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Abstract: A common problem in underwater side-scan sonar images is the acoustic shadow generated
by the beam. Apart from that, there are a number of reasons impairing image quality. In this paper,
an innovative algorithm improving contour extraction is presented. Contour extraction is based on
automatically estimating the optimal threshold for converting the original gray scale images into
binary images. The proposed algorithm clears the shadows and masks most of the impairments
in side-scan sonar images. The idea is to select a proper threshold towards the rightmost local
minimum of the histogram, i.e., closest to the white values. For this purpose, the histogram envelope
is approximated by two alternative contour extraction methods: polynomial curve fitting and data
smoothing. Experimental results indicate that the proposed algorithm produces superior results than
popular thresholding methods and common edge detection filters, even after corrosion expansion.
The algorithm is simple, robust and adaptive and can be used in automatic target recognition,
classification and storage in large-scale multimedia databases.

Keywords: side-scan sonar images; thresholding; edge detection; morphological operations; corro-
sion expansion; histogram; contour extraction; curve fitting; data smoothing

1. Introduction
1.1. Sonar Mapping Systems

Sonar systems are the best and often the only means to efficiently and accurately create
images of large areas of the seafloor. A wide variety of underwater acoustic instruments are
available today. Sonar mapping systems can be divided into three categories: single-beam
echo-sounders, multi-beam echo-sounders, and side-scan sonars [1].

Side-scan sonar (SSS) is a valuable tool for high-resolution seabed mapping for a wide
variety of purposes including the creation of nautical charts, as well as the detection and
identification of underwater objects and bathymetric features.

1.2. How Side-Scan Sonars Work

Side-scan sonar systems consist of a dual-channel tow-fish device capable of operating
in water depths for the survey and contain a tracking system [1,2]. The device is usually
towed from a surface vessel or submarine, or mounted on the ship’s hull (Figure 1).
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Figure 1. Side-scan-sonar principle. Source: [3].

The device emits conical or fan-shaped pulses down toward the seafloor across a wide
angle perpendicular to the path of the sensor through the water. The equipment is used
to obtain complete coverage of the specified areas and operates at scales commensurate
with line spacing, optimum resolution and 100% data overlap. This coverage is attained
by transmitting one beam on each side, broad in the vertical plane and narrow in the
horizontal plane (Figure 1). The height of the tow-fish above the seabed and the speed of
the vessel are adjusted to ensure full coverage of the survey area. The maximum tow-fish
height is 15% of the range setting. The intensity of the acoustic reflections from the seafloor
of this fan-shaped beam is recorded in a series of cross-track slices. When stitched together
along the direction of motion, these slices form an image of the sea bottom within the
coverage width of the beam. This instrument covers a much larger portion of the seabed
away from the surveying vessel, from a few tens of meters to 60 km or more.

The track line under the ship carrying the sonar, the acoustic shadow generated by
the beam, as well as many other factors (listed below), impair target detection [4].

Side-scan data are frequently acquired along with bathymetric soundings and sub-
bottom profiler data, thus providing a glimpse of the shallow structure of the seabed. Today
a wide variety of commercial components with excellent capabilities is available on the
market for every application.

1.3. Frequencies Used

The sound frequencies used in side-scan sonar usually vary from 100 to 500 kHz.
Higher frequencies yield better resolution but smaller range; frequencies from 6.5 kHz to
1 MHz achieve resolutions of 60 m down to 1 cm. A complete list of frequencies used in
underwater acoustics can be found in chapter 2 of [1].

Recorder settings are continuously monitored to ensure optimum data quality. On-
board interpretation of all contacts identified during the survey is undertaken by a geo-
physicist suitably experienced in side-scan sonar interpretation. The processing steps are
less standardized, depending on the manufacturer, despite the consensus on the types of
corrections desirable [5].
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1.4. Side-Scan Sonar Applications

Side-scan sonar imagery is frequently used to detect debris and other obstructions on
the seafloor that may be hazardous to navigation or to seafloor installations by the oil and
gas industry. A high-precision, dual-frequency side-scan sonar system can obtain seabed
information along the routes for example, anchor/trawl board scours, large boulders, de-
bris, bottom sediment changes, and any item on the seabed having a horizontal dimension
in excess of 0.5 m [5,6]. Side-scan data are frequently acquired along with bathymetric
soundings and sub-bottom profiler data, thus providing a glimpse of the shallow structure
of the seabed.

