
 information

Article

Data Security Protocol with Blind Factor in Cloud Environment

Ping Zhang 1 , Huanhuan Chi 1,*, Jiechang Wang 2 and Youlin Shang 1

����������
�������

Citation: Zhang, P.; Chi, H.; Wang, J.;

Shang, Y. Data Security Protocol with

Blind Factor in Cloud Environment.

Information 2021, 12, 340. https://

doi.org/10.3390/info12090340

Academic Editors: Dung Duong,

Fuchun Guo and Yannan Li

Received: 4 August 2021

Accepted: 23 August 2021

Published: 24 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang 471003, China;
zping@haust.edu.cn (P.Z.); ylshang@haust.edu.cn (Y.S.)

2 Computer Teaching and Research Office, Physical Education College of Zhengzhou University,
Zhengzhou 450044, China; 00352@peczzu.edu.cn

* Correspondence: 190319100414@stu.haust.edu.cn; Tel.: +86-184-3860-5335

Abstract: Compared with the traditional system, cloud storage users have no direct control over
their data, so users are most concerned about security for their data stored in the cloud. One security
requirement is to resolve any threats from semi-trusted key third party managers. The proposed
data security for cloud environment with semi-trusted third party (DaSCE) protocol has solved the
security threat of key managers to some extent but has not achieved positive results. Based on this,
this paper proposes a semi-trusted third-party data security protocol (ADSS), which can effectively
remove this security threat by adding time stamp and blind factor to prevent key managers and
intermediaries from intercepting and decrypting user data. Moreover, the ADSS protocol is proved
to provide indistinguishable security under a chosen ciphertext attack. Finally, the performance
evaluation and simulation of the protocol show that the ADSS security is greater than DaSCE, and
the amount of time needed is lower than DaSCE.

Keywords: cloud computing environment; semi-trusted third party; user file upload; user file
download; data security

1. Introduction

Cloud computing is expected to be the next generation of IT enterprise architecture. It
is one of the best choices for big data processing and analysis, allowing users to remotely
store and analyze their data with shared computing resources [1]. With the rapid growth
in user data scale, cross-user cloud storage has become the mainstream application form
for data storage; from simple backup systems to cloud storage systems, users can use
low-cost, scalable online services [2]. Users outsource data to the cloud server, which
performs data storage and management. This form of application fundamentally changes
the way resources are deployed and services are provided, avoiding the heavy costs of
local hardware maintenance [3].

At present, in the scenario of data storage encryption hosted by a third party, the
common products are: Ali ESC cloud disk encryption, Tencent data encryption service
CloudHSM, etc., which have the advantages of minor changes, minor expenses, being
suitable for large-scale data storage, and remote reading [4]. Cloud computing has many ad-
vantages, but it also faces some problems and challenges, such as the security, performance,
and quality of the cloud, mentioned in the literature [5–7].

A cloud computing environment means that users will work within the network
environment. User data security is restricted by the level of service technology provided
by cloud computing service providers, and users themselves also affect the security of the
cloud computing environment [8]. The potential of cloud services has yet to be fully realized
due to user concerns about the security and privacy of their data in cloud services. These
concerns are primarily about cloud operators reducing access to sensitive data, making
cloud computing less acceptable in many areas, such as the financial sector and with
government agencies. Cloud providers and tenants may be untrusted entities attempting

Information 2021, 12, 340. https://doi.org/10.3390/info12090340 https://www.mdpi.com/journal/information

https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-8500-8727
https://doi.org/10.3390/info12090340
https://doi.org/10.3390/info12090340
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/info12090340
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info12090340?type=check_update&version=2

Information 2021, 12, 340 2 of 14

to tamper with or compute data storage [9,10]. These threats to data security have spurred
the need to use encryption to achieve cloud computing security goals.

Encryption technology provides an alternative method to ensure data privacy and
confidentiality. However, in cases with encryption, key management becomes the primary
issue [11]. Therefore, in the cloud environment, it is imperative to put forward a protocol
that can guarantee user data security.

In 2019, Wu and Ling [12] proposed an improved cloud storage data integrity verifica-
tion method, using bilinear to verify the data integrity of the technology to achieve an open
verification function, and they designed an index table mechanism for dynamic verification.
However, this method does not introduce the key manager and does not encrypt the files
uploaded to the cloud storage.

To isolate user data information from user identity information, Zhan and Nie [13]
proposed a cloud storage architecture protocol based on trusted third parties, which
realized service quality evaluations for cloud storage providers to trusted third parties and
used quality evaluation systems of trusted third parties to evaluate cloud storage providers.
He et al. [14] proposed a data security protocol for trusted third-party platforms based
on RSA one-time keys. RSA one-time key technology is used to realize the functions of
secure encryption data. Then, one-time key generation is managed by a trusted third-party
platform. Qian and Xie [15] proposed a CP-ABE cloud storage access control protocol
based on trusted third parties. Based on the data block, the protocol effectively solves
problems in data security, client key management and distribution, and excessive loads by
introducing a trusted third party and uses CP-ABE mechanisms to ensure secure access
control. To solve the problem of data sharing security in the multicloud storage system
(MC-SS), Zhou et al. [16] designed an attribute mapping mechanism, which extended the
attribute-based encryption based on ciphertext policy (CP-ABE) and proposed an ABE
access control model with multi-authority CP to meet access control requirements for
multicloud storage. However, in the real environment, access control protocols based on
trusted third parties are ideal, and the protocols based on semi-trusted third parties are
more practical and operable than the protocol based on trusted third parties.

Akhila et al. [17] proposed a data security system protocol based on a semi-trusted
third parties in the cloud environment. The system provides key management, access
controls, and file confirmation and deletion. The protocol uses the Shamir threshold secret
sharing algorithm to manage the keys. Jin et al. [18] proposed BTDA, a semi-trusted
third-party dynamic cloud data update audit protocol. The semi-trusted third party deals
with update audits instead of users, so during the update audit process, the user can be
offline, thereby reducing the communication costs and the computational costs on the user
side. BTDA uses data blind and proxy re-signature technology to prevent semi-trusted
third parties and cloud servers from obtaining sensitive user data. Tang et al. [19] designed
and implemented file assure deletion (FADE) protocol, a secure overlay cloud storage
system that achieves fine-grained, policy-based access control and assured file deletion. It
associates outsourced files with file access policies, and assuredly deletes files to ensure they
are unrecoverable by anyone upon revocations of file access policies. FADE is built upon a
set of cryptographic key operations that are self-maintained by a quorum of key managers
that are independent of third-party clouds. In addition, as an extension of FADE, Tang and
other methods are still based on CP-ABE for access control. Ali et al. [20] considered that
there is a man-in-the-middle attack between clients and key managers in FADE, so they
added key exchanges and digital signatures, and proposed DaSCE, in which key managers
are semi trusted third parties, and the system also provides key management, access
controls, file guarantee deletion, and other functions. Reviewing the DaSCE for cloud
environments with semi-trusted third parties proposed, in [21], although Ali analyzed
some problems existing in the FADE protocol, they believed that the key manager was a
semi-trusted third party and protected the man-in-the-middle attack between the client and
key managers (KM), but it did not resolve the security threat from KM well (KM intercepts
and decrypts the communication data between the client and cloud). Even in the case of

Information 2021, 12, 340 3 of 14

multiple key managers, if they conspire to attack, the threat still exists. Based on this, we
propose a more secure protocol-ADSS.

