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Abstract: The development of multimodal media compensates for the lack of information expression
in a single modality and thus gradually becomes the main carrier of sentiment. In this situation,
automatic assessment for sentiment information in multimodal contents is of increasing importance
for many applications. To achieve this, we propose a joint sentiment part topic regression model
(JSP) based on latent Dirichlet allocation (LDA), with a sentiment part, which effectively utilizes
the complementary information between the modalities and strengthens the relationship between
the sentiment layer and multimodal content. Specifically, a linear regression module is developed
to share implicit variables between image–text pairs, so that one modality can predict the other.
Moreover, a sentiment label layer is added to model the relationship between sentiment distribution
parameters and multimodal contents. Experimental results on several datasets verify the feasibility
of our proposed approach for multimodal sentiment analysis.
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1. Introduction

With the development of social networks, the multimedia data that integrate texts and images,
instead of single modality data, are gradually becoming the main medium for sentiment conveyance.
Multimodal contents can make up for the lack of information in single modalities and enable sentiment
expression that is more profound and mellifluous. Hence, more and more research attention has been
shifted to multimodal sentiment analysis in the area of artificial intelligence. Automatic assessment of
multimodal sentiment, which infers the sentiment information from digital contents from multiple
modalities, will be of great significance in people’s social and cultural life [1]. Besides applications in
social networks, the research results can also be applied to many other fields, such as stock prediction,
brand positioning, and medical resources [2–7].

Current approaches to multimodal sentiment analysis can be classified into three types [8–18].
The first is to predict the sentiment information given single-modality generated feature vectors
as inputs, which ignores the information complementation between modalities and may cause
trouble in processing an input of a large amount of redundant information [8–12]. Others attempt
to make decisions based on the results of multiple sentiment classifiers, each of which is trained
separately [13,14]. However, they are unable to effectively capture the correlation between the different
modalities. Moreover, some researchers propose to carry out fusion in the middle layer of the whole
model, mainly through neural networks. This kind of method merges connected multiple-feature units
into a shared presentation layer. Although the methods based on intermediate-level fusion achieve
good results in multimodal modal analysis, they fail in tackling incomplete multimodal contents.

To solve these problems, we propose a topic model which introduces a sentiment label (positive
or negative) layer. Moreover, our model has two separate sets of multimodal feature processing
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methods that are related by a linear regression module. Firstly, we extract eigenvectors of the input
data from each modality. Secondly, two topic models are prepared to process the information of
different modalities and apply the models’ respective eigenvectors to sentiment analyses. In order to
strengthen the inter-modal relationship, a linear regression module with latent variables is proposed.
This module utilizes the complementary information between different modalities. Then a sentiment
label layer is introduced to mine the model sentiments by using the distribution of sentiment topics
and the relationship between features, so as to derive the final multimodal sentiment analysis results.

Our main contributions lie in the following three aspects:

We propose a joint sentiment part topic regression model (JSP). Our method can automatically generate
the sentimental polarity of the document using the intermodal information and sentiment labels.
We add sentiment label layers to the framework to make the analysis results more reliable. A two
modalities feature and sentimental labels are used to explore the internal relationship between modal
and sentimental to solve the problem of multimodal content sentiment analysis.
The proposed model is tested on four real-world datasets of different orders of magnitude.
The evaluation results demonstrate the effectiveness of our method in multimodal sentiment analyses.
The experimental results show that our proposed model has great sentiment analysis ability in
real-world multimodal datasets and has good performance when compared with the state-of-the-art
sentiment recognition methods.

The rest of this paper is organized as follows. Section 2 is a summary of related works. Section 3
states the details of our proposed model. The mathematical inference is then elaborated in Section 4.
The experimental setup and analysis of the results are presented in Section 5. We finally conclude this
work in Section 6.

2. Related Works

Various kinds of approaches have been proposed for sentiment analysis. Our model aims to tackle
multimodal sentiment analysis based on an extended latent Dirichlet allocation (LDA) model with a
sentiment part. Hence, we focus on elaborating the related studies in both sentiment analysis and
LDA models.