Side-scan sonar is also used for fisheries research, dredging operations, and environ-
mental studies. Multi-frequency, multi-sonar echosounders are used for benthic habitat
mapping [7,8].

Side-scan sonar may be used to conduct surveys for maritime archaeology [9]; in
conjunction with seafloor samples, it is able to provide an understanding of the differences
in material and texture type of the seabed.

Side-scan sonar is very popular in military applications such as Computer-Aided
Detection (CAD) and Classification (CAC) of mines [10], reconnaissance, H-Bomb and
shipwreck detection, etc. [4].

1.5. Objective and Paper Organization

This research deals with the problem of the detection of man-made objects detected
in side-scan sonar images. Man-made objects tend to have regular shapes which can be
identified by obtaining their contour [4]. The most common process for separating an
image into regions or their contours corresponding to objects is segmentation. Contours are
obtained by identifying differences between regions (edges). Since the simplest property
which pixels in a region can share is intensity, the simplest method for image segmentation
is thresholding [11,12]. Thresholding is an important technique in image segmentation,
enhancement, and object detection. Thresholding creates binary images (pixel values 0
or 1) from grayscale images (pixel values from 0 to 255) by turning all pixels below some
threshold to zero (i.e., black) and all pixels above that threshold to one [11–14].

Histograms show that side-scan sonar images are in general multi-mode images; hence,
our target is to compute a proper threshold given the image histogram. The objective of
this work is to propose adaptive thresholding methods for contour extraction in side-scan
sonar images, confronting shadows and other impairments produced by various causes.
The resulting black and white image should contain the outline of the object for further
processing such as automatic target recognition, classification, and storage in large-scale
multimedia databases.

In order to demonstrate the concepts, two Octave scripts implementing the proposed
algorithms have been developed, one for each method. The scripts have 430 and 400 lines
of code respectively and are also compatible with MATLAB (with the exception of the
Octave data smoothing functions).

This paper is organized as follows: Section 2 presents related work and common
problems in SSS research; Section 3 presents the research results obtained by conventional
methods. In Section 4 the proposed algorithm is presented. Section 5 presents the results
of the proposed methods using a case study. A discussion follows in (Section 6). Finally,
Section 7 concludes the paper.

2. Literature Review and Reseach Problems
2.1. Related Work

Several algorithmic techniques for image thresholding have been presented in the liter-
ature. Otsu’s optimal thresholding technique [11,12,15] calculates a global threshold value.
It starts by computing the gray-level histogram of an image and then the global threshold is
determined by minimizing the so-called within-class variance of the thresholded black and
white pixels. It works well with images having uniform distribution of black background



Information 2021, 12, 354 4 of 24

and white foreground pixels. It essentially maximizes the weighted distances between the
global mean of the image histogram and the means of the background and foreground
intensity pixels. Several improvements of the Otsu’s technique have been proposed in
the bibliography [16]. An improvement of Otsu’s threshold segmentation technique for
underwater application with simultaneous localization and mapping-based navigation is
presented in [17]. Otsu’s method for automatic image thresholding is implemented by the
function graythresh.m in MATLAB [11,18] and Octave [19].

Gonzalez and Wood’s technique [11,13,20] also finds a global threshold value. It starts
by selecting an initial threshold value T between the minimum and maximum intensity
values in the image. Then using this T value, the image is segmented into two groups to
produce pixels in group G1 with intensity values greater than or equal to T, and pixels in
group G2 with intensity values less than T. Next it computes the mean intensity values µ1 in
group G1 and µ2 in group G2; the new threshold value is calculated as the average between
the two mean values, i.e., Tnew = (µ1 + µ2)/2. This procedure continues recursively until
the difference in T in successive iterations is smaller than a predefined value T0.