2. Preliminaries
2.1. Indistinguishability

For ∏= (Gen, Enc, Dec), test Priveav
A,∏(n) of PPT adversary A is defined below:

1. Adversary A input 1n, output a pair of messages m0, m1 of the same length.
2. Run Gen(1n) to generate a key k, select a random bit b, b← {0, 1} , ciphertext

c← Enck(mb) is computed and given A, c is the challenge ciphertext.
3. A outputs a bit b′, b′ ∈ {0, 1}.
4. If b = b′ output 1, otherwise output 0.
5. If Priveav

A,∏(n) = 1, it means success.

A private key encryption protocol ∏ is indistinguishable from eavesdropping adver-
saries. For any PPT adversary A, there exists a negligible function negl(n), such that:

Pr
[
Priveav

A,∏(n) = 1
]
≤ 1

2
+ neg1(n)

2.2. Indistinguishability of Chosen Ciphertext Attack

The test Privcca
A,∏(n) is defined as follows:

1. Key generation: k← Gen(1n) .
2. Adversary A input 1n, using the oracle Enck and Deck, output two messages of equal

length m0, m1.
3. Elect a random bit b, b← {0, 1} , let c := Enck(mb), send c to adversary A.
4. Adversary A continues to use oracle Enck and Deck. Restriction: Cannot query the

plaintext of ciphertext c. Output a bit b′ ∈ {0, 1}.
5. Use output: If b = b′ output 1, otherwise output 0.

If Privcca
A,∏(n) = 1, then A is successful.

A private key encryption protocol ∏ has indistinguishable encryption under the
chosen ciphertext attack (CCA), for any PPT adversary A, there exists a negligible function
negl(n), such that:

Pr
[
Privcca

A,∏(n) = 1
]
≤ 1

2
+ neg1(n)

2.3. Large Integer Factorization

Large integer factorization problem (IF problem): Given odd complex number N,
solve its prime factorization N = pe1

1 pe2
2 · · · p

er
r , where pi is the distinct prime number, ei is

the number of pi and ei ≥ 1.
Large integer factorization difficult hypothesis (IF hypothesis): An integer resolver is a

PPT algorithm A, which satisfies the probability ω > 0 : w = Prob[L(N)|N, 1 < L(N) < N] .
Let IG be an integer generator, input 1λ, and output N = pq of 2λ bit in polynomial time
of λ, where p and q are random odd prime numbers of λ bits. For all sufficiently large λ,
there is no large integer factorization algorithm generated by IG

(
1λ
)
.

2.4. FADE Security

In FADE [19], the symbols and their meanings are used (see Table 1), and K and Si are
random symmetric keys generated by the client. In the file upload phase, the client sends
a policy file Pi to KM; KM generates private key (di, ni) (secret preservation) and public
key (ei, ni) (sent to client) associated with Pi; the client encrypts Si to obtain Si

ei modni, and
then Si encrypts K to get {K}Si

. After that, the client will upload Pi, {F}K, {K}Si
, Si

ei modni
to the cloud, and the client finally clears the local keys and files. For the sake of simplicity,
we will omit “modni” in the discussion. In the file download phase, after downloading
the file and encryption key from the cloud, the client generates a random value R as the

Information 2021, 12, 340 4 of 14

blinding factor and calculates Rei , multiplies it by Si
ei to obtain (SiR)

ei , and sends (SiR)
ei

to the key manager KM to decrypt. KM decrypts (SiR)
ei with di and returns SiR to the

client. The client decomposes Si from SiR, and decrypts K, and finally decrypts F. The
aforementioned is the file upload and download situation of a single key manager, and a
case of multiple key managers will not be repeated.

Table 1. Symbols and meanings.

Symbol Meaning

F Data file

K A symmetric key, data key

Pi Policy file

Pj Forged strategic files

(ei, ni) KM generated public key parameters

(di, ni) Public private key pair

{}KEY Encryption with symmetric key

Si A symmetric key corresponding to Pi

Ali [16] believes that when there is an intruder attack between the client and KM in the
file upload phase of the FADE protocol (see Figure 1), the intermediary can intercept Pi and
send Pj (forged Pi) to KM, and then KM sends (ei, ni). The intermediary intercepts (ei, ni)
and sends the forged parameter (ej, nj) to the client. The client uses the (ej, nj) encryption
key and uploads to the cloud, and the client cannot determine whether the (ej, nj) received
is from KM or other parties.

Information 2021, 12, x FOR PEER REVIEW 5 of 16

Figure 1. Man-in-the-middle attack during file upload.

2.5. DaSCE Protocol
2.5.1. DaSCE File Upload

To determine a session key, Ali assumes that parameters α and p are fixed and
open to all parties, where α is a large number as the primitive root and p is a big prime
number. The entire process consists of the following steps:

1. The client generates a random number x and calculates modxα p , and sends it to
KM.

2. KM generates a random number y and computes modyα p . KM also computes
()yxα as the session key K between him and the client.

3. KM generates { , }y xα α digital signature ({ , })y x
KMS α α and uses the session key to

generate encryption ({ , })y x
k KME S α α .

4. KM sends (, ({ , }))y y x
k KMα E S α α to the client.

5. The client first computes the session key ()= y xK α , and declassifies ({ , })y x
k KME S α α

, then verifies the signature.

6. The client calculates ({ , })yx
k CliE S α α and ()k iE P , and sends them to KM.

7. KM verifies the digital signature of the client, after which KM declassified iP and
generates (,)i ie n related to iP and saves iP .

8. KM calculates (,)k i iE e n and sends it to the client.
9. The client encrypts the file F with the data key K , computes the MAC with IK

(to verify the integrity of F), iS encrypted K and IK , then uses ie to encrypt
iS , and the client uploads the encrypted data to the cloud.

10. The client deletes all keys except the public key parameters sent by KM.
The file upload process can be seen in Figure 2. For simplicity, the mod p used in

calculating the session key is omitted.

Figure 1. Man-in-the-middle attack during file upload.

In the file download stage, the intermediary can use its private key (dj, nj) to intercept
and decrypt the data. Similarly, in cases of multiple key managers, upload and download
also face the same security problems.

