
 information

Article

A Secure Steganographic Channel Using DNA Sequence Data
and a Bio-Inspired XOR Cipher

Amal Khalifa

����������
�������

Citation: Khalifa, A. A Secure

Steganographic Channel Using DNA

Sequence Data and a Bio-Inspired

XOR Cipher. Information 2021, 12, 253.

https://doi.org/10.3390/info12060253

Academic Editor: Corinna Schmitt

Received: 21 May 2021

Accepted: 15 June 2021

Published: 18 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Computer Science Department, Purdue University Fort Wayne, Fort Wayne, IN 46805, USA; khalifaa@pfw.edu

Abstract: Secure communication is becoming an urgent need in a digital world where tera bytes of
sensitive information are sent back and forth over public networks. In this paper, we combine the
power of both encryption and Steganography to build a secure channel of communication between
two parties. The proposed method uses DNA sequence data as a cover to hide the secret message.
The hiding process is performed in phases that start with a complementary substitution operation
followed by a random insertion process. Furthermore, and before the hiding process takes place, the
message is encrypted to secure its contents. Here, we propose an XOR cipher that is also based on
how DNA data is digitally represented and stored. A fixed-size header is embedded right before
the message itself to facilitate the blind extraction process. The experimental results showed an
outstanding performance of the proposed technique, in comparison with other methods, in terms of
capacity, security, as well as blind extraction.

Keywords: information hiding; DNA sequence data; encryption; XOR cipher; blind extraction;
multi-nominal model

1. Introduction

Cryptography has been recognized as one of the oldest and most effective security
tactics. It relies on transforming the content of the data being communicated to make it
incomprehensible for everyone except the target recipient. Hence, all encryption algorithms
require the sender and receiver to agree on a secret key to facilitating the decryption process.
Therefore, if a good key management policy is not in place, the secrecy of the data can be
compromised. Usually, the longer the key, the harder is the cipher to break. However, with
the advances in computers and computation, cryptanalysis techniques made it impossible
to claim that any encryption technique is 100% secure.

On the other hand, steganography provides a wide set of methods that hide the secret
message into some cover media to achieve secure and undetectable communication. Unlike
cryptography, the structure of the message is not changed, instead, it is embedded into
the stego-media which cannot be easily distinguished from the original cover. This is
considered one of the great advantages of using steganographic techniques, as it hides
the very existence of the communication making it very difficult for an attacker to suspect
its contents. An even better strategy is to encrypt the data before embedding them. In
this case, even if the steganographic shield is exposed, the attacker still needs to crack the
encryption code to reveal the contents of the secret message.

Simmon [1] proposed a model for a steganographic system that mainly consists of
two modules: embedding and extraction. As shown in Figure 1, the embedding module is
used by the sender to hide the message into some cover-object using a secret key. On the
other side of the communication, the extraction module is used by the receiver to retrieve
the secret message from the transmitted stego-object. This is usually done using the same
key used for hiding. With respect to extraction, steganographic methods can be classified
into: blind and cover-escrow. Cover-escrow methods require the original cover-object to
successfully extract the hidden information while blind methods do not. That is why blind

Information 2021, 12, 253. https://doi.org/10.3390/info12060253 https://www.mdpi.com/journal/information

https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-2054-7869
https://doi.org/10.3390/info12060253
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/info12060253
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info12060253?type=check_update&version=2

Information 2021, 12, 253 2 of 14

techniques are more favorable since only the secret key needs to be exchanged between the
sender and the receiver before the actual communication takes place.

Information 2021, 12, x FOR PEER REVIEW 2 of 14

sified into: blind and cover-escrow. Cover-escrow methods require the original cover-ob-

ject to successfully extract the hidden information while blind methods do not. That is

why blind techniques are more favorable since only the secret key needs to be exchanged

between the sender and the receiver before the actual communication takes place.

Figure 1. The general model of a Steganographic channel.

As far as the cover media is concerned, classical steganography used physical objects

such as wooden tablets to conceal information [2]. However, modern techniques rely on

the redundancy in digital covers such as: text [3], music tracks [4], images [5], videos [6],

3D object models [7], and TCP/IP packet headers [8]. With the availability and ease of

access to public genomic databases, Deoxyribonucleic Acid (DNA) sequence data recently

joined the list of prospective covers serving a wide spectrum of purposes.

After proven to be practically unbreakable [9], DNA-based steganography is gaining

more attention providing unconventional security solutions with applications ranging

from key encapsulation for cryptosystems [10] to long-term data storage [11]. On one ex-

treme, some methods were designed to hide information in the genome of living organ-

isms for the purpose of copyright protection [12,13]. Genetically engineered organisms

such as transgenic crops can be protected by a watermark hidden inside their DNA se-

quence data without affecting the functionality of the host organism [14]. However,

changing the genomic structure of an organism is not as easy as it looks. The embedded

data can evolve through the natural selection process. Some techniques proposed encrypt-

ing the message before hiding and using block-sum checking to detect errors in mutations

[15].

On the other hand, more methods relied on the way DNA data is stored in computer

files for the purpose of secure communication. In [16], the authors proposed three differ-

ent cover-escrow methods for embedding a secret message in a reference sequence. De-

spite the high robustness of the proposed techniques to brute-force attacks, the reference

sequence is randomly modified without any consideration of its biological functionality.

To address this issue, the authors of [17] introduced a hiding method that exploits the

codon redundancy feature of DNA to hide a message into a sequence without affecting

the structure of the protein it encodes for. Furthermore, an extension to the methods in-

troduced in [16] was proposed in [18] to facilitate blind extraction. The method succeeded

to substitute the bases of the cover sequence with an encrypted message using a generic

complementary rule. Subsequently, the method employs a self-embedding algorithm that

inserts the resultant sequence into the reference one in a random fashion. Another modi-

fication to the insertion method [16] was proposed in [19] where the binary encoded mes-

sage is divided into 8-bit long segments that are successively XORed using a key to cipher

the message before embedding. In [20] the authors described a reversible hiding technique

that uses multilevel histogram shifting where the cover sequence is coded into symbols

Figure 1. The general model of a Steganographic channel.