Singh and co-researchers [21] devised a locally adaptive thresholding technique to
accommodate degraded document images without uniform distribution of background
and foreground pixels. Their technique uses local mean and mean deviation to remove
the background pixels. The local mean computation is independent of the window size
and uses the integral sum image for pre-processing; as a result the authors claim that their
technique is faster compared to other local thresholding techniques.

Arora and co-researchers [22] proposed an algorithm to determine an optimum num-
ber of thresholds to segment an image using mean and variance values for each segment.
The optimum number of thresholds is determined by utilizing the Peak Signal to Noise
Ratio (PSNR) of the original and segmented images, as the rate of increase in the PSNR
decreases with the number of thresholds n and tends to saturate. After determining the
optimum number of thresholds, the algorithm, starting from the values at both ends of
the original histogram plot, is applied recursively on sub-ranges computed from the previ-
ous step, so as to find a threshold value and a new sub-range for the next step, until no
significant improvement on image quality is achieved.

Chang and Wang [23] use a lowpass/highpass filter repeatedly to adjust (decrease/
increase) the number of peaks or valleys to a desired number of classes and then the
valleys in the filtered histogram are used as thresholds. Unfortunately, many thresholding
algorithms are not able to automatically determine the required number of thresholds, as
has been noted by Whatmough [24].

An approach for edge detection in Synthetic Aperture Radar (SAR) images using
region-based active contours is presented in [25]. Other related works and surveys for
image thresholding techniques and their performance evaluation can be found in [26–28].

2.2. Problems in Side-Scan Sonar Research

The problems investigated in side-scan research fall into one of the following cate-
gories:

2.2.1. Sound Problems

1. Signal degeneration in the ocean is due to:

(a) refraction of sound;
(b) attenuation of sound;
(c) reflection from surface and bottom and Lloyd mirror effect;
(d) signal fluctuation.

2. Scattering of sound in the ocean is due to [29]:

(a) dependence on the properties of the sound source;
(b) dependence on time;
(c) distribution of the scatterers in the ocean;
(d) frequency and coherence characteristics of the scattered sound.
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Especially the single transmitter/single receiver systems face two common problems:

(e) the system response is range variant;
(f) the range curvature effect also called range migration [10].

3. The formation of echoes is another common problem [10,30].
4. The interference of the returned echoes, due to multiple reflections, each with different

received frequency and power, fades and distorts the signal.

2.2.2. Illumination Problems

1. Ensonification variation. Changes in the acoustic signals lead to illumination variation
in the video scenes, resulting in false detection of foreground objects [31].

2. Shadows. Objects (targets) on the seabed create acoustic shadows when hit by the
side-scan sonar signals (see Figure 1). Hard shadows are very dark and should
be detected as background. However, the existing methods fail to detect the hard
shadows [31].

3. Carrying vehicle problems, including varying speed, changes in direction, changes in
the attitude of the tow-fish [23], etc.

2.2.3. Other Problems

1. Camera jitter. In real surveillance applications, the camera itself moves frequently.
Hence, the pixel correspondence between the background and the image changes
frequently [31] resulting in artifacts appearing as extra noise.

2. Rapid changes in temperature (thermocline zone) or salinity (halocline zone) or the
presence of strong chemical gradients (chemocline zone) reduce the scan range and
distort the image. These phenomena take place below the surface zone (typically, at
depths of 1000 m or more) [32].

3. Ocean instabilities like waves, water currents, wind, etc. [10].

3. Contour Extraction Using Conventional Methods

In this section, we delve into the problem of contour extraction using conventional
methods. As we shall see, the conventional methods produce poor contours because they
cannot successfully remove hard shadows and other artifacts which impair side-scan sonar
images. In this research, we consider 8-bit, 2D grayscale images. Hence, the pixel values
range from 0 to 255, with 0 representing absolute black and 255 representing absolute white.
For binary images, the pixels can be 0 or 1.

The test image of our case study is shown in Figure 2. An ideal contour extraction
method is expected to eliminate the acoustic shadow (black area), mask excessive light
(white pixels at top left), filter the background noise, and keep only the ship contour (as
white on a black background).

3.1. Using Popular Thresholding Methods

In this subsection, the performance of popular legacy thresholding methods such as
Otsu’s and Gonzalez–Woods’ thresholding algorithms will be presented.