2.1. Single Modality Sentiment Analysis

2.1.1. Textual Sentiment Analysis

One of the research hotspots in natural language processing (NLP) is sentiment analysis. There are
three main methods: traditional machine learning [19–23], sentiment lexicographical methods [24–30],
and deep learning [29–33].

In traditional machine learning, sentiment analysis was accomplished in the weak supervision
environment by multi-dimensional continuous injection. Maas et al. drove a probabilistic model
to capture semantic similarities among words, of which the component does not require marked
data [20]. Pang et al. used adjectives in the text as features and tried to combine multiple features for
sentiment analysis [23]. In the lexicon-based approach, a semantic orientation calculator (SO-CAL) was
proposed to analyze textual sentiment by co-annotation of the polarity and strength of semantics [25].
Turney designed sentiment patterns based on word labels of two consecutive words. Phrases satisfying
this pattern were extracted to obtain their semantic orientation [28]. With the increasing popularity of
neural networks, many studies on sentiment analysis resort to deep learning. HAN made use of the
recurrent neural network (RNN) model with a time series structure, which was a hierarchical cyclic
neural network model based on an attention mechanism for text classification [33]. TextCNN for a
text sentiment classification task was proposed. After the word vectors were pre-trained, Kim et al.
used the convolutional neural network (CNN) to train the sentence-level classification task [32].
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2.1.2. Visual Sentiment Analysis

Visual sentiment analysis is more challenging than textual sentiment analysis for the subjectivity
of images. In general, visual sentiment analysis can be divided into three categories according
to the features they utilize, low-level features [34,35], middle-level features [36,37], and high-level
features [38,39] included. Zhao et al. proposed the method of sentiment feature extraction based
on principles-of-art emotion feature (PAEF), which was to extract low-level visual features from the
concept of art principle for image sentiment classification and scanning tasks [34]. In study of Borth
et al., the adjective–noun pairs were detected to form mid-level features based on visual sentiment
ontology [35]. In using high-level features, You et al. made an attention mechanism to automatically
discover the relevant visual targets for image sentiment analysis [39]. In previous works, although the
results of single modality analysis of sentiment perform well, this method cannot be applied to the
multimodal content of social media. The single modality ignores the information complementarity
between modalities and fails to make full use of the social media data. Moreover, due to the inadequate
information, the sentiment analysis’s robustness with single modality is weak. Hence, it is necessary to
effectively process the multimodal sentiment analysis of diverse information.

2.2. Multimodal Sentiment Analysis

Multimodal contents have gradually become the main carrier of sentiment information in the
social networks. Various kinds of approaches have been proposed for multimodal sentiment analysis,
most of which focus on how to effectively integrate information of different modalities from the feature
or decision levels. Feature-level fusion attempts to take the fused features of different modalities as
input for the sentiment classification model. Poria et al. used a deep CNN to capture multimodal
features, which were then integrated by a multiple-kernel learning sentiment analysis classifier [14].
In order to capture contextual information in different modalities, a cyclic neural network was used
to integrate features in pairs [15]. A utilized attention mechanism was used to guide the feature
selection of single-modality information for multimodal feature fusion [16,17]. Decision-layer fusion is
also a widely used approach to multimodal information fusion, such as Kalman filters [18], support
vector regression [19], and Bayesian inference [20]. That is, a specific model is adopted to extract
single modality features for different data types, and the complex relationship between different
modality prediction results is modeled through different fusion methods. At present, most of the
multimodal sentiment analysis only focuses on sentiment classification, and does not pay attention to
the topic, which limits the depth of user validity. Second, most of these studies rely on a tagging and
training-related corpus, leading to limitations in other interest areas of the target tasks. It can be said
that most analytical techniques ignore the complex and changeable relationship between multimodal
information and sentiment.