As far as the cover media is concerned, classical steganography used physical objects
such as wooden tablets to conceal information [2]. However, modern techniques rely on
the redundancy in digital covers such as: text [3], music tracks [4], images [5], videos [6],
3D object models [7], and TCP/IP packet headers [8]. With the availability and ease of
access to public genomic databases, Deoxyribonucleic Acid (DNA) sequence data recently
joined the list of prospective covers serving a wide spectrum of purposes.

After proven to be practically unbreakable [9], DNA-based steganography is gaining
more attention providing unconventional security solutions with applications ranging from
key encapsulation for cryptosystems [10] to long-term data storage [11]. On one extreme,
some methods were designed to hide information in the genome of living organisms for
the purpose of copyright protection [12,13]. Genetically engineered organisms such as
transgenic crops can be protected by a watermark hidden inside their DNA sequence
data without affecting the functionality of the host organism [14]. However, changing the
genomic structure of an organism is not as easy as it looks. The embedded data can evolve
through the natural selection process. Some techniques proposed encrypting the message
before hiding and using block-sum checking to detect errors in mutations [15].

On the other hand, more methods relied on the way DNA data is stored in computer
files for the purpose of secure communication. In [16], the authors proposed three different
cover-escrow methods for embedding a secret message in a reference sequence. Despite the
high robustness of the proposed techniques to brute-force attacks, the reference sequence is
randomly modified without any consideration of its biological functionality. To address this
issue, the authors of [17] introduced a hiding method that exploits the codon redundancy
feature of DNA to hide a message into a sequence without affecting the structure of the
protein it encodes for. Furthermore, an extension to the methods introduced in [16] was
proposed in [18] to facilitate blind extraction. The method succeeded to substitute the bases
of the cover sequence with an encrypted message using a generic complementary rule.
Subsequently, the method employs a self-embedding algorithm that inserts the resultant
sequence into the reference one in a random fashion. Another modification to the insertion
method [16] was proposed in [19] where the binary encoded message is divided into
8-bit long segments that are successively XORed using a key to cipher the message before
embedding. In [20] the authors described a reversible hiding technique that uses multilevel
histogram shifting where the cover sequence is coded into symbols represented by integer
values. More recent research investigated using DNA steganography and PCR technology
for the purpose of quantum key distribution (QKD) [21].

In this paper, we present a blind scheme for DNA-based Steganography. As shown in
Figure 2, the proposed method consists of two main processes: the hiding process and the

Information 2021, 12, 253 3 of 14

extraction process. The first one is carried out by the sender while the latter is performed
by the receiver where both should share a secret key in advance. This key is used in
different steps of the hiding process to make sure that only the intended recipient will be
able to retrieve the hidden message. The method we propose here is an extension of the
work published by the author in [18]. The main modification is centered around the use
of a different cipher to encrypt the secret message before hiding. The original research
used a DNA-based Playfair ciphering that requires adding some extra bits to the message
data which reduces the hiding capacity of the technique. Instead, we propose using a
DNA-based XOR cipher with a key that is generated randomly based on the properties
of the cover sequence. In addition, the original research used a palindromic motif from
the cover sequence as a signal to find the end of the embedded message. While here, we
propose embedding a fixed-size header to store the size of the hidden message.

Information 2021, 12, x FOR PEER REVIEW 3 of 14

represented by integer values. More recent research investigated using DNA steganogra-

phy and PCR technology for the purpose of quantum key distribution (QKD) [21].

In this paper, we present a blind scheme for DNA-based Steganography. As shown

in Figure 2, the proposed method consists of two main processes: the hiding process and

the extraction process. The first one is carried out by the sender while the latter is per-

formed by the receiver where both should share a secret key in advance. This key is used

in different steps of the hiding process to make sure that only the intended recipient will

be able to retrieve the hidden message. The method we propose here is an extension of

the work published by the author in [18]. The main modification is centered around the

use of a different cipher to encrypt the secret message before hiding. The original research

used a DNA-based Playfair ciphering that requires adding some extra bits to the message

data which reduces the hiding capacity of the technique. Instead, we propose using a

DNA-based XOR cipher with a key that is generated randomly based on the properties of

the cover sequence. In addition, the original research used a palindromic motif from the

cover sequence as a signal to find the end of the embedded message. While here, we pro-

pose embedding a fixed-size header to store the size of the hidden message.

Figure 2. The proposed Steganographic Channel (a) The Hiding Module (b) The Extraction Module.

(a)

(b)

Cover DNA

The Sender

Message

DNA

Stego-DNA

Multinominal

Model

Cipher DNA

Complemetary

Base Substitution

Random Insertion

Cover DNA

Stego-DNA

Multinominal

Model

Inverse

Substitution

Random Splitting

The Receiver

Cipher DNA

Message

DNA

Figure 2. The proposed Steganographic Channel (a) The Hiding Module (b) The Extraction Module.

The rest of the paper is organized as follows: Section 2 gives a brief overview of some
preliminary concepts that are required to build a foundation for the proposed technique.
Section 3 describes the details of the proposed method in terms of its embedding and
the extraction modules. In Section 4, the method is tested using several DNA sequence
data that were pulled from a public database. Section 5 analyzes the performance of the
proposed approach in terms of hiding capacity and robustness and compares these with
some existing techniques. Finally, conclusions are summarized in Section 6.

Information 2021, 12, 253 4 of 14

2. Preliminaries
2.1. DNA

Located in the nucleus, DNA stores the genetic information that is responsible for the
development and functioning of all known living organisms and some viruses. With a
unique double helix structure, the DNA molecule is made of two strands of nucleotides
linked by hydrogen bonding between complementary base pairs. A nucleotide base can be
either purine: adenine (A) and guanine (G), or pyrimidine: thymine (T), and cytosine (C).
As shown in Figure 3 purine base can only bond with its complementary pyrimidine base.
This unique complementary rule pairs (A) and (G) with (T) and (C), respectively [22].

