. (2-tailed) 35 0.000
N 1 35 35

new_has_more_time_to_read
Pearson Correlation 0.639 ** −0.644 ** 1

Sig. (2-tailed) 0.000 0.000
N 35 35 35

** Correlation is significant at the 0.01 level (2-tailed).
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5. Conclusions and Future Works

5.1. Conclusions

The quality code depends on many factors that influence its readability; one of them is the
comment (the part which describes the code and gives more information about the section which is
written about). Therefore, this comment is written to be used by other developers and developers who
write the code, for this issue these comments should be readable and easy to be understood by others.
Therefore, we will measure the readability of the comments and make some changes. By this change,
we aim to make its readability level suitable for others. These changes will contribute to achieving
the target readability level, and they will also make understanding code easier. Code understanding
means that code readability is easy, and therefore, maintainability and reusability become easier also.

We implement a tool to assess source code comments readability, this tool used three famous
formulas (fog index, Flesch reading ease score, and Flesch–Kincaid grade level) to measure text
readability, also used two resources for words and terms alternatives. We used an updated API to be
sure that the alternative word choices were updated and closer to the required terms. We collected
comments from Github projects then reviewed them by an instructor at the Department of Languages
and Translation at BZU—Dr. TAWFIQ Ammar. All of these comments that have complex and unusual
words were replaced by terms with less complexity and are familiar to most people. However, this change
affected the readability level for each of the comments. This was evaluated by creating a survey
completed by 41 senior programmers, in addition to 35 students. The survey consisted of two sections:
the first one was about general information about the experimenters. In addition, the second one
consisted of 15 questions, each question contained two comments—one from Github projects and
another one was from the enhanced comment generated by our proposed tool. The experimenter
then answered which of two comments had more complex words, had more understandable words,
and which one took more time to read. Survey participants (programmers) agreed that enhanced
comments contained a less number of complexwords as percentages—449% for original comments,
29% new comments which had more complex words, and 22% where there was no difference. Further,
these comments were more understandable than the original ones—40% for original comments, 40% for
new comments which had more complex words, and 20% there is no difference. Finally, enhanced
comments took less time to read as percentages—41% for original comments, 25% for new comments
which had more complex words, and 34% where there was no difference. With previous information
from t-test analyses, the result showed that the new comments were better in two variables—the new
comments contained more complex words, and the new comments took more time to read. However,
the result understated that there was no difference between the two compared comments. We guess
that this was with the high level of English of expert programmers, where the complex words did not
affect the understanding of the text.

For survey participants who were students—they agreed that enhanced comments contained a
smaller number of complex words as percentages—54% for original comments, 29% for new comments
that had more complex words, and 17% where there was no difference. In addition, these comments
were more understandable than the original ones—30% for original comments, 56% for new comments
which had more complex words, and 14% for where there was no difference. Finally, enhanced
comments took less time to read—40% for original comments, 23% for new comments which had more
complex words, and 37% for where there was no difference. With previous information from t-test
analyses, the results show that the new comments were better in three concerning variables (new and
requires more understanding, is new and contains more complex words, and where the new comment
took more time to read), which were different from programmers where the understanding of the
text was not affected. We assume, as mentioned before, that this was due to the high level of English
language used.
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From previous discussions, we can say that the tool which we built may help people for whom
English is not their first language, rather than those who have a very high level of English, or those
who are native speakers of English.

5.2. Future Works

In the future, many upgrades can be done to this system:

i Add this tool as an add on to Integrated Development Environment (IDE); this will make
reading comments easier and help programmers to change the complex word while writing their
own comments.

ii Connected tool to corpus with other languages. Because we focus on English and make alternative
words from the list retrieved from this corpus.

iii Add spellchecking that may help programmers to reduce the error that comes up from
typo mistakes.

iv Add more terms to local languages. That should be used in the future as a local corpus.
v Add Natural Language Processing (NLP) smart metrics to change terms with suitable

alternative terms.
vi Add new features to consume the comments automatically from projects and combined as

enhanced documentation.
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