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Abstract: It is expected in a near future that safety applications based on vehicle-to-everything
communications will be a common reality in the traffic roads. This technology will contribute to
improve the safety of vulnerable road users, for example, with the use of virtual traffic light systems
(VTLS) in the intersections. This work implements and evaluates a VTLS conceived to help the
pedestrians pass safely the intersections without real traffic lights. The simulated VTLS scenario
used two distinct communication paradigms—the pull and push communication models. The pull
model was implemented in named data networking (NDN), because NDN uses natively a pull-based
communication model, where consumers send requests to pull the contents from the provider.
A distinct approach is followed by the push-based model, where consumers subscribe previously
the information, and then the producers distribute the available information to those consumers.
Comparing the performance of the push and pull models on a VANET with VTLS, it is observed that
the push mode presents lower packet loss and generates fewer packets, and consequently occupies
less bandwidth, than the pull mode. In fact, for the considered metrics, the VTLS implemented with
the pull mode presents no advantage when compared with the push mode.

Keywords: virtual traffic lights; vulnerable road user; vehicular named data networking; NDN;
vehicular ad hoc networking; VANET

1. Introduction

Statistics show that pedestrians are more vulnerable to accidents than other road users. Indeed,
in European Union, in 2016, 21% of all traffic fatalities were pedestrians [1]. Traffic signals play an
important role to improve vulnerable road users (VRU) safety, because red lights stop cars at the
intersections so that VRUs (pedestrians, bicyclists) can cross safely. Unfortunately, many intersections
have no traffic light systems (TLS). However, there has been a significant increase in the number
of connected devices on the public roads with the increase of connected vehicles. The use of
vehicle-to-everything (V2X) communications is still expanding and improving, but in the future it
will be certainly a common technology in the roads. It is expected that safety applications based on
V2X communications will come up, thus contributing particularly to improve the safety of VRUs.
Inspired by this near future reality, this work implements and evaluates a virtual traffic light system
(VTLS) conceived to help the pedestrians pass safely the intersections without real TLSs. The VTLS
is implemented and evaluated using two distinct communication paradigms—the pull and push
communication models, as discussed next.
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The pull model was implemented with named data networking (NDN) [2], which is a very
popular information centric networking architecture. The goal of NDN is to redesign completely the
Internet by replacing internet protocol (IP) datagrams with content chunks as a universal component
of transport. Neither IP addresses nor port numbers are used in NDN packets. The communications
in NDN are driven by the receivers and involve the exchange of interest and data packets. Basically,
a consumer sends an interest packet to the network asking for content, and then a data packet carrying
the requested content is replied by the provider. This communication model allows the decentralization
through in-network caching, making it very appropriate for large-scale environments with highly
dynamic topologies, such as VANETs.

Three major data structures are present in the NDN nodes: Content Store (CS), Pending Interest
Table (PIT), and Forwarding Information Base (FIB). The CS is a temporary cache of data packets
received by the router, and it is used to satisfy the future interests. The PIT stores all interests received
by the router that were not still satisfied. The FIB stores information related with forwarding, namely
the outgoing faces to forward the interests that match a name prefix. NDN uses natively a pull-based
communication model, where consumers send requests to pull the contents from the provider. A distinct
communication paradigm is followed by the push-based model. The consumers subscribe previously
the information and then the producers distribute (i.e., push) to the consumers the available information,
periodically (e.g., monitoring messages) or based on events (e.g., safety warnings).

To help understand the focus of this work, let us consider the following use-case. A pedestrian
equipped with a smartphone walks along the sidewalk of a city, where all road intersections have one
road-side unit (RSU) to implement a virtual semaphore. To increase the safety of this vulnerable road
user (VRU) during the passing of the intersections, the pedestrian’s smartphone communicates with
the RSU in order to inform his/her position and the crosswalk that intends to use. After receiving the
data from the pedestrian, the RSU sets the state of the virtual traffic light signals and this information
is delivered to the vehicles approaching the intersection controlled by the RSU. If the vehicle receives a
red light signal from the RSU, then it must stop at the intersection to let the pedestrian pass safely on
the crosswalk. If the vehicle receives a green light signal from the RSU, then it must follow the traffic
rules to pass the intersection in presence of other vehicles. The RSU interaction with pedestrians and
cars can follow the pull or the push communication models, as illustrated in Figure 1. In the push
model, the pedestrian P sends the data message D to the RSU S and this sends the virtual traffic light
message L to car C. In the pull model, the messages D and L are only sent after being requested by
RSU S (through message I) and car C (through message J), respectively.
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Figure 1. Illustration of the named data networking (NDN) push (left), and pull (right) communication
models. In the push model, P sends D to road-side unit (RSU) S and this sends the L to C, while in the
pull model, D and L are sent after being requested by S and C, respectively.
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The pull-based communication model offers some advantages when compared to the push model,
namely in terms of bandwidth control and number of data requests. Indeed, the pull model is able
to regulate better the communications. For example, in a group of RSUs close enough to each other,
interests may be sent out of phase by the RSUs to guarantee that at any time only one RSU is sending
an interest in that communication domain. This traffic distribution helps to achieve a better use of
the channel bandwidth, which in turn helps to decrease packet collisions. Moreover, an RSU is able
to ask for specific information from data providers, such as pedestrians. However, as pedestrians
can only send data after receiving an interest from the RSU, this imposes some synchronicity in the
transmissions of the pedestrians, which can originate a significant content for the wireless channel
if there are a great number of pedestrians near the RSU. This problem may be less relevant in the
push model, because transmissions are asynchronous. The pull model also has the disadvantage of
requiring a more complex communication model, which may impact the data delivery delay and the
reliability of the system. Indeed, the pull model is more suitable for data without strict timeliness
constraints, because a request for the data must be received by the provider before being transmitted.
Moreover, the pull mode requires the double of the messages for pedestrians sending the information
to the RSU and also for the cars receiving the virtual traffic lights from the RSU. So, if the probability of
losing a message in the wireless channel is p (for simplicity, all messages have the same size), then the
success probability for a pedestrian sending the information to the RSU or for the cars receiving the
traffic lights from the RSU is (1−p) in the push mode, and (1−p)2 in the pull mode. So, the mentioned
success probability is (1−p) times lower in pull mode than in push mode.