Information 2021, 12, x FOR PEER REVIEW 4 of 14

The rest of the paper is organized as follows: Section 2 gives a brief overview of some

preliminary concepts that are required to build a foundation for the proposed technique.

Section 3 describes the details of the proposed method in terms of its embedding and the

extraction modules. In Section 4, the method is tested using several DNA sequence data

that were pulled from a public database. Section 5 analyzes the performance of the pro-

posed approach in terms of hiding capacity and robustness and compares these with some

existing techniques. Finally, conclusions are summarized in Section 6.

2. Preliminaries

2.1. .DNA

Located in the nucleus, DNA stores the genetic information that is responsible for the

development and functioning of all known living organisms and some viruses. With a

unique double helix structure, the DNA molecule is made of two strands of nucleotides

linked by hydrogen bonding between complementary base pairs. A nucleotide base can

be either purine: adenine (A) and guanine (G), or pyrimidine: thymine (T), and cytosine

(C). As shown in Figure 3 purine base can only bond with its complementary pyrimidine

base. This unique complementary rule pairs (A) and (G) with (T) and (C), respectively

[22].

Figure 3. DNA Structure.

Even though DNA bases in nature pair with their complements in a specific way, the

authors in [16] proposed an interesting approach to define generic complementary rules

for DNA data. According to their definition, a legal complementary rule should satisfy:

x ≠ C(x) ≠ C(C(x)) ≠ C(C(C(x))) ≠ C(C(C(C(x)))) (1)

where x refers to the DNA alphabet and C is the complement function. Taking this a step

further, the authors in [23] defined a double-base complementary rule where, for example,

the complement of AA is TC.

Figure 3. DNA Structure.

Even though DNA bases in nature pair with their complements in a specific way, the
authors in [16] proposed an interesting approach to define generic complementary rules
for DNA data. According to their definition, a legal complementary rule should satisfy:

x 6= C(x) 6= C(C(x)) 6= C(C(C(x))) 6= C(C(C(C(x)))) (1)

where x refers to the DNA alphabet and C is the complement function. Taking this a step
further, the authors in [23] defined a double-base complementary rule where, for example,
the complement of AA is TC.

Looking at DNA sequence data from a computational perspective would define it as
a string over the alphabet {A, C, G, T}. Hence, there should be a rule that can be used to
convert those characters into binary. Since we have only four different nucleotide letters or
symbols, we can easily represent them using two bits. In this case, as shown in Figure 4,
the bases A; C; G and T are mapped into 00, 01, 10, and 11, respectively. Thus, the sequence
AGTAGTCATCAT, for example, will be encoded into 001011001011010011100011. Notice
that this is only one rule out of the 24 (4!) possible binary encoding rules. With the help of
such rules, it is possible to convert DNA sequence data into binary format and vice versa.

Information 2021, 12, 253 5 of 14

Information 2021, 12, x FOR PEER REVIEW 5 of 14

Looking at DNA sequence data from a computational perspective would define it as

a string over the alphabet {A, C, G, T}. Hence, there should be a rule that can be used to

convert those characters into binary. Since we have only four different nucleotide letters

or symbols, we can easily represent them using two bits. In this case, as shown in Figure

4, the bases A; C; G and T are mapped into 00, 01, 10, and 11, respectively. Thus, the se-

quence AGTAGTCATCAT, for example, will be encoded into 001011001011010011100011.

Notice that this is only one rule out of the 24 (4!) possible binary encoding rules. With the

help of such rules, it is possible to convert DNA sequence data into binary format and vice

versa.

Figure 4. A DNA digital encoding rule.

2.2. The Multinomial Model

DNA sequence analysis usually requires applying statistical and mathematical tech-

niques using probabilistic models. The simplest model of DNA sequences is the multino-

mial distribution which assumes that the nucleotide bases in the sequence independently

exist and are identically distributed [24]. In other words, the base composition of a DNA

sequence follows a multinomial probability distribution with four parameters pA, pC, pG,

pT where px refers to the frequency of the base x in the sequence such that pA+ pC+ pG+

pT = 1. Knowing these parameters, for any given sequence, makes it possible to randomly

generate a sequence by choosing a base for each position in that sequence.

To help you visualize this process, imagine spinning the arrow in the center of the

wheel in Figure 5. With each spin, the arrow will land on one specific base depending on

the distribution of their probability. The larger the portion, the higher the probability and

vice versa. Spinning this wheel so many times will eventually generate a random sequence

that has a similar base composition as the input sequence. following the same approach,

Algorithm 1 lists the steps needed to generate a random DNA sequence of a certain length

using a multinomial model. Notice that we need to find a way to map the value returned

from the standard random number generator, which follows a uniform distribution, to

the proportion of values determined by the parameters of the multinominal distribution

of the input sequence.

Figure 5. Random selection of a nucleotide base according to a multinominal model.

Base Binary code

A 00
C 01

G 10
T 11

A

C

T G

Figure 4. A DNA digital encoding rule.

2.2. The Multinomial Model

DNA sequence analysis usually requires applying statistical and mathematical tech-
niques using probabilistic models. The simplest model of DNA sequences is the multino-
mial distribution which assumes that the nucleotide bases in the sequence independently
exist and are identically distributed [24]. In other words, the base composition of a DNA
sequence follows a multinomial probability distribution with four parameters pA, pC, pG,
pT where px refers to the frequency of the base x in the sequence such that pA+ pC+ pG+
pT = 1. Knowing these parameters, for any given sequence, makes it possible to randomly
generate a sequence by choosing a base for each position in that sequence.

To help you visualize this process, imagine spinning the arrow in the center of the
wheel in Figure 5. With each spin, the arrow will land on one specific base depending on
the distribution of their probability. The larger the portion, the higher the probability and
vice versa. Spinning this wheel so many times will eventually generate a random sequence
that has a similar base composition as the input sequence. following the same approach,
Algorithm 1 lists the steps needed to generate a random DNA sequence of a certain length
using a multinomial model. Notice that we need to find a way to map the value returned
from the standard random number generator, which follows a uniform distribution, to the
proportion of values determined by the parameters of the multinominal distribution of the
input sequence.