2.5. DaSCE Protocol
2.5.1. DaSCE File Upload

To determine a session key, Ali assumes that parameters α and p are fixed and open to
all parties, where α is a large number as the primitive root and p is a big prime number.
The entire process consists of the following steps:

Information 2021, 12, 340 5 of 14

1. The client generates a random number x and calculates αxmodp, and sends it to KM.
2. KM generates a random number y and computes αymodp. KM also computes (αx)y

as the session key K between him and the client.
3. KM generates {αy, αx} digital signature (SKM{αy, αx}) and uses the session key to

generate encryption Ek(SKM{αy, αx}).
4. KM sends (αy, Ek(SKM{αy, αx})) to the client.
5. The client first computes the session key K = (αy)x, and declassifies Ek(SKM{αy, αx}),

then verifies the signature.
6. The client calculates Ek(SCli{αx, αy}) and Ek(Pi), and sends them to KM.
7. KM verifies the digital signature of the client, after which KM declassified Pi and

generates (ei, ni) related to Pi and saves Pi.
8. KM calculates Ek(ei, ni) and sends it to the client.
9. The client encrypts the file F with the data key K, computes the MAC with IK (to

verify the integrity of F), Si encrypted K and IK, then uses ei to encrypt Si, and the
client uploads the encrypted data to the cloud.

10. The client deletes all keys except the public key parameters sent by KM.

The file upload process can be seen in Figure 2. For simplicity, the modp used in
calculating the session key is omitted.

Information 2021, 12, x FOR PEER REVIEW 6 of 16

Figure 2. Single key manager DaSCE file upload.

The multi-key managers file upload, according to the Shamir (,)k N threshold secret
sharing algorithms, can be seen in Figure 3. iS is divided into N shares, and each N
KM generates a pair of public and private keys.

Figure 3. Multi-key manager DaSCE fileupload.

2.5.2. DaSCE File Download
The DaSCE single key manager file download process is similar to FADE, but to pre-

vent man-in-the-middle attacks, the session key should be established before the client
and KM, and then encrypted by the key.

DaSCE file downloads of multi-key managers (see Figure 4). After downloading ci-
phertext from the cloud, the client determines the session key with N KM, it selects a
random number R and performs 1 1

1 ,，ei ei eiN eiN
i iNS R S R operation, then separately sends

them to N KM decrypts. The client extracts iS from the received iS R . According to the
Shamir (,)k N threshold secret sharing algorithm, iS can be generated by at least K
copies of iSS , and finally decrypts the file F .

xα

, (
{ , })

y

y
x

k
KM

α E S
α α

({ , }), ()

y
x

k
Cli

k
i

E S α α
E P

(,)
k

i
i

E e n{ } { }
{ }

,
,

, ,i

i

i

e

i

i

S
S

K

P K
IK

S F

xα

1 1(R)
k iE S

11

1

({ , }), ()
yxk Cli

k i

E S α α E P

{ } { } { }1
1, , , ,i iN

i
i

e e

i
i iV

S S
K

P K IK S S F

xα

1
1

1 1, ({ , })
y

y x

k KMα E S α α , ({ , })
yN

yN x

kN KMNα E S α α

({ , }), ()
yNxkN Cli

kN i

E S α α E P

(R)
kN iNE S

Figure 2. Single key manager DaSCE file upload.

The multi-key managers file upload, according to the Shamir (k, N) threshold secret
sharing algorithms, can be seen in Figure 3. Si is divided into N shares, and each N KM
generates a pair of public and private keys.

Information 2021, 12, x FOR PEER REVIEW 6 of 16

Figure 2. Single key manager DaSCE file upload.

The multi-key managers file upload, according to the Shamir (,)k N threshold secret
sharing algorithms, can be seen in Figure 3. iS is divided into N shares, and each N
KM generates a pair of public and private keys.

Figure 3. Multi-key manager DaSCE fileupload.

2.5.2. DaSCE File Download
The DaSCE single key manager file download process is similar to FADE, but to pre-

vent man-in-the-middle attacks, the session key should be established before the client
and KM, and then encrypted by the key.

DaSCE file downloads of multi-key managers (see Figure 4). After downloading ci-
phertext from the cloud, the client determines the session key with N KM, it selects a
random number R and performs 1 1

1 ,，ei ei eiN eiN
i iNS R S R operation, then separately sends

them to N KM decrypts. The client extracts iS from the received iS R . According to the
Shamir (,)k N threshold secret sharing algorithm, iS can be generated by at least K
copies of iSS , and finally decrypts the file F .

xα

, (
{ , })

y

y
x

k
KM

α E S
α α

({ , }), ()

y
x

k
Cli

k
i

E S α α
E P

(,)
k

i
i

E e n{ } { }
{ }

,
,

, ,i

i

i

e

i

i

S
S

K

P K
IK

S F

xα

1 1(R)
k iE S

11

1

({ , }), ()
yxk Cli

k i

E S α α E P

{ } { } { }1
1, , , ,i iN

i
i

e e

i
i iV

S S
K

P K IK S S F

xα

1
1

1 1, ({ , })
y

y x

k KMα E S α α , ({ , })
yN

yN x

kN KMNα E S α α

({ , }), ()
yNxkN Cli

kN i

E S α α E P

(R)
kN iNE S

Figure 3. Multi-key manager DaSCE fileupload.

Information 2021, 12, 340 6 of 14

2.5.2. DaSCE File Download

The DaSCE single key manager file download process is similar to FADE, but to
prevent man-in-the-middle attacks, the session key should be established before the client
and KM, and then encrypted by the key.

DaSCE file downloads of multi-key managers (see Figure 4). After downloading
ciphertext from the cloud, the client determines the session key with N KM, it selects a
random number R and performs Sei1

i1 Rei1, · · · , SeiN
iN ReiN operation, then separately sends

them to N KM decrypts. The client extracts Si from the received SiR. According to the
Shamir (k, N) threshold secret sharing algorithm, Si can be generated by at least K copies
of SiS, and finally decrypts the file F.

Information 2021, 12, x FOR PEER REVIEW 7 of 16

Figure 4. Multi-key manager DaSCE file download.

3. ADSS Model Definition
3.1. System Model

The system model for this paper (see Figure 5) includes the following entities: User
(US), (single or multiple) KM, and the Cloud. Considering that the user may change the
client (so use US instead of Client), save local storage space, and avoid information dis-
closure due to attacks, users will clear a large number of local keys and files after upload-
ing data to the cloud. To share the security risks, restrict the cloud, and save computing
resources, the user US connects with the key manager KM, which is the entity managing
the key certificates in the network. It can provide high-performance computing services
and can quickly encrypt or decrypt data for users. The general process for the model is
below:
1. The user encrypts the data by using the public key provided by the key manager KM,

and then uploads the ciphertext to the cloud, then clears a large number of local keys
and files, and only stores the blind factor and associated information in its USB-key
(UKey).

2. After downloading the ciphertext from the cloud, the user transmits some ciphertext
to KM for decryption, and then the user decrypts the plain text by using its blind
factor.

Figure 5. ADSS system model.