It is expectable that the pull mode be outperformed by the push mode in the implementation of
the VTLS scenario presented in the use-case. However, it is not clear how worst is the performance of
the pull mode when compared to the push mode, or if such performance degradation would prevent
the usage of the pull mode to implement a VTLS. The goal of this work is to clarify these issues,
by comparing the performance of the push and pull models on a VANET with virtual traffic lights
placed on the road intersections to improve the pedestrians’ safety. The implemented VTLS only tries
to protect the pedestrians from the vehicles, and not the vehicles from other vehicles.

2. Related Works

Diverse studies and projects have been developed using vehicle-to-pedestrian communications
for safety of VRUs [3], including vehicular NDNs [4]. However, to the best of our knowledge,
only the work indicated in [5] presents a VTLS application for VANETs over NDN. Instead of installing
traffic lights at every intersection, it is used a RSU in each intersection acting as traffic controller.
The RSU collects the information of vehicles that have arrived or are going to arrive at the intersection,
processes the information, and then sends a message for every vehicle to pass the intersection or stop.
A geolocation-based forwarding strategy is used to disseminate packets. The authors claim that this
was the first design of a smart traffic light system in a vehicular NDN. Nevertheless, the presence of
VRUs is not considered in the simulation scenario.

There are other works that addressed the use of virtual traffic lights in VANETs or intersection
signal decision-making algorithms. Originally proposed by Ferreira et al. [6], VTLSs were studied in
posterior works, such as [6–8]. However, these works do not use NDN and do not take in consideration
the presence of pedestrians. For example, in the work presented in [6], the vehicles moving on
the same direction form a cluster. The cluster leader is the vehicle that moves farther from the
intersection, and is responsible for choosing the priorities and broadcasting the VTL messages to the
other vehicles of the cluster. In the paper indicated in [7], each vehicle collects the neighbor information
to select a leader. Then, the leader creates and maintains the VTL, and broadcasts the traffic signals
to the remaining vehicles of the group. In [8], the vehicles send its own information to the cloud
infrastructure, which then informs the vehicles to pass or stop at the intersection. An algorithm
is proposed in [9] to define the priorities of the road intersections with VTLS. Vehicles exchange
information and then priority is given to the vehicle that first arrives at the intersection or to the
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priority vehicles. An intersection signal control mechanism is proposed in [10], whereby the RSU at
the intersection collects the real-time information of far vehicles. Then, after merging this data with the
information of vehicles in the intersection via image acquisition, the waiting times of the traffic flows
are predicted for the signal decision-making. The work in [11] proposes an algorithm that assigns
vehicles to the group of each lane and calculates traffic volume and congestion degree using the traffic
information of each group through inter-vehicle communications, without requiring cameras. In [12],
a dynamic traffic regulation method is proposed, where the driver’s willingness is taken into account,
using a distributed collective decision mechanism to control the virtual traffic light.

In order to benefit from the one-way delay offered by the push-based models, a few works have
investigated push-based content retrieval solutions for NDNs [13,14], including the use of long-lived
interests [15]. These special interests allow producers to send multiple data packets for a certain time
period, without requiring additional interests, thus reducing the PIT size and the network traffic.
Moreover, the work presented in [16] proposes a mechanism for push-based data dissemination for
vehicular NDNs, in which a producer node can inject content without preceding interest packets, thus
reducing both the content forwarding and caching delay. The push mode is also recommended by ETSI
to implement a use-case involving traffic lights [17], where VRUs and vehicles broadcast continuously
messages at a certain frequency to the RSU. This unit analyzes the crossing status and then transmits
the information to the nearby vehicles to let the VRUs pass safely the crosswalk.

3. Pull-Based Virtual Semaphore

This section presents the implementation of the use-case, described previously, using the
pull-based model. As NDN integrates natively a pull-based model, the pull-based virtual semaphore is
implemented in NDN. In the proposed VTLS, the consumer can be static (RSU) and dynamic (vehicles),
and the producer can be static (RSU) and dynamic (pedestrians). All exchanges of messages with the
RSU are done using direct line of sight communications, as the RSU is assumed to be in a strategic
position at the intersection, so that all nearby pedestrians and cars can reach it in one-hop. The role of
the pedestrians, vehicles, and RSU in the VTLS will be discussed in the next sections.

3.1. Pedestrians and RSU

The RSU broadcasts periodically an interest to know all pedestrians that are less than a certain
distance to it. The interest name has the following format: /vtlsId/VRU, where /vtlsId/ is the identification
of the domain name of the virtual traffic light system, and “VRU” is the content’s directory path.
The nonce, the hop limit, the distance range, and the GPS coordinates (or any other form of unique
identification) of the RSU are also sent within the interest packet. The range and the GPS coordinates of
the RSU are application parameters used to parameterize the data request. These two parameters are
sent in the “application parameters” field of the interest packet, and are only used for the pedestrians to
know whether the received interest should be ignored or not. The other parameters are sent respectively
in the “nonce” and “hop limit” fields of the interest packet [18]. The hop limit is set to one, for the
pedestrians do not forward any received interest. An interest packet is uniquely identified by the name
and the nonce. The nonce is a random number generated by the consumer application and is used to
detect duplicate packets.