Algorithm 1. Generate Sequence

Input: Seq: A pattern DNA sequence
Seed: The seed value for the random number generator

Output: randSeq: A random DNA sequence
1. Compute the multinomial parameters

1.1 let L be the length of Seq
1.2 Count the bases in Seq as countA, countC, countG, countT
1.3 Compute the probabilities as:

pA = countA/L
pC = countC/L
pG = countG/L
pT = countT/L

2. Generate the sequence
2.1 Compute the cumulative probabilities as:

cpA = pA
cpC = cpA + pC
cpG = cpC + pG
cpT = cpG + pT

2.2 Initialize the random number generator with Seed.
2.3 for i = 1 to L

Generate a random number (b) between 0 and 1
if b < cpA then randSeqi = A
else if b < cpC then randSeqi = C
else if b < cpG then randSeqi = G
else randSeqi = T

end
3. return randSeq

Information 2021, 12, 253 6 of 14

Information 2021, 12, x FOR PEER REVIEW 5 of 14

Looking at DNA sequence data from a computational perspective would define it as

a string over the alphabet {A, C, G, T}. Hence, there should be a rule that can be used to

convert those characters into binary. Since we have only four different nucleotide letters

or symbols, we can easily represent them using two bits. In this case, as shown in Figure

4, the bases A; C; G and T are mapped into 00, 01, 10, and 11, respectively. Thus, the se-

quence AGTAGTCATCAT, for example, will be encoded into 001011001011010011100011.

Notice that this is only one rule out of the 24 (4!) possible binary encoding rules. With the

help of such rules, it is possible to convert DNA sequence data into binary format and vice

versa.

Figure 4. A DNA digital encoding rule.

2.2. The Multinomial Model

DNA sequence analysis usually requires applying statistical and mathematical tech-

niques using probabilistic models. The simplest model of DNA sequences is the multino-

mial distribution which assumes that the nucleotide bases in the sequence independently

exist and are identically distributed [24]. In other words, the base composition of a DNA

sequence follows a multinomial probability distribution with four parameters pA, pC, pG,

pT where px refers to the frequency of the base x in the sequence such that pA+ pC+ pG+

pT = 1. Knowing these parameters, for any given sequence, makes it possible to randomly

generate a sequence by choosing a base for each position in that sequence.

To help you visualize this process, imagine spinning the arrow in the center of the

wheel in Figure 5. With each spin, the arrow will land on one specific base depending on

the distribution of their probability. The larger the portion, the higher the probability and

vice versa. Spinning this wheel so many times will eventually generate a random sequence

that has a similar base composition as the input sequence. following the same approach,

Algorithm 1 lists the steps needed to generate a random DNA sequence of a certain length

using a multinomial model. Notice that we need to find a way to map the value returned

from the standard random number generator, which follows a uniform distribution, to

the proportion of values determined by the parameters of the multinominal distribution

of the input sequence.

Figure 5. Random selection of a nucleotide base according to a multinominal model.

Base Binary code

A 00
C 01

G 10
T 11

A

C

T G

Figure 5. Random selection of a nucleotide base according to a multinominal model.

2.3. The XOR Cipher

The XOR cipher is an additive cipher that uses a randomly generated key and the
XOR logic to encrypt a message. During the decryption process, the same key should be
used and XOR operation is reapplied to remove the cipher [25]. The XOR cipher offers the
highest level of security when the random key is as long as the message itself. In this case,
it is almost impossible for the attacker to generate and try random keys until the correct
one is found. This property makes this cipher unbreakable in theory.

The logical exclusive disjunction (XOR) operation accepts two binary digits as inputs
and the output is true when the inputs differ. Table 1 shows the truth table for the bitwise
XOR operation. As an extension of this concept, we propose using the XOR operation on
the DNA alphabet. The truth table is given in Table 2. Notice that since the truth table
should list all the possible permutations of input values, the 4 DNA bases result in 16
different cases.

Table 1. Bit-Wise XOR operation.

a b a XOR b

0 0 0
0 1 1
1 0 1
1 1 0

Table 2. DNA base-wise XOR operation.

a b a XOR b

A A A
A C C
A T T
A G G
C A C
C C A
C T G
C G T
T A T
T C G
T T A
T G C
G A G
G C T
G T C
G G A

Information 2021, 12, 253 7 of 14

3. The Steganographic Approach

The following subsections discuss in detail the two processes of the proposed stegano-
graphic channel. The main steps of both the Hiding and Recovery processes are summa-
rized in Figure 2.

3.1. Message Hiding Module

At the beginning of the hiding process, the message is encrypted using the XOR cipher.
As mentioned in Section 2.3, the cipher expects two inputs: the plain text and a cipher key.
Here, we propose generating the cipher key based on the multinominal model parameters
of the cover sequence using Algorithm 1. Using that generated key, the secret message is
encrypted into a DNA sequence that will then be substituted into the bases of the cover
sequence using a generic complementary rule.

During the substitution phase, the bases of the cover sequence are modified based
on the content of the encrypted message. As shown in Algorithm 2, the cover base is
substituted with its first, second, or third complement if the encrypted message base is C, G,
or T, respectively. In case the encrypted message base is A, the cover base is left unchanged.
The implementation of this step requires a valid complement function (C). In addition,
we also choose to randomize the order in which the cover bases are visited during this
process. This is done by generating a pseudo random permutation of the bases of the cover
sequence. This permutation is controlled by a seed value that is derived from the secret
key. Notice that a header that stores the length of the encrypted message; in bases, is also
hidden into the cover sequence following the same approach. Here, we suggest using a
fixed length header in order to facilitate its detection and retrieval during the extraction
process. For example, using a 10-base long header will be enough to represent an integer
value as large as 220 − 1 since each base represents two bits.

Once header information as well as all the encrypted message bases are hidden into the
cover sequence, a random splicing process is applied on both the original cover sequence
and the substituted one. Once more, the randomization process is controlled by two values
that are derived from the secret key. This is followed by an insertion process that merges
both sequences together to form the stego-sequence [16].