2.3. Multimodal Latent Dirichlet Allocation

With the development of multimodal analysis, many studies have focused on the use of a topic
model like LDA, which can effectively model documents. Blei et al. proposed multimodal-LDA
(mm-LDA) which introduced a group of shared latent variables to obtain the correlation between two
modalities, so that the two modalities shared topic proportion variables [40]. They further extended
mm-LDA to correspondence LDA (cLDA), in which each caption word shares a hidden topic variable
with a random image [41]. Hagai et al. proposed topic regression multimodal LDA (tr-mmLDA)
which can learn two independent latent variables independently [42]. A regression module was then
introduced to allow a topic to predict another in a linear way. Besides, their calculation formulas
allowed for the captured data to be different, which means that the latent topic numbers of the image
and text can be different. Meanwhile, the LDA model can be used in global or individual topic
generation [43] and is suitable for comment-oriented modeling. For example, Lin et al. added a
connection between the topic and the sentiment on the basis of mm-LDA, and the new model can
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extract and summarize relevant sentimental text [44]. Ding et al. proposed the maximum entropy LDA
(me-LDA), which combined the topic model with the maximum entropy [45].

Different from the above-mentioned works, we introduce linear regression modules to establish
inter-modal relationships, which can utilize the complementary information well at the same time.
Then, we innovatively add a sentiment label layer to associate the sentiment topic distribution with
fused multimodal features.

3. Method

The proposed topic model with a joint sentiment part (JSP) is based on latent Dirichlet allocation
(LDA) [46]. Here, we give a brief introduction to the LDA model. This topic model has a concise
internal logical structure and a series of complete mathematical inference algorithms. Its mathematical
inference process utilizes Bayes’ theorem, input prior knowledge, and multimodal data, where the
prior knowledge is processed in Section 5.3. LDA is a generation probability model based on a
three-layer Bayesian network, and each layer can be adjusted by relevant parameters, which also
provides the flexible scalability of the model and can effectively manage the diversified multimodal
content. Based on the LDA model, the input image or text can be transformed into a topic-based
representation, which reduces the feature dimension and facilitates the multimodal fusion.

Its framework is shown in Figure 1. LDA is a variety of generation model that can hierarchically
model words or images of documents to be analyzed. As shown in Figure 1, there are two latent
variables in LDA. The first one is the topic distribution zn which samples the current word to topic
T. The other one is θd which is the relationship between the text d and each topic from the Dirichlet
distribution with the parameter α.
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Specifically, LDA represents the distribution of words in the document as the contribution of T
topics, and models the topic proportion as the Dirichlet distribution, where each topic is a multinomial
distribution of words. The joint probability distribution of all words in a text and their topics is:

P(w, z|α, β) = P (w|z, β) P(z|α), (1)∫
P(z|θ)P(θ|α)dθ =

∫
P (w|z, ϕ) P(ϕ|β) dϕ. (2)

3.1. Proposed Method

3.1.1. The Overview of Proposed Method

People are used to sharing their opinions on social media. Therefore, refining the topic of the
viewpoint can achieve the purpose of analyzing its sentimental direction. For multimodal sentiment
analysis, we introduce a topic model to process multimodal data. For tackling multimodal data,
traditional LDA methods ignore the deep relationship between the two modalities. So, we follow
tr-mmLDA to address the problem of finding shared latent variables between data modalities. Figure 2
shows the structure of our proposed model. In detail, the model is constructed by an additional module
with parameter x to make a linear influence on the relationship between visual vectors and textual
vectors. Besides, this linear module is a Gaussian regression module, which takes the proportion of
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the textual topic z as input, and the proportion x of the visual hidden topics in the annotated textual
vector as a response variable. Two separate topic models are used to generate a visual word w and
the textual word r. Traditional LDA multimodal sentiment analysis methods do not take the hidden
relationship between the sentiment and the document topic into account, so we add a sentiment label
layer to deepen the connection between the document and topic layer. In this way, sentimental label
l is linked to textual topic z, label l can influence the image vector through the linear module at the
same time. Figure 3 gives an example of predicted values assigned. Finally, we derive the model using
variational expectation maximization (EM).
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3.1.2. Data Representation