3.2. Security Model
In ADSS, KM is semi-trusted. It may launch an active attack on the communication

between users and the cloud to intercept and decrypt the data uploaded or downloaded

xα

1 1(R)
k iE S

11

1

({ , }), ()
yxk Cli

k i

E S α α E P

{ } { } { }1
1

, , , ,i iN
i i

e ei
i iV

S S
K

P K IK S S F

xα

1
1

1 1, ({ , })
y

y x

k KMα E S α α , ({ , })
yN

yN x

kN KMNα E S α α

({ , }), ()
yNxkN Cli

kN i

E S α α E P

(R)
kN iNE S

Figure 4. Multi-key manager DaSCE file download.

3. ADSS Model Definition
3.1. System Model

The system model for this paper (see Figure 5) includes the following entities: User
(US), (single or multiple) KM, and the Cloud. Considering that the user may change
the client (so use US instead of Client), save local storage space, and avoid information
disclosure due to attacks, users will clear a large number of local keys and files after
uploading data to the cloud. To share the security risks, restrict the cloud, and save
computing resources, the user US connects with the key manager KM, which is the entity
managing the key certificates in the network. It can provide high-performance computing
services and can quickly encrypt or decrypt data for users. The general process for the
model is below:

1. The user encrypts the data by using the public key provided by the key manager
KM, and then uploads the ciphertext to the cloud, then clears a large number of
local keys and files, and only stores the blind factor and associated information in its
USB-key (UKey).

2. After downloading the ciphertext from the cloud, the user transmits some ciphertext
to KM for decryption, and then the user decrypts the plain text by using its blind factor.

Information 2021, 12, 340 7 of 14

Information 2021, 12, x FOR PEER REVIEW 7 of 16

Figure 4. Multi-key manager DaSCE file download.

3. ADSS Model Definition
3.1. System Model

The system model for this paper (see Figure 5) includes the following entities: User
(US), (single or multiple) KM, and the Cloud. Considering that the user may change the
client (so use US instead of Client), save local storage space, and avoid information dis-
closure due to attacks, users will clear a large number of local keys and files after upload-
ing data to the cloud. To share the security risks, restrict the cloud, and save computing
resources, the user US connects with the key manager KM, which is the entity managing
the key certificates in the network. It can provide high-performance computing services
and can quickly encrypt or decrypt data for users. The general process for the model is
below:
1. The user encrypts the data by using the public key provided by the key manager KM,

and then uploads the ciphertext to the cloud, then clears a large number of local keys
and files, and only stores the blind factor and associated information in its USB-key
(UKey).

2. After downloading the ciphertext from the cloud, the user transmits some ciphertext
to KM for decryption, and then the user decrypts the plain text by using its blind
factor.

Figure 5. ADSS system model.

3.2. Security Model
In ADSS, KM is semi-trusted. It may launch an active attack on the communication

between users and the cloud to intercept and decrypt the data uploaded or downloaded

xα

1 1(R)
k iE S

11

1

({ , }), ()
yxk Cli

k i

E S α α E P

{ } { } { }1
1

, , , ,i iN
i i

e ei
i iV

S S
K

P K IK S S F

xα

1
1

1 1, ({ , })
y

y x

k KMα E S α α , ({ , })
yN

yN x

kN KMNα E S α α

({ , }), ()
yNxkN Cli

kN i

E S α α E P

(R)
kN iNE S

Figure 5. ADSS system model.

3.2. Security Model

In ADSS, KM is semi-trusted. It may launch an active attack on the communication
between users and the cloud to intercept and decrypt the data uploaded or downloaded
by users. Of course, a middleman can launch the same attack. In cases of multiple key
managers, it is also possible to intercept and decrypt user data if the key managers conspire
to attack. In the ADSS security model, the KM or middleman is called attacker A, which
requires that the nsew protocol can resist the attack from A. The indistinguishability under
the chosen ciphertext attack (IND-CCA) security of the protocol is defined by the interactive
game between attacker A and challengers:

1. Initialization. Challenger generation system ADSS, adversary A obtains the public
key of ADSS.

2. Ask. Adversary A makes a decryption inquiry to the challenger. After the challenger
decrypts, he will give the plain text to adversary A.

3. Challenge. Adversary A outputs two messages of the same length m0, m1, and then
receives ciphertext Cb from the challenger, where the random value b← {0, 1} .

4. Guess. Adversary output b′, if b′ = b, then the adversary A attack is successful.

Definition 1. If polynomial time AdversaryA breaks through the aforementioned security model
with negligible advantage Adv =

∣∣∣Pr[b′ = b]− 1
2

∣∣∣, then we say that the protocol proposed in this
paper is IND-CCA security.

Adv =

∣∣∣∣Pr[b′ = b]− 1
2

∣∣∣∣
3.3. ADSS Protocol

To make up for the shortcomings of FADE and DaSCE protocols, completely eliminat-
ing the security threat of KM, we propose the ADSS protocol. Ki is a random symmetric
key generated by user Us, corresponding to Pi. Us encrypts file F with data key Ki, and
encrypts Ki with public and private key pair (ei, ni) generated by KM.

3.4. File Upload

When the data are uploaded to the cloud (see Figure 6), the user sends a policy file
Pi to KM, and it requests to generate a pair of public and private keys. KM generates
a public-private key pair associated with Pi and sends the public key (ei, ni) to the user.
Different from the DaSCE protocol, the user encrypts file Fi with Ki to generate {Fi}Ki

, and
generates a random blinding factor Ri with time stamp t, calculates Ri

ei , and multiplies
it by Ki

ei to obtain (KiRi)
ei . After that, the user uploads Pi, (KiRi)

ei , {Fi}Ki
, t to the cloud.

Information 2021, 12, 340 8 of 14

Finally, the user clears all local keys and files and only stores the related policy file Pi,
blinding factor Ri, and time stamp t in his personal UKey.

Us→ KM : Pi
KM→ Us : (ei, ni)
Us : {Fi}Ki

, Ki
ei · Ri

ei

Us→ Cloud : Pi, (KiRi)
ei , {Fi}Ki

, t
Us_UKey : save(Pi, t, Ri)

Information 2021, 12, x FOR PEER REVIEW 9 of 16

Figure 6. ADSS single KM file upload.

The case of multiple key managers (see Figure 7). The biggest difference from a single
key manager is that: users use threshold secret sharing algorithm Shamir (,)k N (where
1≤ ≤b N) to divide iK into N shares of 1 , ,i iNK K , and then blind encrypt them, re-
spectively.

Figure 7. ADSS multi-KM file upload.

1 1

1

1

1 1 1

1

1 1

1

, , :
, , : (,), , (,)

:{ } , () , ,
: , ,

: , () , , () ,{ } ,
_ : (, ,)

→
→

=
⋅ ⋅

→


 






i
i i iN iN

i iN

i

N i

N i i iN iN

i K i i iN
e e e e

i i i i
e e

i i i iN i i K

i i

Us KM KM P
KM KM Us e n e n
Us F divide K K K
Us K R K R
Us Cloud P K R K R F t
Us UKey save P t R

3.5. File Download
After downloading the file and encryption key from the cloud, the user sends

, () ie
i i iP K R to the key manager KM for decryption. KM decrypts () ie

i iK R with id and
returns i iK R to the user. The user finds the corresponding blinding factor iR from its
UKey through the policy file iP and time stamp t , then decomposes iK from i iK R ,
and finally decrypts to get iF . The specific process is shown in Figure 8.