To implemented Otsu’s method we first use the function ‘graythresh’ to compute
a global threshold from the grayscale image; next we use this threshold to convert the
grayscale image to binary using function ‘im2bw’ [11,19]. The result produced by Otsu’s
method is shown in Figure 3. As we can see, the result is unsatisfactory because shadows
remain and the background noise is not eliminated.
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Figure 2. Test image Klein (grayscale).

Figure 3. Binary image after Otsu’s thresholding.



Information 2021, 12, 354 7 of 24

Optimal threshold is computed by the function ‘opthr’ [19]. Optimal thresholding
also fails for the same reasons (Figure 4).

Figure 4. Binary image after optimal thresholding.

The Gonzalez–Woods method is implemented by code adapted from [11]. The pro-
duced result is shown in Figure 5 and is not satisfactory as well.

Figure 5. Binary image after Gonzalez–Woods thresholding.
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In conclusion, popular legacy thresholding methods produce comparable results. All
of them fail to highlight the target because they are not intended to separate specific objects
(or modes) from the images, but instead, they treat all objects in the same manner.

3.2. Using Edge Detection Filters

A common method for contour extraction is edge detection [11,12]. Common edge-
detection algorithms have been proposed by Roberts (1965), Prewitt and Mendelsohn
(1966), Sobel (1970), and Canny (1986) [12], and have been implemented in MATLAB Image
Processing Toolbox [18], as well as Octave and its image package [19].

Figure 6 presents the result of four common edge detection filters with default pa-
rameters, namely: Sobel, Prewitt, Canny, and Laplacian of Gaussian (LoG). As we can see,
none of these common edge detection filters produces satisfactory results.

Figure 6. Result of edge detection filters with default parameters.

The result may be partially improved if we use filter parameters different from the
default values (but the concept is to design an algorithm that works automatically, i.e.,
without any interventions). After experimentation, we got the results presented in Figure 7.

The background noise has been largely removed but the shape of the boat is unclear
because the lines are thin and discontinuous. Another disadvantage is that the proper filter
parameters must be chosen experimentally for each particular image.

3.3. Using Morphological Transformations

Morphological image processing consists of a set of operators which transform images
using mathematical morphology [11,12,33]. The basic morphological operators are erosion,
dilation, opening, and closing. The fundamental operations are erosion and dilation;
opening is the dilation of the erosion of an image while closing is the erosion of the dilation
of that image, also referred to as ‘corrosion expansion’ [34]. Octave and MATLAB support
morphological operations with several functions of their image processing libraries [19,35].
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Figure 7. Result of edge detection with common filters (selected parameters).

Figure 8 presents the result of corrosion expansion (closing) for the binary image
obtained after Otsu thresholding. The result is bad because the shadow and the background
noise remain, so the object contour is not clear. Figure 9 presents the result of the corrosion
expansion algorithm of the Kirsch edge detection filter [11,19]. There is some improvement
but still, the target is not clear while much of the noise remains.

Figure 8. Corrosion expansion on the Otsu binary image.
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Figure 9. Corrosion expansion on Kirsch edge detection.

Figure 10 presents the result of the corrosion expansion algorithm of the aforemen-
tioned four edge detection filters of Figure 7. As we can see, corrosion expansion improves
significantly as the result of Kirsch, Sobel, and Prewitt edge detection filters but the target
contour is still poor.

Figure 10. Result of closing on common edge detection filters.
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4. Methodology—Proposed Solution
4.1. The Concept

In practice, side-scan sonar images are multimodal [15] (the modes being non-Gaussian);
hard shadows form a black mode (peak) on the left of the histogram, object edges (along
with noise in some cases) form another mode on the right of the histogram, and the back-
ground (possibly with part of the object) form a central (gray) mode in the middle of the
histogram. Hence, the problem of calculating the optimal threshold reduces to finding the
valley between two overlapping peaks (modes) representing the background (gray pixels)
and the object contour (almost white pixels).

In the grayscale image, the contour of the objects is white, hard shadows are black
and the background is gray, roughly. An ideal thresholding algorithm should isolate the
contour, in other words, the whitest (rightmost) mode. Therefore, the proposed algorithm
places the threshold at the valley just before the rightmost mode of the histogram and uses
this threshold in order to convert the grayscale image into a binary image.