3.2. Message Recovery Module

The steps to be followed during the extraction process need to reverse those that
were used for hiding. As listed in Algorithm 3, we need to start by splitting the stego-
sequence in order to separate the original cover sequences from the substituted ones.
Once the segments of both sequences are extracted and concatenated, the bases of the two
sequences are compared to extract the ciphered message. This is done by comparing the
corresponding bases of the sequences to reverse the substitution operation and determine
the embedded message base. For example, if the two corresponding bases from the cover
and the substituted cover sequences are the same then the message base was A. However,
if one of the bases is the complement of the other, then we can say that the embedded
message bit was C and so on.

Notice that although the two sequences have the same length, this comparison process
stops as soon as the message ends. This depends on the message length information
extracted from the header that proceeds the message itself. Furthermore, the header is
embedded using the same substitution operation, hence it needs to be retrieved the same
way the message bases are extracted. The following step will then take care of decrypting
the retrieved ciphered message by reapplying the XOR cipher. Once more, the key to be
used in the decryption process will be generated using the multinominal model listed in
Algorithm 1 where the cover is used as the pattern sequence.

Information 2021, 12, 253 8 of 14

Algorithm 2. Message Hiding

Input: Cover: reference DNA sequence, used as a cover media
Msg: secret message
Key: secret key-word

Output: Stego: Stego-DNA sequence
1. Message Encryption

1.1 Encode Msg into a DNA sequence MsgDNA using a coding rule.
1.2 Let seed be a value derived from Key.
1.3 Generate Keyxor using multinominal model where Cover is the pattern sequence

and seed as the seed value.
1.4 Let m = |MsgDNA|
1.5 for i = 1 to m

Msgcph[i] = MsgDNA[i] XOR Keyxor[i]
end

2. Header Preparation
2.1 Let m = |Msgcph|
2.2 Let Head be the DNA representation of the binary value of m.
2.3 Concatenate Head with Msgcph.

3. The Substitution Phase:
3.1 Let n = |Cover| and Let m = |Msgcph|
3.2 Generate a set (p1, p2, p3,, pn) as the random permutation of n using seed
3.3 Initialize Coversub to be a copy of Cover
3.4 Initialize i to 1
3.5 for j = 1 to m

if Msgcph [j] is equal to A then
Coversub [pi] = Cover [pi]

else if Msgcph [j] is equal to C then
Coversub [pi] = C(Cover[pi])

else if Msgcph [j] is equal to G then
Coversub [pi] = C(C(Cover[pi]))

else
Coversub [pi] = C(C(C(Cover[pi])))

end
Increment i

end
4. The Insertion Phase:

4.1 Let i and j be two different values derived from Key
4.2 Generate a sequence of random numbers (i1, i2, i3,) using i as the seed value
4.3 Generate a sequence of random numbers (j1, j2, j3,) using j as the seed value
4.4 Find the smallest integer tc such that ∑tc

k=1 ik > |Cover|
Find the smallest integer tm such that ∑tm

k=1 ik > |Coversub|
4.5 if tc < tm then

return
else

Let t = tm
end

4.6 Divide Cover into t − 1 segments (C1, C2, C3,) with lengths (i1, i2, i3,)
respectively and keep the residual part in Ct

4.7 Divide Coversub into t − 1 segments (M1, M2, M3,) with lengths (j1, j2, j3,)
respectively and keep the residual part in Mt

4.8 Initialize Stego as an empty sequence.
4.9 for k = 1 to t

Append Ck to Stego
Append Mk to Stego

end
5. return Stego

Information 2021, 12, 253 9 of 14

Algorithm 3. Message Retrieval

Input: Stego: Stego-DNA sequence
Key: secret key-word

Output: Msg: secret message
1. Sequence Splitting

1.1 Let i and j be two different values derived from Key
1.2 Generate a sequence of random numbers (i1, i2, i3,) using i as the seed value
1.3 Generate a sequence of random numbers (j1, j2, j3, using j as the seed value
1.4 Let n = |Stego|/2
1.5 Find the smallest integer t such that ∑t

k=1 ik > n
1.6 Divide S into t − 1 segments (S1, S2, S3, St−1) with lengths

(i1 + j1, i2 + j2, i3 + j3, it−1 + jt−1) respectively and keep the residual in St
1.7 Initialize Cover as an empty sequence
1.8 Initialize Coversub as an empty sequence
1.9 for k = 1 to t − 1

Append the ik bases of Sk to Cover
Append the jk bases of Sk to Coversub

end
1.10 Append the it bases of St to Cover
1.11 Append the jt bases of St to Coversub

2. Header Retrieval
2.1 Let seed be a value derived from Key.
2.2 Generate a set (p1, p2, p3,, pn) as the random permutation of n using seed
2.3 Initialize Head as fixed length sequence
2.4 Initialize i to 1
2.5 for j = 1 to |Head|

if Coversub [j] == Cover [pi] then
Head[j] = A

else if Coversub [j] == C(Cover [pi]) then
Head[j] = C

else if Coversub [j] == C(C(Cover [pi])) then
Head[j] = G

else
Head[j] = T

end
Increment i

end
2.6 Convert Head into an integer m

3. Inverse Substitution:
3.1 Initialize Msgcpr as an empty sequence
3.2 for j = |Head|+1 to m + |Head|

if Coversub [j] == Cover [pi] then
Msgcpr [j] = A

else if Coversub [j] == C(Cover [pi]) then
Msgcpr [j] = C

else if Coversub [j] == C(C(Cover [pi])) then
Msgcpr [j] = G

else
Msgcpr [j] = T

end
Increment i

end
4. Message Decryption

4.1 Generate Keyxor using multinominal model where Cover is the pattern sequence
and seed as the seed value.

4.2 Initialize MsgDNA as an empty sequence
4.3 for i = 1 to m

MsgDNA [i] = Msgcpr[i] XOR Keyxor[i]
end

4.4 Decode MsgDNA into Msg using the coding rule
5. return Msg

4. Experimental Results

In this set of experiments, 12 sequences were drawn from the National Center for
Biotechnology Information (NCBI) website. Each sequence is indexed in the GenBank
database using a unique accession number. When downloaded, the sequence data files

Information 2021, 12, 253 10 of 14

were saved as text following the standard FASTA file format. A FASTA file starts with
a single-line header with a description that is followed by fined-length lines listing the
sequence data using the {A, C, T, G} alphabet. Furthermore, the hiding and the extraction
process were implemented and tested using randomly generated textual data of size
approximately 30.55 KB. It is worthy to note that this approach can be used to hide any
type of digital data as long as a proper encoding rule is used to handle the conversion
operation to DNA data and vice versa.