: , () ,{ } ,
: , ()
: (())

_ : (,)
: / ,

{{ } }

i

i
i

i i

i i

e
i i i i K

e
i i i

e d
i i i i

i i

i i i i

i K K i

Cloud Us P K R F t
Us KM P K R
KM Us K R K R
Us UKey find P t R
Us K R R K

F F

→
→

→ =
=

=
=

iP

(,)
i

ie n

, (
) ,{ } ,

i Kie

i
i i

i

P K R
F t

iP

iP

1 1(,)
i ie n

(,)
iN iNe n

1

, () , ,

() ,{ } ,
i

iN i

e

i i i
e

i i
i K

P K R
K R F t



Figure 6. ADSS single KM file upload.

The case of multiple key managers (see Figure 7). The biggest difference from a
single key manager is that: users use threshold secret sharing algorithm Shamir (k, N)
(where 1 ≤ b ≤ N) to divide Ki into N shares of Ki1, · · · , KiN , and then blind encrypt
them, respectively.

Us→ KM1, · · · , KMN : Pi
KM1, · · · , KMN → Us : (ei1, ni1), · · · , (eiN , niN)
Us : {Fi}Ki

, divide(Ki) = Ki1, · · · , KiN
Us : Ki1

ei1 · Ri
ei1 , · · · , Ki1

eiN · Ri
eiN

Us→ Cloud : Pi, (Ki1Ri)
ei1 , · · · , (KiN Ri)

eiN , {Fi}Ki
, t

Us_UKey : save(Pi, t, Ri)

Information 2021, 12, x FOR PEER REVIEW 9 of 16

Figure 6. ADSS single KM file upload.

The case of multiple key managers (see Figure 7). The biggest difference from a single
key manager is that: users use threshold secret sharing algorithm Shamir (,)k N (where
1≤ ≤b N) to divide iK into N shares of 1 , ,i iNK K , and then blind encrypt them, re-
spectively.

Figure 7. ADSS multi-KM file upload.

1 1

1

1

1 1 1

1

1 1

1

, , :
, , : (,), , (,)

:{ } , () , ,
: , ,

: , () , , () ,{ } ,
_ : (, ,)

→
→

=
⋅ ⋅

→


 






i
i i iN iN

i iN

i

N i

N i i iN iN

i K i i iN
e e e e

i i i i
e e

i i i iN i i K

i i

Us KM KM P
KM KM Us e n e n
Us F divide K K K
Us K R K R
Us Cloud P K R K R F t
Us UKey save P t R

3.5. File Download
After downloading the file and encryption key from the cloud, the user sends

, () ie
i i iP K R to the key manager KM for decryption. KM decrypts () ie

i iK R with id and
returns i iK R to the user. The user finds the corresponding blinding factor iR from its
UKey through the policy file iP and time stamp t , then decomposes iK from i iK R ,
and finally decrypts to get iF . The specific process is shown in Figure 8.

: , () ,{ } ,
: , ()
: (())

_ : (,)
: / ,

{{ } }

i

i
i

i i

i i

e
i i i i K

e
i i i

e d
i i i i

i i

i i i i

i K K i

Cloud Us P K R F t
Us KM P K R
KM Us K R K R
Us UKey find P t R
Us K R R K

F F

→
→

→ =
=

=
=

iP

(,)
i

ie n

, (
) ,{ } ,

i Kie

i
i i

i

P K R
F t

iP

iP

1 1(,)
i ie n

(,)
iN iNe n

1

, () , ,

() ,{ } ,
i

iN i

e

i i i
e

i i
i K

P K R
K R F t



Figure 7. ADSS multi-KM file upload.

3.5. File Download

After downloading the file and encryption key from the cloud, the user sends Pi, (KiRi)
ei

to the key manager KM for decryption. KM decrypts (KiRi)
ei with di and returns KiRi to

the user. The user finds the corresponding blinding factor Ri from its UKey through the

Information 2021, 12, 340 9 of 14

policy file Pi and time stamp t, then decomposes Ki from KiRi, and finally decrypts to get
Fi. The specific process is shown in Figure 8.

Cloud→ Us : Pi, (KiRi)
ei , {Fi}Ki

, t
Us→ KM : Pi, (KiRi)

ei

KM→ Us : ((KiRi)
ei)

di = KiRi
Us_UKey : f ind(Pi, t) = Ri
Us : KiRi/Ri = Ki,{
{Fi}Ki

}
Ki

= Fi
Information 2021, 12, x FOR PEER REVIEW 10 of 16

Figure 8. ADSS single-KM file download.

The case of multiple key managers (see Figure 9). Users download
1

1, () , , () ,{ } ,i iN

i

e e
i i i iN i i KP K R K R F t from the cloud and send

1
1, () , , , ()i iNe e

i i i i iN iP K R P K R to
1 , , NKM KM to decrypt. b key managers perform decryption and return b ii iK R to the

user, users find the corresponding blinding factor iR from their Ukey through the policy
file iP and time stamp t , and then decompose b iiK from b ii iK R . Then, the user can

recover iK from , 1, , + −ii i i bK K by Shamir (,)k N , and finally decrypt { }
ii KF with iK .

1

1

1

1 1

1 1

, 1 , 1

,

: , () , , () ,{ } ,

, , : , () , , , ()

, , : , ,

_ : (,)

: / , , /

: (,)[, ,

i iN

i

i iN

e e
i i i iN i i K

e e
N i i i i iN i

N i i iN i

i i

ii i i ii i i b i i i i b

ii i i b

Cloud Us P K R K R F t

Us KM KM P K R P K R

KM KM Us K R K R

Us UKey find P t R

Us K R R K K R R K

US Shamir b N K K

+ − + −

+

→

→

→

=

= =



 

 



 1]

{{ } }
i i

i

i K K i

K

F F

− =

=

Figure 9. ADSS multi-KM file download.

4. Security Analysis
To prevent network sniffing attacks and security threats from the key manager,

DaSCE does not add the blind factor R before the user uploads the file. After download-
ing the file, the blind factor R is added before sending ie

iS to KM. Although this can
prevent network sniffing attacks, it cannot prevent the KM from actively attacking the
communication between users and the cloud to intercept and decrypt the data. To prevent

, () ,{ } ,
i

Ki

ei i i
i

P K R F t

, (
) ie

i
i i

P K R

i iK R

1, () , ,() ,{ } ,
i

iN

i

ei i i
e

i i i K

P K R
K R F t



11
, () iei i i

P K R
, () iNei iN i

P K R

1i iK R
iN iK R

Figure 8. ADSS single-KM file download.