4.2. Locating Peaks and Valleys

A simple way to calculate a suitable threshold is to find the local maxima (correspond-
ing to modes) and the local minima (valleys) between them. While this method appears
simple, there are two problems to be solved:

1. The sum of two or more separate non-Gaussian distributions, each with their own
mode, may not produce a distribution with distinct modes.

2. The histogram is very rough (unsmooth), containing many local minima and maxima.
To get around this, the histogram should be smoothed before trying to isolate the
separate modes.

To overcome the above problems we propose the following two alternatives:

1. Polynomial curve fitting with MATLAB’s and Octave’s polyfit [36,37] and polyval
[38,39] functions.

2. Smoothing with Octave’s regdatasmooth [40] and rgdtsmcore [41] functions.

4.3. The Process

A proper algorithm should filter out the background noise and the acoustic shadow,
keeping only the contour of the objects. In addition, it should emphasize the contour, a
process that improves the result when the contour is very thin or discontinuous.

In the proposed algorithm, contour extraction is based on automatically estimating
the optimal threshold for converting the original grayscale image into binary.

The algorithm steps are outlined in Table 1.

Table 1. Flowchart of the proposed algorithm.

Step Process

1 Input grayscale image
2 Compute the histogram
3 Calculate the envelope of the histogram
4 Approximate the envelope with a curve
5 Compute minima (valleys) of the curve
6 Compute optimal threshold
7 Produce binary image

Analytically the steps are as follows:

1. Input the grayscale SSS image to process.
2. The histogram of the original grayscale image is computed.
3. Calculate the envelope of the histogram.
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4. The envelope of the histogram is approximated by two methods. In method 1 we
use polynomial curve fitting. This process resolves noisy histograms resulting in few
maxima and minima. In method 2, data smoothing algorithms produce a smooth
curve from the envelope of the histogram.

5. The maxima and minima of the above curves are calculated. The abscissas (x-values)
of peaks and valleys are then computed.

6. The optimal threshold is the valley before the rightmost peak (mode) of the histogram.
7. Convert the grayscale SSS image into a binary image using the optimal threshold.

Experimentally, it turns out that the optimal threshold value produces few white
pixels (2–5%) which represent the foreground object (not just its edges) and filters out
the background noise and hard shadows.

5. Results

In this section a step by step demonstration of the procedure will be presented. The
test image of Figure 2 will be used.

5.1. Method 1: Curve Fitting

Figure 11 presents the histogram of the test image. As we can see, this is a tri-modal
histogram; the proposed algorithm places the threshold just before the rightmost peak,
between x = 200 and x = 250.

Figure 11. Histogram of test image.

Figure 12 presents the envelope of the histogram. The result is not satisfactory because
it contains many local minima and maxima.
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Figure 12. Histogram envelope.

Next, polyfit and polyval functions are used to approximate the envelope with a
polynomial of degree n = 6. Figure 13 presents the envelope of the histogram and the curve
of the fitting polynomial.

Figure 13. Histogram envelope and fitting polynomial for n = 6.

Figure 14 presents local maxima and minima. The maximum of the polynomial curve
corresponding to the central mode is numbered 2. The peak is at x = 118. It also presents
the minima (numbered 1 and 3). The valleys are at x = 40 and 234. Valley at x = 234 satisfies
our requirements and produces the result shown in Figure 15 which is satisfactory.
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Figure 14. Maxima and minima of the polynomial curve.

Figure 15. Result obtained by the proposed method 1—curve fitting.

5.2. Method 2: Data Smoothing

The algorithm follows the same steps presented in Table 1 but differs in step 4: method
2 uses data smoothing. A special library such as Octave Data smoothing package [42]
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will be used. Two functions from this package were used: (a) regdatasmooth [40]; (b)
rgdtsmcore [41].

Regdatasmooth smooths the y vs. x values of the histogram envelope by Tikhonov
regularization. Regdatasmooth is the recommended function because it can be used directly
and has more features. This function also returns the regularization parameter lambda
that was used for the smoothing. Rgdtsmcore also smooths y vs. x values by Tikhonov
regularization. It needs lambda as an input variable [42].