After receiving an interest from the RSU, the minimum distance to the RSU is calculated by the
pedestrian. If this distance is above the announced range, then the received interest is ignored by
the pedestrian. Only the pedestrians inside the range and approaching or leaving the intersection
controlled by the RSU reply to the interest, sending a data packet with the same name of the interest,
along with the following information: the pedestrian identification, the GPS coordinates of the
pedestrian, the crossroad heading, and the next sidewalk GPS coordinates. The GPS coordinates,
the crossroad heading, and the next sidewalk GPS coordinates of the pedestrian are a tuple that is
obtained from the content store (CS) of the pedestrian, which is updated regularly by the NDN daemon
running in the smartphone. The “next sidewalk GPS coordinates” identifies the sidewalk that the
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pedestrian intends to take after passing the intersection. This identification is done through the GPS
coordinate of a point of the next sidewalk. The “crossroad heading” is the direction that the pedestrian
will take after reaching the intersection, and it can assume the following values: go straight, turn left,
and turn right. When the pedestrian is moving to the intersection, he/she can indicate the planned
crossroad heading using, for example, a specific smartphone application. As the pedestrians are
configured for not caching the content of any other node, the pedestrian’s CS only holds the own
pedestrian’s content. If the reply of a pedestrian is lost because of a communication problem in the
wireless channel, a more updated data packet can be sent in response to the next interest broadcast by
the RSU.

Whenever a data packet is received from a pedestrian, the RSU saves the information contained in
the data packet in the internal database. So, one interest broadcast by the RSU may generate multiple
entries in this internal database—one entry for each distinct reply received from a pedestrian that
is inside the RSU announced range. Afterwards, the RSU invokes an internal application, named
traffic management controller (TMC), which calculates the light signal associated to each crosswalk
and for all possible vehicle directions, taking in consideration the pedestrian registers in the internal
database. Then, the RSU caches the traffic light signals returned by the TMC in the CS. The entries of
the CS are updated whenever the internal database of the RSU is changed, for example, when the RSU
receives a data packet from a pedestrian. Once a pedestrian has crossed the intersection and starts
moving away from it, the RSU is able to know this situation from the data packet received from the
pedestrian and, consequently, the RSU deletes the register in the internal database associated to that
pedestrian. The register of a pedestrian is also deleted if no reply is received from that pedestrian
during a predefined time interval. When the internal database of the RSU becomes empty, the TMC
sets green light to all crosswalks and directions, and the CS is updated accordingly.

3.2. Vehicles and RSU

When a vehicle approaches an intersection, it sends periodically an interest to the RSU requesting
the respective virtual traffic light signal of that intersection. The interest name has the following
format: /vtlsId/RSU/roadId1/roadId2, where /vtlsId/ is the identification of the domain name of the
VTLS, and “RSU/roadId1/roadId2” is the content’s directory path. The component roadId1 identifies
the road where the vehicle is located and roadId2 identifies the road that the vehicle intends to take
after passing the intersection. This information can be obtained, for example, from the GPS track, if the
destination was defined by the driver at the beginning of the travel, or from the turn signal. If the car
is unable to determine roadId2, it sends the interest name “RSU/roadId1/*”, and the RSU replies with
the traffic lights of all crosswalks. The nonce and the hop limit are also sent within the interest packet.
The hop limit is set to one for the vehicles not forwarding any received interest. The RSU that should
reply to the interest can be decided from the components roadId1 and roadId2.

After receiving an interest from a vehicle, the RSU gets the virtual traffic light from the CS, which
has one entry for each possible direction a car may follow in the intersection. For example, if an
intersection has four crosswalks, as shown in Figure 2, there are three possible directions that a car may
take after reaching a crosswalk (left, right, ahead), and so the CS of the RSU contains 4 × 3 = 12 entries.
After receiving the traffic light signal from the CS, the RSU replies to the vehicle with a data packet,
having the same name of the interest and carrying the traffic light signal in the content. The virtual
traffic light signal is zero for green light signal, and one for red light signal (for sake of simplicity,
the yellow light signal is not considered in this work). Since the location of the moving pedestrians
near the intersection is always changing, the vehicle sends periodically an interest to the RSU in order
to update the information of the traffic light signal, as the vehicle approaches the intersection.



Information 2020, 11, 510 6 of 20Information 2020, 11, x FOR PEER REVIEW 6 of 20 

 

 
Figure 2. Intersection with three cars (A, B, C) and one pedestrian (P) in the inferior horizontal 
crosswalk. 

After receiving a data packet with the same name of the interest sent to the RSU, the vehicle 
stores the new traffic light signal in the CS and deletes the traffic light signal of the data packet 
received previously. This information will be used by the vehicle in the intersection to let the nearby 
pedestrians pass safely. The interests received from the vehicles and the data packets sent by the 
RSU are ignored by the pedestrians. Also, the data packets received from the pedestrians are ignored 
by the vehicles. 

As each vehicle receives its own traffic light signal, two vehicles in the same road may receive 
different traffic light signals, depending on their crossroad headings. The crossroad heading is the 
direction that the vehicle will take after reaching the intersection (go straight, turn left, turn right), 
and it may deduce from the components roadId1 and roadId2. In the example of Figure 2, vehicles A 
and B are both moving straight ahead and receive a green light signal from the RSU, because their 
routes do not intersect the trajectory of the pedestrian P. However, vehicle C receives a red light 
signal, because it intends to turn left and this maneuver will intersect the pedestrian in the inferior 
horizontal crosswalk. 