The case of multiple key managers (see Figure 9). Users download Pi, (Ki1Ri)
ei1 , · · · ,

(KiN Ri)
eiN , {Fi}Ki

, t from the cloud and send Pi, (Ki1Ri)
ei1 , · · · , Pi, (KiN Ri)

eiN to KM1, · · · ,
KMN to decrypt. b key managers perform decryption and return bKiiRi to the user, users
find the corresponding blinding factor Ri from their Ukey through the policy file Pi and
time stamp t, and then decompose bKii from bKiiRi. Then, the user can recover Ki from
Kii, · · · , Ki,i+b−1 by Shamir (k, N), and finally decrypt {Fi}Ki

with Ki.

Cloud→ Us : Pi, (Ki1Ri)
ei1 , · · · , (KiN Ri)

eiN , {Fi}Ki
, t

Us→ KM1, · · · , KMN : Pi, (Ki1Ri)
ei1 , · · · , Pi, (KiN Ri)

eiN

KM1, · · · , KMN → Us : Ki1Ri, · · · , KiN Ri
Us_UKey : f ind(Pi, t) = Ri
Us : KiiRi/Ri = Kii, · · · , Ki,i+b−1Ri/Ri = Ki,i+b−1
US : Shamir(b, N)[Kii, · · · , Ki,i+b−1] = Ki{
{Fi}Ki

}
Ki

= Fi

Information 2021, 12, x FOR PEER REVIEW 10 of 16

Figure 8. ADSS single-KM file download.

The case of multiple key managers (see Figure 9). Users download
1

1, () , , () ,{ } ,i iN

i

e e
i i i iN i i KP K R K R F t from the cloud and send

1
1, () , , , ()i iNe e

i i i i iN iP K R P K R to
1 , , NKM KM to decrypt. b key managers perform decryption and return b ii iK R to the

user, users find the corresponding blinding factor iR from their Ukey through the policy
file iP and time stamp t , and then decompose b iiK from b ii iK R . Then, the user can

recover iK from , 1, , + −ii i i bK K by Shamir (,)k N , and finally decrypt { }
ii KF with iK .

1

1

1

1 1

1 1

, 1 , 1

,

: , () , , () ,{ } ,

, , : , () , , , ()

, , : , ,

_ : (,)

: / , , /

: (,)[, ,

i iN

i

i iN

e e
i i i iN i i K

e e
N i i i i iN i

N i i iN i

i i

ii i i ii i i b i i i i b

ii i i b

Cloud Us P K R K R F t

Us KM KM P K R P K R

KM KM Us K R K R

Us UKey find P t R

Us K R R K K R R K

US Shamir b N K K

+ − + −

+

→

→

→

=

= =



 

 



 1]

{{ } }
i i

i

i K K i

K

F F

− =

=

Figure 9. ADSS multi-KM file download.

4. Security Analysis
To prevent network sniffing attacks and security threats from the key manager,

DaSCE does not add the blind factor R before the user uploads the file. After download-
ing the file, the blind factor R is added before sending ie

iS to KM. Although this can
prevent network sniffing attacks, it cannot prevent the KM from actively attacking the
communication between users and the cloud to intercept and decrypt the data. To prevent

, () ,{ } ,
i

Ki

ei i i
i

P K R F t

, (
) ie

i
i i

P K R

i iK R

1, () , ,() ,{ } ,
i

iN

i

ei i i
e

i i i K

P K R
K R F t



11
, () iei i i

P K R
, () iNei iN i

P K R

1i iK R
iN iK R

Figure 9. ADSS multi-KM file download.

Information 2021, 12, 340 10 of 14

4. Security Analysis

To prevent network sniffing attacks and security threats from the key manager, DaSCE
does not add the blind factor R before the user uploads the file. After downloading the file,
the blind factor R is added before sending Si

ei to KM. Although this can prevent network
sniffing attacks, it cannot prevent the KM from actively attacking the communication
between users and the cloud to intercept and decrypt the data. To prevent man-in-the-
middle attacks, Ali exchanged the key between the client and KM first and added a digital
signature, but this measure still cannot prevent KM from intercepting Si

ei and decrypting
Si in advance. In cases of multiple key managers, it is also possible to intercept and decrypt
user data if the key managers conspire to attack.

In this protocol, users add the blinding factor Ri before uploading files. The specific
operation is that the user first generates Ri locally, calculates (KiRi)

ei , and uploads it to
cloud storage, along with other data. After that, when users communicate with the cloud
(whether uploading or downloading files), only users know Ri; even if KM or middleman
intercepts data, it is difficult to decompose Ki by KiRi (Ki and Ri are random large prime
numbers) [22]. In the case of multiple key managers, if the key managers conspire to attack,
they will encounter the same difficulty.

Theorem 1. In the case of large integer factorization difficulties, the ADSS protocol is IND-CCA
secure for semi-trusted third-party KM attacks or man-in-the-middle attacks.

Specifically, if an IND-CCA adversary A (KM or middleman) attacks ADSS with
a non-negligible advantage ε, then there must be an adversary B who can solve the IF
problem with at least a non-negligible advantage 2ε.

Prove:
First, we give the IND-CCA game of ADSS as follows:
Let C = (C1, C2) = ((KiRi)

ei , {mi}Ki
)

Use ExpIND−CCA
ADSS,A to represent the IND-CCA game of ADSS, then:

1. Run GenADSS to generate ni, ei, di, Ki, Ri, where ni, ei, di are known, and Ki, Ri are
unknown;

2. Adversary A obtains message mi0, mi1;
3. Randomly select a bit b← {0, 1} , let C∗ = ((KiRi)

ei , {mib}Ki
);

4. Send ni, ei, di, C∗ to A, A outputs b′.

Returns 1 if b′ = b, 0 otherwise.
The adversary cannot decrypt the target ciphertext C∗. The advantage of adversary A

is defined as:
AdvIND−CCA

ADSS,A =
∣∣∣Pr[ExpIND−CCA

ADSS,A = 1]− 1/2
∣∣∣

The following proves that the ADSS protocol can be reduced to the IF (large integer
factorization) problem.

Adversary B knows that (ni, ei, di, Ĉ1), using A (attack ADSS) as a subroutine, executes

the following process: the goal is to calculate K̂i =
(Ĉ1)

di modni
R̂i

.

1. Choose a random number K̂i as a guess for (Ĉ1)
di modni
R̂i

(but B does not actually know

R̂i), and give (ni, ei, di) to A.
2. Ki asked: B creates a list L, the element type is triple (Ri, C1, Ki), and the initial value

is (∗, Ĉ1, Ki), where ∗ indicates that the value of the component is currently unknown.

A can ask L at any time. Let A query Ki, B calculate Ki =
(C1)

di modni
Ri

and make the
following response:

a. If there is one item (Ri, C1, Ki) in L, answer with Ki.
b. If there is one item (∗, C1, Ki) in L, answer with Ki and replace (∗, C1, Ki) with

(Ri, C1, Ki) in L.