The proposed algorithms were coded and implemented using Matlab. In our imple-
mentation, we decided to convert the secret key into a number by adding the code for
each character in the string and use it to initialize the random number generator. Then, we
generate three random numbers in the range from 1 to 99,999 to be used as seed, i and j as
described in Algorithm 1. So, for example, in this case, the string “My12345Key “ was used
as the secret key word with the character codes 77, 121, 49, 50, 51, 52, 53, 75, 101, and 121
which gives 750 when summed up. Furthermore, the numbers 9584, 5603, and 4910 were
the values generated for seed, i and j, respectively.

Table 3 lists the lengths of each used cover sequence as well as its base composition.
The payload is also computed in each case as the ratio of message length; in bits, to cover
length in bases. For example, the payload for the sequence AL645637 that is 207629 base
long can be computed as 30.55 * 1024 * 8/207629 which results in 1.205 bit-per-nucleotide
(bpn). Notice that that in some cases, when the sequence is too short to accommodate the
secret message, the embedding process fails to execute due to a violation of the condition
checked at step 4.6 in Algorithm 2. This was the case for the sequences AAEX03000999 and
SOZC01000013 of lengths 22,099 and 50,017, respectively.

Table 3. Experimental results for hiding 30.55KB of text.

Accession
Number Length (bp) Base Composition

(pA, pC, pG, pT) Payload (bpn)
Longest

Palindrome Word
Length (bp)

Shortest Palindrome
Word and Repeat

AL645637 207,629 (0.27, 0.21, 0.21, 0.32) 1.205 52 GAATTC 57
AAEX03000080 305,811 (0.33, 0.18, 0.17, 0.32) 0.818 44 TATATA 284
AAEX03000038 133,800 (0.29, 0.21, 0.20, 0.29) 1.870 39 AAGCTT 26
AAEX03000069 474,719 (0.31, 0.19, 0.19, 0.31) 0.527 48 TGATCA 147

AL772265 212,009 (0.31, 0.18, 0.17, 0.33) 1.18 40 GAATTC 75
AL645625 226,754 (0.24, 0.26, 0.26, 0.23) 1.103 42 GAATTC 47
AC153526 200,117 (0.28, 0.21, 0.20, 0.31) 1.250 66 TATATA 96

ADDN03000005 7,768,011 (0.26, 0.24, 0.24, 0.26) 0.032 106 AAATTT 6033
ADDN03000030 633,545 (0.26, 0.24, 0.25, 0.25) 0.395 32 CCGCGG 158
ADDN03000022 380,649 (0.25, 0.25, 0.24, 0.26) 0.657 27 ATGCAT 188
AAEX03000999 22,099 (0.23, 0.27, 0.26, 0.23) – 25 AGGCCT –
SOZC01000013 50,017 (0.30, 0.21, 0.19, 0.30) – 20 ATATAT –

The experiments were extended to further discuss the advantage of using a message
header over the palindrome motif to signal the end of the embedded message in [18]. A
palindrome word in genetics is equal to its complementary sequence if read backwards [26].
For example, the sequence AAGCTT is palindromic because its complement is TTCGAA
is equal to the original sequence in reverse order. So, if the longest palindrome word
is used as the end-of-message signal, it may decrease the hiding capacity. On the other
hand, using the shortest palindrome word may result in errors in the retrieved message
because of the high probability that the same motif will be formed by chance, multiple
times, in the substituted cover sequence. In other words, the extraction process may return
a truncated message due to detecting the end of the message signal too soon than it should
be. To illustrate this point, the last three columns in Table 1 were dedicated to showing
some details of the detected palindrome words in the cover sequence, both the longest
and the shortest ones. For example, the longest palindrome motif found in the sequence,
ADDN03000005, reached 106 base long while the shortest was AAATTT. Notice that when

Information 2021, 12, 253 11 of 14

we searched for that palindromic word in the substituted cover sequence, we found it
6033 times. Although the method in [18] suggested to pad this word with a specific base
from both sides, there is still a probability that such a motif will be formed by chance due
to several factors such as the randomness of the message contents.

5. Performance Evaluation

This section is dedicated to analyzing the performance of the proposed method with
respect to two measures: capacity and robustness to brute-force attacks. The performance
is then compared with a number of existing techniques.

5.1. Hiding Capacity

The capacity offered by a hiding method usually reflects the maximum number of bits
to be embedded into a given cover. In the case of DNA sequence data, the hiding capacity
is measured in bit-per-nucleotide (bpn). This represents the ratio between the message
size (in bits) and the cover sequence length (in nucleotides). Applying this to the proposed
method, you will find that each base in the cover sequence can be substituted with another
one depending on the value of the message base. This means that we can hide up to 2 bits
in each cover base which makes the hiding capacity of the proposed method reaches 2 bits
per nucleotide as computed in Equation (2) where |C| refers to the length of the cover
sequence in base pairs (bp).

2 |C|
|C| = 2 bpn (2)

5.2. Security

In case an attacker tries to crack the implementation of the proposed method using
a brute-force strategy, there are several parameters that need to be guessed correctly to
successfully extract the hidden message. First of all, the binary rule is used for DNA
encoding. Since there are only 4 nucleotides, there are 4! = 24 possible rules to choose from.
Secondly, the attacker needs to guess the sequence of numbers generated to randomly
slice the sequences in the insertion phase. The authors of [16] showed that the number of
possible guesses on this parameter can be computed using Equation (3), where n represents

the length of the cover sequence and
(

n
k

)
is the set of all k-combinations of n.