To understand better the meaning and the importance of the crossroad heading, let us consider 
the example of Figure 3. If the pedestrian P wants to reach the sidewalk S, it can do it by taking the 
two crosswalks marked by (i) the continuous line; or (ii) by the dashed line. In the first case, the 
crossroad heading is “turn right,” and in the second case, the crossroad heading is “go straight.” As 
each case may imply distinct traffic light signals for the vehicles, then the crossroad heading is an 
important parameter to be taken in consideration by the TMC. For example, if the pedestrian P 
choose to follow the continuous line path, then cars A, B, and C receive red light signals, because the 
trajectory of the three cars intersect the pedestrian’s trajectory. However, if the pedestrian P chooses 
to follow the dashed line path, then all cars may receive green light signals while the pedestrian 
walks through the superior horizontal crosswalk. However, when the pedestrian reaches the left 
vertical crosswalk and if cars A, B, and C have not yet crossed the intersection, then cars A and B 
receive red light signal and car C receives green light, because this car, unlike A and B, does not 
intersect the pedestrian’s trajectory. 

Figure 2. Intersection with three cars (A, B, C) and one pedestrian (P) in the inferior horizontal crosswalk.

After receiving a data packet with the same name of the interest sent to the RSU, the vehicle stores
the new traffic light signal in the CS and deletes the traffic light signal of the data packet received
previously. This information will be used by the vehicle in the intersection to let the nearby pedestrians
pass safely. The interests received from the vehicles and the data packets sent by the RSU are ignored
by the pedestrians. Also, the data packets received from the pedestrians are ignored by the vehicles.

As each vehicle receives its own traffic light signal, two vehicles in the same road may receive
different traffic light signals, depending on their crossroad headings. The crossroad heading is the
direction that the vehicle will take after reaching the intersection (go straight, turn left, turn right),
and it may deduce from the components roadId1 and roadId2. In the example of Figure 2, vehicles A
and B are both moving straight ahead and receive a green light signal from the RSU, because their
routes do not intersect the trajectory of the pedestrian P. However, vehicle C receives a red light
signal, because it intends to turn left and this maneuver will intersect the pedestrian in the inferior
horizontal crosswalk.

To understand better the meaning and the importance of the crossroad heading, let us consider
the example of Figure 3. If the pedestrian P wants to reach the sidewalk S, it can do it by taking the two
crosswalks marked by (i) the continuous line; or (ii) by the dashed line. In the first case, the crossroad
heading is “turn right,” and in the second case, the crossroad heading is “go straight.” As each case
may imply distinct traffic light signals for the vehicles, then the crossroad heading is an important
parameter to be taken in consideration by the TMC. For example, if the pedestrian P choose to follow
the continuous line path, then cars A, B, and C receive red light signals, because the trajectory of the
three cars intersect the pedestrian’s trajectory. However, if the pedestrian P chooses to follow the
dashed line path, then all cars may receive green light signals while the pedestrian walks through the
superior horizontal crosswalk. However, when the pedestrian reaches the left vertical crosswalk and if
cars A, B, and C have not yet crossed the intersection, then cars A and B receive red light signal and car
C receives green light, because this car, unlike A and B, does not intersect the pedestrian’s trajectory.
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Unlike the traditional NDN behavior, the moving nodes (pedestrians, cars) of the scenario with
the NDN-based semaphore system do not save the unsatisfied interests in the PIT, neither cache the
data of other nodes in the CS, because there is no relevant advantage in doing so. In fact, as the node
only sends a packet when is close to the RSU, the data packet can reach the RSU directly, in one-hop.
Moreover, as the moving nodes have only one face to receive and transmit packets, there is no role for
the FIB. Indeed, the packets are usually flooded in the NDN-enabled VANETs [19–21].

3.3. Flowcharts

The flowcharts of the algorithms used by the RSU, pedestrians and vehicles in the pull-based
scenario are presented next. The algorithms are shown in a simplified way, illustrating only the
basic actions.

3.3.1. Flowchart of RSUs

Figure 4 shows the algorithm used by the RSUs in pull mode. After starting up, the RSU
sends periodic interests (I pkt) to the nearby pedestrians. When a data packet (D pkt) is received
from a pedestrian, the location conditions are checked. If these conditions are valid, then the RSU
saves in the internal database the content, namely the identification, current sidewalk, next sidewalk,
and the crossroad heading of the pedestrian. Then, the TMC is called to define the traffic light signals.
By analyzing the information contained in the database, the TMC decides the traffic light signals for all
routes a car may take after getting the intersection, and saves this information in the CS. After receiving
an interest packet from a vehicle that is going to the intersection, the RSU broadcasts a data packet
containing the respective traffic light signal.
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Pedestrian: After starting up the VTLS application, the pedestrian’s smartphone waits for external
communication messages. If an interest is received from the RSU controlling the intersection that
the pedestrian is going to, and if the pedestrian is at a distance to this RSU lower than the range
value announced in the interest, then the pedestrian sends to the RSU a data packet containing the
identification, current sidewalk, next sidewalk, and crossroad heading of the pedestrian. Otherwise,
the received message is ignored by the pedestrian.