Information 2021, 12, 340 11 of 14

c. Otherwise, select a random number Ki, answer with Ki and store (Ri, C1, Ki) in
the table.

3. Decryption inquiry: When A asks B to ask (C1, C2), B responds below:

a. If there is a first term in L, and the second element is C1 (the term (Ri, C1, Ki) or
(∗, C1, Ki)), then

{
C2
}

Ki
is used to answer.

b. Otherwise, select a random number Ki, answer with
{

C2
}

Ki
and store (∗, C1, Ki)

in L.

4. Challenge: A output message mi0, mi1, B random selection b← R{0, 1} , calculate
Ĉ2= {m ib

}
K̂i

and answer A with (Ĉ1, Ĉ2). Continue to answer A’s Ki query and

decryption query (A cannot query (Ĉ1, Ĉ2)).
5. Guess: A output guesses b′, B checks L, and if there are items (R̂i, Ĉ1, K̂i), then output R̂i.

Let D be the event: when A asks for K̂i (that is (Ĉ1)
di modni
R̂i

) in the simulation, K̂i appears
in L.

In the above attack, if K̂i does not appear in L, then A fails to obtain K̂i. According to
the security of Ĉ2= {m ib

}
K̂i

, the

Pr[b′ = b
∣∣∣D] = Pr[ExpIND−CCA

ADSS,A = 1
∣∣∣D] = 1/2

where D is the complement event of D. From the definition of A in a real attack, we can
know that:

AdvIND−CCA
ADSS,A =

∣∣∣Pr[ExpIND−CCA
ADSS,A = 1]− 1/2

∣∣∣ = ε

Because:
Pr[ExpIND−CCA

ADSS,A = 1]

= Pr[ExpIND−CCA
ADSS,A = 1

∣∣∣D]Pr[D]

+Pr[ExpIND−CCA
ADSS,A = 1

∣∣∣D]Pr[D]

≤ Pr[ExpIND−CCA
ADSS,A = 1

∣∣∣D]Pr[D] + Pr[D]

= 1/2Pr[D] + Pr[D]
= 1/2(1− Pr[D]) + Pr[D]
= 1/2 + 1/2Pr[D]

That is:

ε =

∣∣∣∣Pr[ExpIND−CCA
ADSS,A = 1]− 1

2

∣∣∣∣ ≤ 1
2

Pr[D]Pr[D] ≥ 2ε

Therefore, in the above simulation process, R̂i appears in L at least with the probability
of 2ε, B checks the elements in L one-by-one in step 5, so the probability of success of B is
equal to Pr[D]; therefore, B at least solves the IF problem with a non-negligible advantage
2ε, which is obviously in contradiction with the difficulty of large integer factorization,
so the advantage ε of an IND-CCA adversary A (KM or middleman) to break ADSS is
negligible. Therefore, the ADSS protocol is IND-CCA secure, and the theorem is proved.

5. Performance Evaluation
5.1. Simulation Experiment

The protocol has been verified in some universities for simulation experiments, in
which the performance parameters of the cloud server are: 600 MB bandwidth, 16-core
CPU, 64 GB memory, 8 TB storage; the performance parameters for the KM server are:
32-core CPU, 128 GB memory, 1 TB storage. Two computers are used to simulate the user to
upload and download. Both computers are desktop computers (4-core CPU, 8 GB memory,
500 GB storage). We select files with sizes of 1 KB, 3 KB, 10 KB, 30 KB, 100 KB, 300 KB, 1 MB,
3 MB and 10 MB, respectively, for simulation test. In the upload and download phase, the

Information 2021, 12, 340 12 of 14

time cost of ADSS and DaSCE protocols is shown in Tables 2 and 3, the unit of time cost
is seconds.

Table 2. Time cost of ADSS and DaSCE protocols in file upload stage.

Protocol
File Size 1 KB 3 KB 10 KB 30 KB 100 KB 300 KB 1 MB 3 MB 10 MB

DaSCE 0.217 0.238 0.249 0.250 0.455 0.560 1.078 4.989 7.238
ADSS 0.138 0.158 0.168 0.181 0.376 0.479 0.998 4.909 7.159

Table 3. Time cost of ADSS and DaSCE protocols in file download stage.

Protocol
File Size 1 KB 3 KB 10 KB 30 KB 100 KB 300 KB 1 MB 3 MB 10 MB

DaSCE 0.212 0.265 0.324 0.683 0.456 1.135 1.149 11.049 19.059

ADSS 0.131 0.164 0.223 0.181 0.582 1.106 1.068 10.967 18.960

Figures 10 and 11 are the simulation charts we made with MATLAB. In the simulation,
the horizontal axis is the file size, the unit is KB, and the scale value is 100, 101, 102, 103,
104; the vertical axis is the time cost with unit s, where the scale value in Figure 10 is 10−1,
100, 101, and the scale value in Figure 11 is 10−1, 100, 101, 102; From Figures 10 and 11, we
can see that the time needed for ADSS is less than that of DaSCE.

Information 2021, 12, x FOR PEER REVIEW 14 of 16

Figure 10. Comparison of file upload times in two protocols.

Figure 11. Comparison of file download times in two protocols.

5.2. Performance Analysis
In the file upload stage, compared with DaSCE, this solution adds blinding calcula-

tion and UKey storage, eliminating key exchange (including digital signature) and one
encryption calculation { }

iSK , so the running time for this solution should be shorter than
DaSCE at this stage.

In the file download stage, compared with DaSCE, this solution increases the user’s
reading from UKey, eliminating the need for blind calculations, key exchanges (including
digital signature), and one-time encryption calculation { }

iSK . Therefore, the running time
of this solution at this stage should be longer than DaSCE is short.

In summary, the total running time for this program should be shorter than DaSCE.

6. Conclusions
Data security on the cloud affects the development of cloud technology applications.

Reasonable and effective security algorithms and access control methods can improve

Figure 10. Comparison of file upload times in two protocols.

5.2. Performance Analysis

In the file upload stage, compared with DaSCE, this solution adds blinding calcula-
tion and UKey storage, eliminating key exchange (including digital signature) and one
encryption calculation {K}Si

, so the running time for this solution should be shorter than
DaSCE at this stage.

In the file download stage, compared with DaSCE, this solution increases the user’s
reading from UKey, eliminating the need for blind calculations, key exchanges (including
digital signature), and one-time encryption calculation {K}Si

. Therefore, the running time
of this solution at this stage should be longer than DaSCE is short.

In summary, the total running time for this program should be shorter than DaSCE.

Information 2021, 12, 340 13 of 14

Information 2021, 12, x FOR PEER REVIEW 14 of 16

Figure 10. Comparison of file upload times in two protocols.

Figure 11. Comparison of file download times in two protocols.

5.2. Performance Analysis
In the file upload stage, compared with DaSCE, this solution adds blinding calcula-

tion and UKey storage, eliminating key exchange (including digital signature) and one
encryption calculation { }

iSK , so the running time for this solution should be shorter than
DaSCE at this stage.