Figure 16 presents the data-smoothing curve produced by regdatasmooth. The fit
is worse than that of method 1 but the value of the local minimum (i.e., the threshold) is
correct (x = 232) and very close to that of method 1 (x = 234).

Figure 16. Data-smoothing achieved by regdatasmooth.

Figure 17 presents the resulting image produced by regdatasmooth and is comparable
to that of method 1 (Figure 15).

Figure 17. Data-smoothing achieved by regdatasmooth.
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Figure 18 presents the data-smoothing achieved by rgdtsmcore. Again the fit is worse
than that of method 1 but the calculated threshold (x = 236) is correct and very close to that
of method 1 (x = 234).

Figure 18. Data-smoothing achieved by rgdtsmcore.

Figure 19 presents the resulting image produced by rgdtsmcore.

Figure 19. Data-smoothing achieved by rgdtsmcore.
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5.3. Comparison with Other Methods

The thresholds computed by methods 1 and 2 are shown in Table 2. On the second
row there is the computed threshold in the range (0, 255) while on the third row there is the
normalized threshold in the range (0, 1). Clearly, the thresholds computed by our algorithm
are close to each other and far from those computed by legacy thresholding methods.

Table 2. Thresholds computed by legacy methods vs. proposed.

Otsu Optimal Gonzalez Curve Fitting Regdatasmooth Rgdtsmcore

110 111 111 234 232 236

0.43137 0.43628 0.43628 0.91765 0.9098 0.9255

5.4. Further Contour Enhancement

A further enhancement is possible when the detected object contour is thin. Mor-
phological transformations can be used to improve the contour of the target [11,12,33].
Figure 20 demonstrates the result of corrosion expansion for our test image, implemented
as erosion of the dilation of the outcome of our method 1. Dilation highlights the target but
also the white background noise (top left). Erosion suppresses the background noise but
makes the target contour thinner.

(a) Image after dilation (b) Image after erosion

Figure 20. Result of corrosion expansion on the image of Figure 15.

5.5. Other Test Images

In this subsection concise results obtained by method 1 for the following test images
are presented: Frank Palmer, shipwreck world, boat, Florida’s treasure coast, and bike.
Each of these images represents a particular case but the proposed algorithm produces
satisfactory results in all cases. The results obtained by method 2 are similar and are
omitted for reasons of brevity.

5.5.1. Test Image Frank Palmer

The challenges in this test image are to separate the object from the background
and to filter out the black triangles (top right and bottom left) which correspond to areas
not covered by the side-scan sonar beam. Additional artifacts due to several problems
explained in Section 2.1 also exist (Figure 21).
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Figure 21. Results for test image Frank Palmer.

5.5.2. Test image Shipwreck World

The challenge of this test image is the shadows and the varying illumination (Figure 22).

Figure 22. Results for test image shipwreck world.

5.5.3. Test Image Boat

The problem in the test image boat is the hard shadows inside and outside the boat
(Figure 23).

Figure 23. Results for test image boat.

5.5.4. Test Image Florida’s Treasure Coast

The problems in test image Florida’s Treasure Coast are the low resolution and the
hard shadow (Figure 24).
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Figure 24. Results for test image Florida’s treasure coast.

5.5.5. Test Image Bike

The proposed method works also on “tough” images such as bike, with a noisy, poor
quality histogram—when all other methods fail (Figure 25).

Figure 25. Results for test image bike.

6. Discussion

In this paper we have presented a novel algorithm that improves contour extraction
in SSS images. Our results can be useful in applications searching for man-made objects on
the seafloor such as maritime archaeology, shipwreck detection, military applications, and
underwater development.

It is obvious that the performance of the proposed methods depends on the quality of
the input images. Clearly, poor-quality images will produce poor results. In Section 2.2 we
have presented a set of causes degrading image quality. Poor-quality images have poor
resolution, poor ensonification, noise, jitter, artifacts, etc.