From successful works of scene classification, we chose to use the bag-of-word (BoW) model [22]
to represent images and text. The BoW model is understandable and efficient so it is widely used.
First appearing in the field of natural language processing and information retrieval, BoW is used
to process the identification and classification of documents [21]. Later, it was widely used in image
target classification and scene classification [7]. In this way, document data are converted into a simple
result of word vectors without any consideration for word order. Meanwhile, the BoW model is used
to simulate the image as a document, and the local features in the image are extracted as visual words.
Therefore, the multimodal content is reduced to a pair of total word vectors, where the basis vector
of the visual word is defined as the unit vector v ∈ R1×Uv , and similarly, the basis vector t ∈ R1×Ut

is also defined. Thus, V = {v1, v2, . . . , vm} can represent an image that is constructed of m words,
and T = {t1, t2, . . . , tn} can represent a text including n words.
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3.1.3. Joint Sentiment Part Topic Regression Model (JSP)

Our proposed topic model is shown in Figure 4. We suppose the corpus with D documents,
given L visual topics and K textual topics. Then, we assume that N text features and M image features
are extracted from the document.
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The text hidden topic is denoted as Z = {z1, z2, . . . , zn}, and the given topic proportion as θ.
Meanwhile, the visual parameter x is obtained by a set of linear regression formulas involving Z.
Here, we follow [47]:

x = Az + µ+ n, (3)

where A is a K × L regression coefficient matrix. The value of z is borrowed from previous works on
supervised LDA [4,14]:

z =
1
N

∑
n

zn. (4)

At this point, the visual word and the textual word are connected through the linear regression
module that involves parameter x.

Sentiment topic distributionπ is extracted from the sentiment Dirichlet distribution with parameter
γ. After that, the sentiment label l is selected from the multinomial distribution of sentiment topic
distribution π. Meanwhile, the parameter β (βw and βr) which is the relationship that between topic
and word is extracted from the Dirichlet distribution with parameter η.

Furthermore, we sample the proportion θd, l of each sentiment label l under document d from the
Dirichlet distribution with parameter α. When there are K topics, θ is a k-dimensional vector, and each
element represents the probability of the topic appearing in the document. After that, the current
feature belongs to the topic that is sampled from the multinomial distribution with parameter θd, l.
Finally, the word distribution based on topic and sentiment label is extracted from the multinomial
distribution with parameter βZdn ,l , and the textual word r in the document is extracted based on the
multinomial word distribution.

The definition of the processing process of image–text pairs containing M image feature words
and N text words is as follows:

• For the sentiment label l:

- Select an assignment π |γ ∼ Dir (γ);
- Find the sentiment label l|π ∼Mult(π).

• For each text word r∈ {1, . . . , N}:

- Find a topic distribution θ |α∼Dir (α) and a word assignment β|η∼Dir (η);
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- Find a topic z in document d, and z∼Mult (θd,l);
- Figure out the real text word r with the parameter βzdn, l

from the multinomial distribution.

• Introduce the mean Gaussian linear regression parameter x:

- Let the proportion of x be: x = Az + µ+ n

• For the image feature w:

- Choose a topic distribution s|x∼Mult(x);
- Choose the image feature w with the parameter βSX, M from the multinomial distribution.

3.1.4. Model Optimization

In the regression module, the stronger the correlation between the data of the two modalities is,
the larger the coefficient of A in the module is. Hidden topics with multiple texts can add impact
factors to the corresponding images. By minimizing the value of π�, θ, and β (βw and βr), there will
be a stronger connection between the labeled text and the images. Our model has greater flexibility in
capturing the relevance of content. Therefore, this model also requires relatively low expression forms.

4. Mathematical Inference

To find the distributions of π
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1. Introduction 

With the development of social networks, the multimedia data that integrate texts and images, 
instead of single modality data, are gradually becoming the main medium for sentiment conveyance. 
Multimodal contents can make up for the lack of information in single modalities and enable 
sentiment expression that is more profound and mellifluous. Hence, more and more research 
attention has been shifted to multimodal sentiment analysis in the area of artificial intelligence. 
Automatic assessment of multimodal sentiment, which infers the sentiment information from digital 
contents from multiple modalities, will be of great significance in people’s social and cultural life [1]. 
Besides applications in social networks, the research results can also be applied to many other fields, 
such as stock prediction, brand positioning, and medical resources [2–7]. 