In the file download stage, compared with DaSCE, this solution increases the user’s
reading from UKey, eliminating the need for blind calculations, key exchanges (including
digital signature), and one-time encryption calculation { }

iSK . Therefore, the running time
of this solution at this stage should be longer than DaSCE is short.

In summary, the total running time for this program should be shorter than DaSCE.

6. Conclusions
Data security on the cloud affects the development of cloud technology applications.

Reasonable and effective security algorithms and access control methods can improve

Figure 11. Comparison of file download times in two protocols.

6. Conclusions

Data security on the cloud affects the development of cloud technology applications.
Reasonable and effective security algorithms and access control methods can improve
user trust in cloud storage services, and the performance cost for the cloud storage system
should also be considered. This paper fully considers security threats from the semi-trusted
third-party KM and proposes an ADSS protocol. The analysis and simulation show that
the security of this protocol is higher than that of DaSCE, and the running time is shorter
than DaSCE, so it has higher practicality and operability.

Author Contributions: Conceptualization, P.Z. and H.C.; methodology, P.Z. and J.W.; software, Y.S.;
validation, P.Z., H.C. and Y.S.; formal analysis, H.C.; investigation, H.C.; resources, P.Z.; data curation,
J.W.; writing—original draft preparation, H.C.; writing—review and editing, P.Z.; visualization, P.Z.;
funding acquisition, Y.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China, grant number
12071112 and 11471102.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This work was supported by the National Natural Science Foundation of China,
grant number 12071112 and 11471102.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Davood, R. Secure computation for cloud data storage. {IACR} Cryptol. ePrint Arch. 2019, 2019, 709.
2. Anbuchelian, S.; Sowmya, C.M.; Ramesh, C. Efficient and secure auditing scheme for privacy preserving data storage in cloud.

Clust. Comput. 2017, 22, 9767–9775. [CrossRef]
3. Xian, H.; Liu, H.; Zhang, S.; Hou, R. Verifiable secure data deduplication method in cloud storage. J. Softw. 2020, 31, 455–470.
4. Nalini, C.; Suresh, R.G. The service of trusted third party in multiple public clouds in dual encryption security mechanism. Int. J.

Pure Appl. Math. 2018, 119, 10847–10856.
5. Song, H.; Li, J.; Li, H. A Cloud Secure Storage Mechanism Based on Data Dispersion and Encryption. IEEE Access 2021, 9,

63745–63751. [CrossRef]
6. Ali, M.; Bilal, K.; Khan, S.U.; Veeravalli, B.; Li, K.; Zomaya, A. DROPS: Division and Replication of Data in Cloud for Optimal

Performance and Security. IEEE Trans. Cloud Comput. 2015, 6, 303–315. [CrossRef]
7. Zhang, Y.; Xu, C.; Shen, X.S. Data Security in Cloud Storag; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–171.
8. Ogiela, L.; Ogiela, M.R.; Ko, H. Intelligent Data Management and Security in Cloud Computing. Sensors 2020, 20, 3458. [CrossRef]

[PubMed]
9. Han, P.; Liu, C.; Wang, J. Research on data encryption system and technology for cloud storage. J. Commun. 2020, 41, 55–65.

http://doi.org/10.1007/s10586-017-1486-z
http://doi.org/10.1109/ACCESS.2021.3075340
http://doi.org/10.1109/TCC.2015.2400460
http://doi.org/10.3390/s20123458
http://www.ncbi.nlm.nih.gov/pubmed/32570956

Information 2021, 12, 340 14 of 14

10. Pan, J. Privacy Protection and Data Security in Cloud Computing: {A} Survey, Challenges, and Solutions. IEEE Access 2019, 7,
147420–147452.

11. Maharajan, K.; Paramasivan, B. Membrane computing inspired protocol to enhance security in cloud network. J. Supercomput.
2018, 75, 2181–2192. [CrossRef]

12. Wu, Y.; Ling, J. An improved data integrity verification method for cloud storage. Comput. Eng. 2019, 45, 36–40.
13. Zhan, Y.; Nie, W. The design of a security cloud storage system based on the trusted third party Providers. Softw. Guide 2018, 17,

186–188.
14. He, Z.; Li, N.; Xu, X. Data Security Scheme for a Trusted Third Party Platform Based on RSA One-time Key. IOP Conf. Ser. Earth

Environ. Sci. 2019, 234, 012046. [CrossRef]
15. Qian, C.; Xie, F. Cloud storage access control scheme using cp-abe based on trusted third party. Comput. Digit. Eng. 2017, 45, 122–126.
16. Zhou, S.; Chen, G.; Huang, G. Research on multi-authority cp-abe access control model in multicloud. China Commun. 2020, 17,

220–233. [CrossRef]
17. Akhila, M.; Hemalatha, E.; Parvathi, S.; Karthikeyan, L. Data security in cloud using semi trusted third party key manager. Int. J.

Sci. Res. Sci. Technol. 2016, 111–113.
18. Jin, Y.; Cai, C.; He, H.; Li, P. BTDA: Dynamic cloud data updating audit scheme based on semi-trusted third party. Comput. Sci.

2018, 45, 144–155.
19. Tang, Y.; Lee, P.P.C.; Lui, J.C.; Perlman, R. Secure Overlay Cloud Storage with Access Control and Assured Deletion. IEEE Trans.

Dependable Secur. Comput. 2012, 9, 903–916. [CrossRef]
20. Ali, M.; Malik, S.U.R.; Khan, S.U. DaSCE: Data Security for Cloud Environment with Semi-Trusted Third Party. IEEE Trans. Cloud

Comput. 2015, 5, 642–655. [CrossRef]
21. Ali, M.; Dhamotharan, R.; Khan, E.; Khan, S.U.; Vasilakos, A.V.; Li, K.; Zomaya, A.Y. SeDaSC: Secure Data Sharing in Clouds.

IEEE Syst. J. 2015, 11, 395–404. [CrossRef]
22. Stallings, W. Cryptography and Network Security: Principles and Practice, 6th ed.; Publishing House of Electronics Industry:

Beijing, China, 2014.

http://doi.org/10.1007/s11227-018-2629-6
http://doi.org/10.1088/1755-1315/234/1/012046
http://doi.org/10.23919/JCC.2020.08.018
http://doi.org/10.1109/TDSC.2012.49
http://doi.org/10.1109/TCC.2015.2446458
http://doi.org/10.1109/JSYST.2014.2379646

	Introduction
	Preliminaries
	Indistinguishability
	Indistinguishability of Chosen Ciphertext Attack
	Large Integer Factorization
	FADE Security
	DaSCE Protocol
	DaSCE File Upload
	DaSCE File Download

	ADSS Model Definition
	System Model
	Security Model
	ADSS Protocol
	File Upload
	File Download

	Security Analysis
	Performance Evaluation
	Simulation Experiment
	Performance Analysis

	Conclusions
	References