Vehicle: When the vehicle is at a distance to the RSU lower than a pre-defined value, the vehicle
sends periodically an interest to this RSU. When a data packet is received from this RSU, the vehicle
saves in the CS the received traffic light signal. When the vehicle gets close to the intersection, it checks
the last saved traffic light signal. If this signal is red, then the vehicle must stop at the intersection,
because there is a pedestrian near or on the crosswalk that intersects the vehicle trajectory. If it is
green, then there is no pedestrian near or on the crosswalk that intersects the vehicle trajectory. In this
case, the vehicle should pass the intersection considering only the presence of other vehicles in the
intersection. Recall that the virtual semaphore only tries to protect the pedestrians from the vehicles,
and not the vehicles from other vehicles.

4. Push-Based Virtual Semaphore

This section presents the implementation of the virtual semaphore using the push-based
communication model.

4.1. Pedestrians and RSU

When a pedestrian, walking to an intersection, is less than a certain distance to the RSU installed
at that intersection, the pedestrian’s smartphone sends (pushes) periodically a message to this RSU.
Only the pedestrians inside the range and moving toward or just leaving the intersection controlled by
the RSU are allowed to send messages. The message sent by the pedestrian contains the following
information: application identification, “VRU”, pedestrian identification, current sidewalk of the
pedestrian, next sidewalk of the pedestrian, and crossroad heading. “VRU” is a reserved string, which
is used to inform the receiver that the message was sent by a pedestrian. The remaining parameters
were already discussed in the pull-based mode.

4.2. Vehicles and RSU

The RSU caches the data received from the nearby pedestrians. The RSU periodically calls the
TMC, which decides the virtual traffic lights signals of the intersection. There is one traffic light signal
for each crosswalk of the intersection controlled by the RSU. Whenever there is at least one person
on a crosswalk or a person close to a crosswalk that he/she intends to pass, the TMC sets a red signal
for that crosswalk. The RSU broadcasts periodically a message containing the set of traffic lights of
the intersection, along with the identification of the RSU. The set of traffic lights contains one signal
for each crossroad of the intersection, as defined by the TMC. For example, in the case of Figure 2,
the RSU transmits a message containing one red light for the inferior horizontal crosswalk, and three
green lights for the remaining crosswalks. This set of traffic light signals can be represented, in binary,
as 1000. The RSU has no information about the nearby vehicles, because the vehicles do not send any
data to it. Consequently, the RSU is not able to define the traffic light signal for a specific vehicle, as it
does in the pull-based system.

After receiving the traffic light signals from the RSU, the car determines if its route intersects a
crosswalk with red light. If true, then the car stops at the intersection to let pass the pedestrians near or
on those crosswalks. Otherwise, the car driver must follow the traffic rules to pass the intersection
in presence of other vehicles. Recall that the VTLS implemented in this work was only directed to
improve the pedestrians’ safety.
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If the car does not receive any reply from the RSU after sending a certain number of interests, the
OBU issues an alert informing the driver about the unresponsiveness or inexistence of the RSU at the
intersection. In this case, the driver should take full control of the situation.

4.3. Flowcharts

The algorithms run by the RSU, pedestrians and vehicles in the push-based scenario are presented
next. The algorithms are shown in a simplified way, illustrating only the basic actions.

4.3.1. Flowchart of RSUs

Figure 6 shows the algorithm used by the RSUs in push mode. When a packet is received from a
pedestrian, the location conditions are checked and if these are valid, then the RSU saves the pedestrian
information (identification, current sidewalk, next sidewalk, crossroad heading) in the internal database.
Afterwards, the TMC is called to determine the traffic light signals, based on the cached information.
Then, the RSU broadcasts periodically the updated traffic light signals to the vehicles.
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Pedestrian: After starting up the smartphone application, when the pedestrian is at a distance to
the RSU of the intersection lower than a pre-defined value, then the smartphone sends periodically
a message to the RSU, containing the identification, current sidewalk, next sidewalk, and crossroad
heading of the pedestrian.

Vehicle: After starting up the VTLS application, the OBU of the vehicle listens for external
communication messages. Whenever it receives a message from the RSU of the intersection that the
vehicle is rolling to, and if the vehicle is at a distance to this RSU lower than a pre-defined value,
then the vehicle gets the set of traffic light signals contained in the received message and save it in the
internal cache. The vehicle determines if its route intersects a crosswalk with red light. If true, then the
vehicle stops at the intersection to let pass the pedestrians on those crosswalks. If false, the car driver
must follow the traffic rules to negotiate the intersection in presence of other vehicles.

5. VTLS Simulation Scenario and Results

To evaluate the VTLS using the pull, and the push-based modes, a set of simulations were carried
out on a grid road map with seven horizontal roads and seven vertical roads. The simulation setup is
presented in more detail next. Then, the results obtained in the simulations are shown and discussed.

5.1. Simulation Setup

The simulation setup regarding the used simulator, the road map configuration, the wireless
communications, the VTLS implementation, the simulation parameters, and the simulation runs are
presented in the following.