(
n

n− 1

)
+

(
n

n− 2

)
+

(
n

n− 3

)
+ . . . +

(
n

0

)
= ∑n−1

k=0

(
n

n− 1− k

)
= 2n − 1 (3)

Since this guess needs to be repeated for both the slices of the cover as well as the
message, which can be as long as the cover itself, the probability of an attacker making a
successful guess on the details of the insertion process is 1

(2|C|−1)
2 . One more parameter

that needs to be guessed is the complementary substitution rule. There are six different
possible rules that satisfy the property: x 6= C(x) 6= C(C(x)) 6= C(C(C(x))) 6= C(C(C(C(x)))).
Furthermore, during the substitution process, the cover bases are visited randomly based
on a permutation function. Since the number of possible permutations of a set of n items
is n!, there are |C|! different ways to arrange the bases of the cover sequence. Thus, the
probability of making a successful guess to crack only the proposed hiding technique can
be formulated as follows:

1
|C|! ×

1

(2|C| − 1)2 ×
1
24
× 1

6
(4)

Considering that |C| can reach hundreds of thousands, it is obvious that this proba-
bility is practically zero which means it is almost impossible to crack this method.

Information 2021, 12, 253 12 of 14

5.3. Comparisons

Table 4 lists a number of existing techniques as well as their performance measured
in terms of hiding capacity and security. The last column in Table 2 indicates whether the
method is blind or not. If the steganographic technique is blind, the extraction process can
be performed without a reference to the original cover sequence. This is a favorable feature
in any steganographic technique since it eliminates the need for the sender and the receiver
to communicate anything in advance which can be suspicious and may affect the security
of the communication itself. Notice that, and for the sake of consistency, the symbol S used
in the security expressions listed in Table 4 refers to the cover sequence and m refers to the
length of the message in bits.

As shown in Table 4, the proposed method can hide up to 2 bits per cover nucleotide,
which outperforms all the other techniques in terms of the hiding capacity. notice that the
enhancement introduced here increased the hiding capacity of the original implementation
of the GCBS [18] due to the smart use of the XOR cipher which eliminated the need for
embedding the ambiguous bases to perform deciphering. On the other hand, the method
proposed here succeeded to improve its robustness against brute-forth attacks as well.
Furthermore, with respect to security, the insertion method proposed by Shui [16] and its
modification in [19] are more robust than the proposed method. However, both of them
are cover-screw and the proposed method is not only blind but also provides more hiding
capacity. Finally, methods in [20] are both blind providing a relatively high hiding capacity,
but their robustness analysis is not available and thus the comparison cannot be done in
this regard.

Table 4. A comparison with some existing techniques.

Author Method Capacity (bpn) Security Extraction

Shiu [16], 2010

Insertion 0.58 1
1.63×108 × 1

n−1 ×
1

2m−1 ×
1

2S−1 × 1
24 Non-blind

Complementary 0.07 1
1.63×108 × 1

242 Non-blind
Substitution 0.82 1

(2|S|−1)
2 × 1

6 Non-blind

Khalifa [18], 2016 Generic Complementary
Base Substitution (GCBS) 1.5 1

(2|S|−1)
2 × 1

6 ×
1
24 Blind

Malathi [19], 2017 Improved Insertion 1.52
1

1.63×108 × 1
n−1 ×

1
2m−1 ×

1
2S−1 ×

1
24 ×

1
28m

Non-blind

Lee [20], 2018 Noncircular type (NHS) 1.243 NA Blind
Circular type (CHS) 1.865 NA Blind

Proposed Enhanced GCBS 2 1
|S|! ×

1
(2|S|−1)

2 × 1
24 ×

1
6 Blind

6. Conclusions

This paper describes a secure communication technique that enhances the GBCS
method presented in [18]. The proposed hiding process consists of several phases that
starts with encrypting the secret message using a bio-inspired XOR-cipher. The encrypted
message which is encoded as DNA sequence is then substituted into the cover sequence
using some generic complementary rule. Finally, the modified cover sequence is hidden
into the original cover using a random insertion operation. On the other side of the
communication, the receiver can extract the hidden message by reversing the hiding
process and deciphering the hidden message. The sender and the receiver are expected to
agree on a secret key in advance to protect the security of the communication channel.

The results clearly show that the modifications presented on [18] resulted in a higher
hiding capacity as well as enhanced security. When compared with other techniques,
experimental results highlighted the superior performance of the proposed method with
a hiding capacity of two bits per cover nucleotide. Beside the high capacity, the method

Information 2021, 12, 253 13 of 14

succeeded in showing strong robustness against brute-force attacks which proved the
hiding technique to be almost unbreakable. This research can be extended in the future
to consider introducing some randomness in the insertion phase of the hiding process. In
other words, the segments of both the cover and the substituted sequence can be merged
in a random order, based on the value of the secret key, to further enhance the security of
the steganographic channel.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: https://www.ncbi.nlm.nih.gov/ (accessed on 17 June 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Simmons, G. The Prisoner’s Problem and the Subliminal Channel. In Advances in Cryptology; Springer: Boston, MA, USA, 1984;

pp. 51–67.
2. Herodotus. Herodotus: The History; University of Chicago Press: Chicago, IL, USA, 1987.
3. Xiang, L.; Yang, S.; Liu, Y.; Li, Q.; Zhu, C. Novel Linguistic Steganography Based on Character-Level Text Generation. Mathemathics

2020, 8, 1558. [CrossRef]
4. Järpe, E.; Weckstén, M. Velody 2—Resilient High-Capacity MIDI Steganography for Organ and Harpsichord Music. Appl. Sci.