Current approaches to multimodal sentiment analysis can be classified into three types [8–18]. 
The first is to predict the sentiment information given single-modality generated feature vectors as 
inputs, which ignores the information complementation between modalities and may cause trouble 
in processing an input of a large amount of redundant information [8–12]. Others attempt to make 
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, θ and β (βw and βr), we need to infer the posterior distribution
of the parameters z and l, which means finding the word distribution for the topic and sentiment
labels. Here, we use the external datasets MDS [48], Subject MR [49], and Review Text Content [50] as
prior knowledge. Let P (z, l) be the sampling distribution of the words given the remaining topics and
sentimental labels. It can be obtained that the joint probability between the text, topic, and corresponding
sentimental label distribution in the document can be decomposed as follows:

P(r, z, l) = P(r|z, l)P(z, l) = P(r|z, l)P(z|l)P(l), (5)

for the P(r, z, l) of the above formula, we can integrate β, and get:

P (r|z,l) =

Γ(Vη)

Γ(η)V

K×T ∏
k

∏
j

∏
i Γ

(
Nk, j,i + η

)
Γ
(
Nk, j + Vη

) . (6)

the Nk, j, i in the formula represents the number of times the word i appears in both the topic j and the
sentiment label k. Nk, j represents the number of occurrences of the word in the distribution of the
topic j and the sentiment label k. There is also a gamma function Γ [51,52].

Second, the method of integration to θ can be used to obtain:

P (z|l) =

 Γ
(∑T

j=1 αk, j
)

∏T
j=1 Γ

(
αk, j

) 
D×K ∏

d

∏
k

∏
j Γ

(
Nd,k, j + αk, j

)
Γ
(
Nd,k +

∑
j αk, j

) . (7)

Next, the method of integration to π can be used to obtain:

P (l) =

Γ(Kγ)

Γ(γ)K

D ∏
d

∏
k Γ

(
Nd,k + γ

)
Γ(Nd + Kγ)

. (8)

The parameter x of the reasoning image feature part is what we draw on from previous research.
Assuming the latent topic in the text feature is z, the distribution x between the image topic and
the image feature word is x = A →

Z
+µ+ n, of which A is the K ×L dimensional matrix, µ is the

vector of the average parameter, and n is the introduced Gaussian constant. LDA in a supervised
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environment [4,14] makes →
Z
=

z1+z2+...+zN
N . After this calculation, the input of the added linear

regression module will affect the generation of image features, so that the topic distribution ratio of
image features is affected by the text words. According to P (l

∣∣∣d) , which is the probability of the
sentimental label l of a given content d, the multimodal content can be sentimentally classified.

5. Experiments

In the experimental part, a series of experiments are carried out to confirm the validity of the
proposed model for multi-modal sentiment analysis. Specifically, we compare the model with some
baseline models and the variant of our model on several real-world datasets qualitatively. The selection
of parameters in the model is also discussed. However, the previous work has demand in the marked
sentimental datasets, which results in the inaccuracy of the multimodal content analysis. This paper
accepts the binary classification that only considers the probability of positive and negative sentimental
labels in the object content to limit the above drawback. The method we proposed makes great use of
the available sentimental datasets to analyze multimodal content. Besides, the classification of labels in
the sentiment dataset we use is a binary classification problem, the prior information set only affects
the positive and negative words.

5.1. Datasets

• Flickr [53]: Flickr is one of the most commonly used multimodal sentiment datasets and contains
297,462 image–text pairs with weak markers, of which 143,542 datapoints are labeled negative.
It contains 1211 adjective–noun pairs. The corresponding image of adjective-noun pairs (ANPs)
can be queried through its API. The sentimental labels of these image–text pairs are also marked
by the corresponding ANP.

• Flickr-ML [54]: Jie et al. [53] constructed Flickr-ML which contains 21,037 image–text pairs,
of which 10,145 have negative markers. This dataset is partially labeled with sentiment and has
a more accurate classification label. Jie et al. randomly selected 30,000 image–text pairs in the
original Flickr, split evenly between positive and negative tags. Then, five annotators were used
to mark the image–text pairs to calibrate the sentiment labels. In this way, the strongly tagged
Flickr-ML dataset was obtained.