Simulator: It was used the simulator Veins-5.0, modified to allow pedestrian’s communications.
Veins is a vehicular network simulation framework that couples the mobility simulator SUMO-0.32.0
with a wireless network simulator built on the discrete event simulator OMNeT++. Veins has a
manager module to synchronize the mobility of the vehicles between the wireless network simulator
and SUMO (simulation of urban mobility).
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Road map: The simulation was carried on a grid road map with a size of 7 × 7. The length
of each road is around 200 m and each road connected to an intersection has a crossroad at that
intersection, as shown in Figure 8. The routes of the cars were generated with the SUMO traffic
generator (randomTrips.py). This tool was configured to generate a car every 1.0 s to run a minimum
trip distance of 2000 m with a maximum speed of 10.0 m/s. The pedestrians walk a maximum distance
of 2000 m with a speed between 1.1 and 1.4 m/s. Cars and pedestrians leave the simulation after
completing theirs trips.
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Communications: The vehicles and pedestrians used the same communication parameters.
All vehicles owned an OBU running WSMP over IEEE 802.11p. All pedestrians used a smartphone
also provided with WSMP over IEEE 802.11p. The transmission power was 20 mW, which corresponds
to a signal range of around 530 m. The total length of the MAC frames containing the messages was
166 bytes. The transmission bit rate was 6 Mbps, as this value has been generally assumed as the
default channel bit rate. No channel switching was used. The simple path loss propagation model was
used, and no buildings were considered in the simulation scenario.

Virtual semaphores: Simulations were carried out with twenty-five virtual semaphores, each one
placed at the center of the intersection with four roads. For simplicity, the yellow light was not
implemented in the semaphores.

Parameters: The values of the parameters used in the simulations are shown in Table 1. The name
of the parameter makes clear its meaning, except the parameters ndn_*, wsm_*, person_*, which are
explained in the following.
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Table 1. Parameterizations used in the simulated scenario.

Parameter Value Parameter Value

road grid size 7 × 7 ndn_car_dst_to_road_end 18 m

nr. of virtual semaphores 25 ndn_car_interest_mesg_period 0.5 s

road length 200 m ndn_rsu_interest_mesg_period 0.5 s

min. car trip distance 2000 m wsm_rsu_beacon_tx_period 0.5 s

max. pedestrian trip distance 1000 m wsm_person_mesg_period 0.5 s

road limit velocity 10 m/s person_dst_to_road_end 4 m

pedestrian maximum velocity 1.5 m/s person_dst_from_road_start 4 m

car acceleration 3 m/s2 physical thermal noise −110 dBm

car deceleration 10 m/s2 physical noise floor −98 dBm

simulation time per test 500 s physical minimum power level −85 dBm

car generation period 1 s wireless communication protocol WSMP/IEEE 802.11p

pedestrian generation period 0.26, 0.33, 0.44, 0.66, 1.32, 2.64 s transmission power 20 mW

number of simulation sets 35 transmission bit rate 6 Mbps

In the pull mode (NDN), when a car is at a distance to the road end lower than the value
specified in ndn_car_dst_to_road_end, it starts sending interests to the RSU with a periodicity of
ndn_car_interest_mesg_period seconds. The RSU sends interests to the pedestrians with a periodicity of
ndn_rsu_interest_mesg_period seconds. Only the pedestrians at a distance to the road end lower than
person_dst_to_road_end or at a distance from the road beginning lower than person_dst_from_road_start
reply to the interests. In this way, the RSU is able to know the pedestrians that are approaching
the intersection and those that have crossed the intersection and are leaving it. In the push mode,
when a pedestrian is at a distance to the road end lower than person_dst_to_road_end, the smartphone of
the pedestrian starts sending interests to the RSU with a periodicity of wsm_person_mesg_period
seconds. The RSU announces the state of the traffic lights to the cars with a periodicity of
wsm_rsu_beacon_tx_period seconds.

So, according to the parameters defined in Table 1, in the push mode, the pedestrians send a
message to the RSU every 500 ms, when they are at a distance lower than 4 m to the crosswalk of
the intersection. The RSU broadcasts to the nearby cars a message with the traffic light signals every
200 ms. In the pull mode (NDN), each RSU broadcasts an interest to the pedestrians every 500 ms.
The pedestrian replies to the received interest when it is positioned at a distance lower than 4 m to the
crosswalk of the intersection. Whenever a car is at a distance lower than 18 m to the crosswalk of the
intersection, it sends an interest to the RSU every 500 ms asking for the traffic light signals.

Simulation runs. The simulations were ran during 500 s for each one of the three tested
modes—notls, push, and pull, where notls (no TLS) means the absence of virtual traffic light signals,
push refers to the push-based mode, and pull to the push-based mode (implemented by NDN).
Six distinct ratios R of “number of pedestrian/number of cars” were considered: 2.5, 2.0, 1.5, 1.0, 0.5,
and 0.25. For example, a ratio of 2.5 means that the number of pedestrians walking in the sidewalks
is 2.5 times higher than the number of cars rolling in the map roads. The ratio R becomes relatively
stable after a certain time (~150 s). The results were collected during this stabilized period, which
is between 150 s and 500 s. In all simulations, a car enters in the simulation every 1.0 s. In order to
obtain the specified ratios, the pedestrian generation period was respectively 0.26, 0.33, 0.44, 0.66, 1.32,
and 2.64 s. For example, the generation pedestrian period of 0.26 means that a pedestrian enters in the
simulation every 0.26 s. The pedestrian generation period (T) is related to the ratio (R) approximately
by the equation: T = 0.66/R.

Eighteen (3 × 6) simulation runs were ran to build one set of results. The trips of cars and
pedestrians were chosen randomly at the beginning of each set of simulations. However, the trips
taken by the pedestrians and the cars do not change for each set of test modes (notls, push, pull) run in
the simulation at a certain ratio R.
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Simulations were run first without using the VTLS, i.e., it only used the native SUMO strategy to
let pass pedestrians on the crosswalks, which have always priority over the cars in the crosswalks.
This simulation sets a priori the optimal situation for the cars, in terms of lowest waiting time,
to let the pedestrians pass in the intersections. Then, simulations were run using the push and the
pull-based modes with the same traffic, and pedestrian mobility traces used in the run without VTLS.
The simulations using the push and the pull-based modes were run with the native SUMO strategy
turned off. In this way, the traffic at the intersections is only controlled by the VTLS in order to let the
pedestrian pass safely in the crosswalks.