2021, 11, 39. [CrossRef]
5. Aziz, F.; Ahmad, T.; Malik, A.H.; Uddin, M.I.; Ahmad, S.; Sharaf, M. Reversible data hiding techniques with high message

embedding capacity in images. PLoS ONE 2020, 15, e0231602. [CrossRef]
6. Kwak, M.; Cho, Y. A Novel Video Steganography-Based Botnet Communication Model in Telegram SNS Messenger. Symmetry

2021, 13, 84. [CrossRef]
7. Borah, S.; Borah, B. Watermarking Techniques for Three Dimensional (3D) Mesh Authentication in Spatial Domain. 3D Res. 2018,

9, 43. [CrossRef]
8. Bedi, P.; Dua, A. Network Steganography Using Extension Headers in IPv6. In Communications in Computer and Information Science;

Springer Science and Business Media LLC: New York, NY, USA, 2020; pp. 98–110.
9. Risca, V.I. DNA-based steganography. Cryptologia 2001, 25, 37–49. [CrossRef]
10. Khalifa, A.; Khalifa, A. LSBase: A key encapsulation scheme to improve hybrid crypto-systems using DNA steganography. In

Proceedings of the 2013 8th International Conference on Computer Engineering & Systems (ICCES) 2013, Cairo, Egypt, 26–28
November 2013; pp. 105–110.

11. Jiao, S.-H.; Goutte, R. Hiding data in DNA of living organisms. Nat. Sci. 2009, 1, 181–184. [CrossRef]
12. Arita, M.; Ohashi, Y. Secret Signatures Inside Genomic DNA. Biotechnol. Prog. 2004, 20, 1605–1607. [CrossRef] [PubMed]
13. Heider, D.; Barnekow, A. DNA-based watermarks using the DNA-Crypt algorithm. BMC Bioinform. 2007, 8, 176. [CrossRef]

[PubMed]
14. Heider, D.; Pyka, M.; Barnekow, A. DNA watermarks in non-coding regulatory sequences. BMC Res. Notes 2009, 2, 125. [CrossRef]

[PubMed]
15. Na, D. DNA steganography: Hiding undetectable secret messages within the single nucleotide polymorphisms of a genome and

detecting mutation-induced errors. Microb. Cell Factories 2020, 19, 1–9. [CrossRef] [PubMed]
16. Shiu, H.; Ng, K.; Fang, J.; Lee, R.; Huang, C. Data hiding methods based upon DNA sequences. Inf. Sci. 2010, 180, 2196–2208.

[CrossRef]
17. Khalifa, A.; Hamad, S. Hiding Secret Information in DNA Sequences Using Silent Mutations. Br. J. Math. Comput. Sci. 2015, 11,

1–11. [CrossRef]
18. Khalifa, A.; Elhadad, A.; Hamad, S. Secure Blind Data Hiding into Pseudo DNA Sequences Using Playfair Ciphering and Generic

Complementary Substitution. Appl. Math. Inf. Sci. 2016, 10, 1483–1492. [CrossRef]
19. Malathi, P.; Manoaj, M.; Manoj, R.; Raghavan, V.; Vinodhini, R.E. Highly Improved DNA Based Steganography. Procedia Comput.

Sci. 2017, 115, 651–659.
20. Lee, S.-H. Reversible Data Hiding for DNA Sequence Using Multilevel Histogram Shifting. Secur. Commun. Netw. 2018, 2018,

1–13. [CrossRef]
21. Cui, M.; Zhang, Y. Advancing DNA Steganography with Incorporation of Randomness. ChemBioChem 2020, 21, 2503–2511.

[CrossRef]
22. Ghosh, A.; Bansal, M. A glossary of DNA structures from A to Z. Acta Crystallogr. Sect. D Biol. Crystallogr. 2003, 59, 620–626.

[CrossRef] [PubMed]

https://www.ncbi.nlm.nih.gov/
http://doi.org/10.3390/math8091558
http://doi.org/10.3390/app11010039
http://doi.org/10.1371/journal.pone.0231602
http://doi.org/10.3390/sym13010084
http://doi.org/10.1007/s13319-018-0194-7
http://doi.org/10.1080/0161-110191889761
http://doi.org/10.4236/ns.2009.13023
http://doi.org/10.1021/bp049917i
http://www.ncbi.nlm.nih.gov/pubmed/15458352
http://doi.org/10.1186/1471-2105-8-176
http://www.ncbi.nlm.nih.gov/pubmed/17535434
http://doi.org/10.1186/1756-0500-2-125
http://www.ncbi.nlm.nih.gov/pubmed/19583865
http://doi.org/10.1186/s12934-020-01387-0
http://www.ncbi.nlm.nih.gov/pubmed/32527315
http://doi.org/10.1016/j.ins.2010.01.030
http://doi.org/10.9734/BJMCS/2015/19561
http://doi.org/10.18576/amis/100427
http://doi.org/10.1155/2018/3530969
http://doi.org/10.1002/cbic.202000149
http://doi.org/10.1107/S0907444903003251
http://www.ncbi.nlm.nih.gov/pubmed/12657780

Information 2021, 12, 253 14 of 14

23. Khalifa, A.; Atito, A. High-Capacity DNA-based Steganography. In Proceedings of the 8th International Conference on INFOr-
matics and Systems (INFOS2012), Cairo, Egypt, 14–16 May 2012.

24. Forbes, C.; Evans, M.; Hastings, N.; Peacock, B. Statistical Distributions, 3rd ed.; Wiley: New York, NY, USA, 2010; pp. 134–136.
25. Hoare, G.; Churchhouse, R. Codes and Ciphers: Julius Caesar, the Enigma, and the Internet; Cambridge University Press: Cambridge,

UK, 2002; pp. 13–27.
26. Giel-Pietraszuk, M.; Hoffmann, M.; Dolecka, S.; Rychlewski, J.; Barciszewski, J. Palindromes in Proteins. Protein J. 2003, 22,

109–113. [CrossRef]

http://doi.org/10.1023/A:1023454111924

	Introduction
	Preliminaries
	DNA
	The Multinomial Model
	The XOR Cipher

	The Steganographic Approach
	Message Hiding Module
	Message Recovery Module

	Experimental Results
	Performance Evaluation
	Hiding Capacity
	Security
	Comparisons

	Conclusions
	References