• Twitter [55]: 24,795 image–text pairs were obtained after filtering the original 183,456 pieces of
data crawled by a relevant API. In Twitter, there are a total number of 12,357 negative pairs.

• Visual sentiment ontology (VSO) [56]: This dataset contains a total of 603 pictures, which are
split into 21 types. Ziyuan Zhao et al. used the processing method to extract the middle
layer visual features to obtain the similarity coefficient, and the data were weakly labeled by
support vector machine (SVM). We screened out 564 qualified data, including 276 negative data.
Among them, 400 pieces of data are selected use in training, and the rest as the test data of the
later model performance.

Sentimental label datasets:

• Review Text Content (RTC) [57]: This dataset is composed of restaurant reviews collected and
manually annotated by Ganu et al. It contains 150 different restaurants and more than 3200
sentences, which are broken down into six broad categories and each sentence contains one or
more categories of labels.

• Subject MR (subjMR) [58]: The subjective MR used here is a new version of Pang and Lee et al.,
which screens out data containing opinion information based on the original MR dataset, including
more than 2000 documents.

• MDS (Multi-domain Sentiment) [59]: This dataset is built by Blitzer et al. and collected from
product reviews on Amazon, including electronics, kitchenware, DVDs, and books. There are
more than 2000 pieces of data in each category, with positive and negative labels accounting
for half.
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5.2. Baseline Models

In order to explore the performance of our proposed method, we also compared our model with
the following state-of-the-art methods.

• Text only [60]: The model uses text features through a logistic regression model. The text topic is
extracted and then the sentiment is classified by SVM.

• Visual only [61]: Just uses deep visual features through a logistic regression model.
• CCR [62]: A cross-modality consistent regression model, which uses progressive CNN to extract

image feature and title information to represent the text information, for joint textual–visual
sentiment analysis.

• JST [54]: Joint sentiment topic model, a probabilistic model framework based on LDA, this model
can infer both sentiments and topics in the documents. Different from JS-mmLDA, JST is a
single-modality sentiment analysis model, which is only used to process textual information.

• T-LSTM-E [62]: Tree-structured long short-term memory embedding, an image–text joint sentiment
analysis model which integrates tree-structured long short-term memory (T-LSTM) with visual
attention mechanism to capture the correlation between the image and the text.

• TFN (Tensor Fusion Network) [63]: A deep multimodal sentiment analysis method modeling
intra-modality and inter-modality dynamics together into a joint framework.

5.3. Preprocessing

Before we conduct the experiments, we do some preprocessing on the input data. Figure 5
shows the processing of the input data. For better fitting of the model, the text length is kept to no
less than six words and no more than 80 words. In detail, the size of the images in the dataset is
clipped to 256 × 256 pixels. Without special instructions, 70% of the data in each category are used for
model training, and the remaining 30% are used for performance tests of later models. For textual
contents, numbers, stop words, punctuation marks, and some non-alphabetic characters are removed.
Following the previous work, the prior knowledge utilized in our model is combined with two
subjective lexicons, namely, MPQA (multi-perspective question answering) and the evaluation lexicons.
The words in both lexicons are marked with sentiment polarity. After selecting the words with strong
polarity, we carried out word stem extraction. Among them, 4196 words were extracted, including 2427
negative polar words. The final prior information is generated by retaining all the words in MPQA and
evaluation lexicons that appear in the experimental dataset. Besides, by performing standard word
stem analysis, the vocabulary overfitting can be solved.
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5.4. Experiment Evaluation Metrics

To evaluate the performance of the model intuitively and analyze the experimental
data quantitatively, we used these four metrics to evaluate the results of the experiment,
namely, recall, accuracy, F-score, and precision. These four metrics are defined as follows:

Recall = TP/(TP + FN), (9)

Accuracy = (TP + TN)/(TP + TN + FP + FN), (10)

F-score = (2·Precision·Recall)/(Precision + Recall), (11)

Precision = TP/(TP + FP). (12)

5.5. Experiment Results and Analysis

5.5.1. Comparative Experiments with Different Datasets

In the subsequent experiments, we analyze the results through four different datasets by four
indicators: recall, accuracy, F-score, and precision.