The results shown next represent the average values obtained after running 35 sets of simulations,
where each set includes the notls, push, and pull test modes. So, these 35 sets of simulations corresponds
to 35 × (3 × 6) individual simulation runs, and 35 × 6 distinct pedestrians, and cars trips.

5.2. Results

This section presents the results obtained for the following metrics: traffic queue size, car trip
distance, car stop time, and communication metrics: sent packets, and packet loss. The traffic queue
size is the number of cars queued per road at the intersections. The car trip distance is the distance ran
by all cars, i.e., the summation of the individual car trip distances, in kilometers. The car stop time is
the total stopped time of all cars, i.e., the summation of the individual car stopped times, in minutes.
The communication metrics are explained later.

Excepting the communication metrics, only the results obtained for the cars are presented next.
The pedestrians were not considered in the results, because the virtual semaphores do not control the
pedestrians. In the graphics presented next, pull is synonymous of pull-based mode, push means
push-based mode, and notls denotes that no virtual semaphores were used. The ratio R is defined as:
R = number of pedestrians/number of cars. Recall that the notls mode was used only as reference,
because it indicates a priori the optimal performance regarding the mobility of the cars.

To have an idea of the number of pedestrians crossing the intersections, Figure 9 shows, for different
ratios R, the maximum, average, and minimum number of persons that crossed the twenty-five
intersections with RSUs during a simulation run of five hundred seconds. As in the simulation
scenario the cars always give way to the pedestrians on the crosswalks (i.e., a pedestrian never stops
at a crosswalk to give way to a car), the graphics are the same for notls, push, and pull test modes,
because the same mobility trace of pedestrians is used in these three test modes.
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5.2.1. Average and Maximum Traffic Queue Sizes

Figure 10 shows the maximum, and average traffic queue sizes found at each road connected to
the twenty-five intersections with RSUs. These results were obtained immediately before the end of
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the simulation (i.e., t ≈ 500 s). The average traffic queue sizes show no significant difference between
the push and pull modes. When R is above 1, the average traffic queue sizes become larger with the
use of VTLS than without using it.Information 2020, 11, x FOR PEER REVIEW 15 of 20 
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Figure 11. Average car trip distance, normalized to 100% = 1483.4 m. 
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106.4 s. Once again, there is no significant difference between the push and pull modes. Considering 
the results obtained for the trip distance, this is an expected result. Indeed, the stop time of the cars 
increases with the number of pedestrians, since the cars tend to be longer stopped in the crossing to 
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The results also show that, in the three test modes, there were roads at the intersections with
queue sizes of eight cars at least.

5.2.2. Car Trip Distance

Figure 11 shows the average distance rolled by each car during the simulation. The graphic is
normalized to 100%, which corresponds to 1483.4 m. As expected, the best results were obtained without
using the VTLS, where the cars reached a longer distance than the cars controlled by virtual traffic
light systems. Moreover, the difference between the push and pull modes is negligible. As expected,
the distance travelled by the cars decreases with the increment of the number of pedestrians, since the
cars tend to be stopped longer in the crossing to let pass the pedestrians. Such situation becomes more
notorious with the use of VTLS than without using any VTLS. This shows that the algorithms used by
VTLS are less efficient than the one used by SUMO in terms of traffic fluidity at the intersections.

Information 2020, 11, x FOR PEER REVIEW 15 of 20 

 

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

12

14

max_notls
max_push
max_pull
avg_notls
avg_push
avg_pull

RATIO R = NR. PERSONS / NR. CARS

N
U

M
BE

R
  O

F 
 C

AR
S

 
Figure 10. Maximum, and average traffic queue sizes per road at the intersections. 

5.2.2. Car Trip Distance 

Figure 11 shows the average distance rolled by each car during the simulation. The graphic is 
normalized to 100%, which corresponds to 1483.4 m. As expected, the best results were obtained 
without using the VTLS, where the cars reached a longer distance than the cars controlled by virtual 
traffic light systems. Moreover, the difference between the push and pull modes is negligible. As 
expected, the distance travelled by the cars decreases with the increment of the number of 
pedestrians, since the cars tend to be stopped longer in the crossing to let pass the pedestrians. Such 
situation becomes more notorious with the use of VTLS than without using any VTLS. This shows 
that the algorithms used by VTLS are less efficient than the one used by SUMO in terms of traffic 
fluidity at the intersections. 

0 0.5 1 1.5 2 2.5 3
0

10

20

30

40

50

60

70

80

90

100

notls
push
pull

RATIO R = NR. PERSONS / NR. CARS

N
O

R
M

AL
IZ

ED
  T

R
IP

  D
IS

TA
N

C
E 

 (%
)

 
Figure 11. Average car trip distance, normalized to 100% = 1483.4 m. 
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5.2.3. Car Stop Time

Figure 12 shows the average time that each car was stopped at the intersections or jammed in the
traffic queues during the simulations. The graphic is normalized to 100%, which corresponds to 106.4 s.
Once again, there is no significant difference between the push and pull modes. Considering the results
obtained for the trip distance, this is an expected result. Indeed, the stop time of the cars increases
with the number of pedestrians, since the cars tend to be longer stopped in the crossing to let pass the
pedestrians. This situation becomes more notorious with the use of VTLS than without using it.
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5.3. Communication Metrics

The results obtained for the number of sent packets and packet loss are presented and discussed
next. The curves for the case of using no VTLS are not shown in the graphics, because in this test mode
the number of packets sent by the nodes is always zero.