The experimental results in Tables 1–4 directly show the comparison between our proposed model
with other baselines in four datasets. It can be seen that the models including text only and images
only are not well behaved as these two models only take unimodal data into account. The other
models, which considered multiple modalities or joint sentiment labels and treated them appropriately,
performed better than single-modality models.

Table 1. Performance of various sentiment analysis methods on Flickr.

Method Recall Accuracy F-Score Precision

Proposed method 0.854 0.847 0.819 0.856
Text only 0.734 0.722 0.694 0.674

Visual only 0.742 0.732 0.712 0.693
CCR (cross-modality consistent regression model) 0.823 0.822 0.821 0.832

JST (joint sentiment topic mode) 0.844 0.817 0.823 0.832
T-LSTM-E (tree-structured long short-term memory

embedding) 0.851 0.844 0.83 0.843

TFN (tensor fusion network) 0.867 0.832 0.832 0.844

Table 2. Performance of various sentiment analysis methods on Flickr-ML.

Method Recall Accuracy F-Score Precision

Proposed method 0.874 0.865 0.827 0.864
Text only 0.769 0.776 0.743 0.722

Visual only 0.821 0.789 0.752 0.743
CCR 0.816 0.838 0.827 0.837
JST 0.826 0.834 0.826 0.843

T-LSTM-E 0.862 0.857 0.833 0.862
TFN 0.882 0.863 0.852 0.867

Tables 1 and 2 show the results for large datasets. The operational results of JST are significantly
improved over the single feature model, as the JST model adds an additional sentiment layer based on
the LDA. In this way, establishing a relationship between sentiment labels and feature vectors does
improve the quality of sentiment analysis. T-LSTM-E improves by nearly 14% in recall compared
with the single modality method, which is joint visual–textual semantic at the same time. The joint
semantic embedding extracts the deep features between image–text pairs. The proposed model
utilizes complementary information between modalities and joint sentimental labels to influence
the distribution of document topics. Hence, compared with other state-of-the-art baseline methods,
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our model has a good performance in precision. Our method improves by 2% in accuracy which also
proves that the proposed model can accurately deal with the classification of multimodal sentiments.
Flickr-ML is the dataset that has been manually labeled with sentiment tags. As shown in Table 2,
all model performances are improved. The reason may be that the labels of the image–text pairs are
marked as conforming to the corresponding sentiment keywords in the dataset with weak labels,
which improves the effectiveness of the multimodal content analysis. As shown in Table 2, TFN obtains
advantageous results by modeling dynamic relationships. Our proposed approach improves by almost
3% in precision, which can also validate the benefits of strong label handling.

Table 3. Performance of various sentiment analysis methods on Twitter.

Method Recall Accuracy F-Score Precision

Proposed method 0.859 0.842 0.836 0.843
Text only 0.711 0.721 0.685 0.687

Visual only 0.734 0.724 0.71 0.704
CCR 0.824 0.83 0.819 0.847
JST 0.832 0.823 0.814 0.833

T-LSTM-E 0.833 0.835 0.843 0.863
TFN 0.855 0.843 0.833 0.857

Table 4. Performance of various sentiment analysis methods on Flickr-ML.

Method Recall Accuracy F-Score Precision

Proposed method 0.843 0.842 0.869 0.865
Text only 0.725 0.764 0.724 0.711

Visual only 0.756 0.774 0.745 0.732
CCR 0.823 0.822 0.842 0.853
JST 0.832 0.834 0.848 0.859

T-LSTM-E 0.851 0.833 0.853 0.872
TFN 0.866 0.84 0.877 0.888

Tables 3 and 4 show the experimental results on small datasets like Twitter and VSO. Comparing
experiments on other databases, it can be concluded that data volume does have an impact on
the multimodal sentiment analysis task. As shown in Table 4, compared with single-modality
models, our method is greatly improved in each evaluate metric, which indicates that information
complementarity of multimodal content can capture and analyze sentimental content in a better way.
From the results, our proposed model is as satisfactory as the state-of-the-art approach in some metrics.
Besides, its learning ability and classification ability are better than other baseline models.

5.5.2. Ablation Experiments

In order to explore whether the sentiment label layer can effectively improve the ability of the model
for analyzing the sentiment of multimodal contents, we construct a variant of our proposed model
without a sentiment layer, named the no-sentiment layer model. Different from the proposed model
which directly adds the sentiment label layer and analyzes the sentiment by using the relationship with
the multimodal content, the no-sentiment layer model iteratively optimizes the model’s latent variable
parameters using variational expectation maximization. Through the variational EM, an approximate
reasoning algorithm is used to replace the exact reasoning in the original E step. The new parameter
estimation is obtained by calculating the strict lower likelihood bound in the E step of variation and
maximizing the lower likelihood bound in the M (maximization) step. In this way, after the topic of
each document is generated, the sentiments of each document are analyzed by SVM.

As shown in Figure 6a,b, the performance of the two models is compared for Flickr and Twitter
respectively. Clearly, the model with the sentiment layer added to both datasets performed better,
with the addition of the sentiment distribution resulting in a nearly 10% improvement in model
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performance across all metrics. In particular, in the aspect of accuracy and precision are improved,
thus establishing that the relationship between the sentimental layer and the multimodal content is
helpful to improve the analysis accuracy of the model.
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Figure 6. (a) Comparison experiment on Flickr; (b) comparison experiment on Twitter.

5.5.3. Experiments with Different Parameter Settings

The performance of multimodal sentiment analysis in our model also depends on the selection
of parameter γ and parameter η. Previous studies [53] have shown that LDA can generate good
results by using symmetric prior knowledge settings. However, for document topic distribution types,
the experimental results obtained by asymmetric prior knowledge are better than the former. In order
to prove that parameters γ and η will affect the performance of the proposed model, we set up a
comparison experiment on different parameter values in the experiment. Finally, in our proposed
model, parameters are set based on the study of Griffith et al. [62], that is, γ = (0.06 × C) ÷ T, where C
is the average of document length and T represents the sum of sentimental labels, parameter η = 0.02.
The assignment of the super parameter α can be obtained and iterated directly by using the maximum
likelihood estimation method [63].

A common indicator is adopted here to measure the parameter performance: perplexity. Perplexity is
usually used to measure the probability distribution or the quality of a probability model’s prediction
sample, that is, to estimate the quality of a probability model. It is calculated by the following formula:

P(p) = 2H(p) = 2−
∑

x p(x) log2 p(x). (13)

In general, the larger the perplexity value, the worse the result. While controlling the other
variables, we conduct the adjustment experiments of a certain parameter. We expect to get a better
parameter setting, making the perplexity value smaller. First, we fix the value of γ and study the
influence of parameter η on perplexity. The broken line diagram is shown in Figure 7. Although the
operation result is not perfect, we can see that the overall trend of broken lines reaches to the lowest
point when η takes the value of 0.02–0.03, and the lowest point is also within this range when γ is given
different values. So, we set the value of parameter η to 0.02.

Similarly, it can be seen from Figure 8 that while exploring the effects of parameter γ on perplexity,
the value of parameter η. is kept unchanged, and we expect to find a minimum value to make the
result of the model the best. At this point, the effect of γ between 0.06 to 0.07 is better. The different
values of η show that the lowest point of the poly line is also within this range. This is why we chose to
set the value of γ to 0.06.
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6. Conclusions

In this paper, we propose a joint sentiment part topic regression model for multimodal sentiment
analysis. Different from other LDA models that process and analyze multimodal contents, we introduce
the sentiment label layer when the documents are generated. Not only is the corresponding relationship
between the text and the image taken into account, but also the corresponding sentiment labels are
related to document topics. The method we use allows for different numbers of image and text
topics to be captured. Experimental results on different datasets like Flickr and Twitter also show the
effectiveness of our proposed method in sentiment analysis of multimodal data.
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