5.3.1. Sent Packets

Figure 13 shows the total number of packets sent by all nodes (cars, pedestrians, RSUs), as well
as the packets sent partially by the pedestrians, cars, and RSUs. The graphic is normalized to 100%,
which corresponds to 190,742 packets. It observed that, globally, the pull mode generated, in average,
3.9 (±0.6) times more packets than the push mode in all ratios R.
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 Figure 13. Total sent packets, and packets sent partially by pedestrians, cars, and RSUs, normalized to
100% = 190,742 packets.
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The results show that in the pull mode, the RSUs are the nodes that generate more packets,
followed by the cars. In the push mode, the pedestrians are the nodes that generate more packets,
followed by the RSUs, and the cars generate no communication traffic. In the push mode, the number
of packets sent by the RSU does not change with the increment of the ratio R.

5.3.2. Packet Loss

The signal-to-interference-plus-noise ratio (SNIR) lost packets indicates the number of lost packets
due to bit errors, caused by packet collisions or noise interferences at the destination receivers.
A TxRx lost packet is a packet that was not transmitted neither received, because a packet arrived
to the wireless interface precisely when another packet was being sent by this wireless interface. So,
the TxRx parameter evaluates how often a wireless interface is receiving and transmitting packets at
the same time, causing the loss of both packets. The total number of lost (unreceived) packets by a
node at the lower communication layers is the sum of the total SNIR lost packet plus the TxRx lost
packets in that node. The percentage of lost packets by SNIR and TxRx problems is calculated by
the expression: (SNIRlostPkts + TxRxLostPkts)/(SNIRlostPkts + TxRxLostPkts + recvdPkts) * 100%,
where SNIRlostPkts is the number of SNIR lost packets, TxRxLostPkts is the number of TxRx lost
packets, and recvdPkts is the number of packets received by the wireless node. This metric can be used
as an indirect indication of the bandwidth occupancy of the wireless channel, in that the higher is its
value, the more occupied is the wireless channel used by the wireless communication modules.

Figure 14 shows the average percentage of the SNIR + TxRx lost packets of all nodes (pedestrians,
cars, RSUs), using the push, and pull modes. The results show indirectly that the wireless channel
bandwidth globally available in the simulated scenario is more occupied in pull mode than in push
mode. Indeed, the difference in the average SNIR + TxRx packet loss between the pull and push mode
increases with the ratio R, from 1.3 percentage points (p.p.) (R = 0.25) to 1.9 p.p. (R = 2.5). The results
also revealed that the packet losses were almost all caused by SNIR problems, as the losses caused by
TxRx problems were really quite negligible (<0.002%).
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5.3.3. Application Message Loss

The average percentage of messages lost at the application layer was calculated too. For simplicity,
this metric considers only the messages sent by pedestrians and cars that failed to reach the application
layer of the RSUs. The messages sent by the RSUs that failed to reach the application layers
of the pedestrians and cars were not considered. The percentage of lost messages is calculated
by the expression: (sentPktPed + sentPktCar − recvdPktRSU)/(sentPktPed + sentPktCar) * 100%,
where sentPktPed and sentPktCar are the total number of messages sent respectively by all pedestrians
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and cars, and recvdPktRSU is the total number of messages received by all RSUs from the pedestrians
and the cars, and not from other RSUs. So, in push mode, this metric indicates the messages lost by
the RSUs from the nearby pedestrians. In pull mode, it measures the messages lost by the RSUs from
the nearby pedestrians and cars. The messages received by the RSU from pedestrians and cars out of
range are ignored in this metric.

Figure 15 shows the results of the average message loss, in percentage, obtained with the push,
and pull modes. The average application message lost is lower in the push mode than in the pull mode.
This result is somewhat expected taking in consideration the results obtained for the SNIR + TxRx lost
packets. The difference in the average message loss between the pull and push mode increases with
the ratio R, from 0.031 p.p. (R = 0.25) to 0.19 p.p. (R = 2.5).
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6. Conclusions

When compared with the push mode, the pull mode (implemented by NDN) revealed similar
performance in all metrics, excepting the communication metrics (sent packets and packet loss).
Indeed, when compared to the push mode, both the SNIR + TxRx packet loss and the application
message loss are higher with the pull mode, with maximum differences of 1.9 p.p. and 0.19 p.p.,
respectively, obtained for the ratio R (number of pedestrian/number of cars) equal to 2.5. Comparatively
to the notls mode, which defines a priori the optimal performance regarding the mobility of the cars,
the performances of the push, and pull modes are particularly worst for the stop time and the car trip
distance of the cars, when the ratio R is above 0.5. Regarding the traffic queue sizes, no significant
difference was observed between the three test modes (notls, pull, push).

The results show that the push mode presents lower packet loss and generates fewer packets,
and consequently occupies less bandwidth than the pull mode. In fact, for the considered metrics,
the virtual semaphore implemented with the pull mode presents no advantage when compared with
the push mode. However, this does not mean that the pull mode should not be considered to implement
a VTLS. Indeed, apart from the communication metrics, the performances obtained with the pull and
push modes are very similar. Moreover, in pull mode, the performance, in terms of packet collisions,
may be improved if the nearby RSUs could somehow regulate the transmission of interests, so that
these are sent out of phase to the pedestrians.

This work has considered only the implementation of a VTLS directed to the pedestrian’s safety.
However, it would be convenient that the VTLS also takes the vehicles safety in consideration. This issue
will be tackled in a future work.
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