6.1. Performance of Method 1

The performance of method 1 (curve-fitting) is affected by the degree of the fitting
polynomial, n. In our experiments we have successfully tested polynomial degrees from n
= 4 to n = 20; n = 6 works fine with all test images. The reason is that typically tri-modal
SSS image histograms have three peaks and three (or two) valleys (see Figure 11 and
Figures 21–25). Intuitively, they can be approximated by a polynomial of degree n = 6. In
other words, n = 6 produces a curve flexible enough to fit nicely to tri-modal histograms.
Degrees lower than 4 fail to faithfully follow the histogram envelope and may sometimes
miss the local minima just before the rightmost mode. Such a case is demonstrated in
Figure 26 for the test image boat with n = 3.
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Figure 26. Failure of threshold calculation due to poor fitting.

A different problem occurs when a low degree polynomial produces a threshold very
close to the end of the histogram (x = 255), which results in poor contour extraction. Such a
case is demonstrated in Figure 27 for test image shipwreck world with n = 5.

Figure 27. Bad threshold calculation due to poor fitting.

On the other hand, high degree polynomials (such as n = 10 or 16) can achieve a better
fit, but produce waveforms with a lot of fluctuation (overfitting). This results in multiple
local minima (valleys), raising the problem of optimal valley selection. Valleys with small x
values (e.g., around x = 180) fail to eliminate background noise, while valleys with large x
values (close to x = 255) produce nearly black images. The latter case is demonstrated in
Figure 28 for test image Frank Palmer. On the left we see the fitting polynomial of degree n
= 6; on the right, the fitting polynomial of degree n = 16 which produces multiple valleys.
The final valley produces a poor result (thin contour). Therefore, high degrees should be
avoided.



Information 2021, 12, 354 21 of 24

Figure 28. Method 1: Left: fitting polynomial of degree n = 6; right, fitting polynomial of degree n =
16 producing multiple valleys.

Method 1 does not perform well when there are very few white pixels, in which case
the 3rd mode (target) is under-illuminated.

6.2. Performance of Method 2

The performance of method 2 (data smoothing) in its current implementation is
very sensitive to the parameters of the data smoothing functions. Improper selection of
parameters may lead the smoothing algorithm to miss the rightmost mode. This case is
demonstrated in Figure 29 for the test image shipwreck world. These problems indicate
that settings for a particular set of images should be carefully selected.

Figure 29. Method 2: problem of no valley.

6.3. Comparison of the Proposed Methods

Our experiments demonstrated that method 1 always managed to produce satisfactory
results with polynomial degree n = 6 while method 2 with the specific functions had to be
slightly adjusted in a few cases.

6.4. Limitations of the Proposed Algorithm and Future Research

In this research we experimented mostly with SSS images that create tri-modal his-
tograms and found out that method 1 produces satisfactory results with polynomials of
degree n=6. But what about histograms with two, four or more modes? It is most likely
that the polynomial degree will have to be adapted to the number of modes, so this is an
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open research problem. In this case, we would like to make our algorithm adaptable to the
number of modes: in method 1 by automatically selecting the polynomial degree, while in
method 2 by automatically selecting the parameters of the data smoothing functions. We
would also like to explore additional data smoothing algorithms.

7. Conclusions

This paper presents an algorithm for contour extraction based on automatically esti-
mating the optimal threshold for converting SSS grayscale images into binary. Simulation
results obtained in Octave and MATLAB indicate that the proposed methods produce
superior results compared to popular thresholding methods (such as Otsu’s and Gonzalez’s
global thresholding) and common edge detection filters (namely Sobel, Prewitt, Canny, and
Laplacian of Gaussian), even after corrosion expansion. Moreover, the proposed algorithm
is simple, robust, and adaptive.

The algorithm accepts grayscale images as input. The concept is based on the fact
that SSS images are multimodal images and hence, seeks to isolate the rightmost mode
which corresponds to the target. The algorithm was tested on ten test images. The steps
of the algorithm are outlined in Table 1. In step 4, two different methods for finding the
optimal threshold, namely curve-fitting and data smoothing were demonstrated. Further
improvement is possible by means of morphological operations.

The proposed algorithm manages to extract the contour of man-made objects detected
in side-scan sonar images, by selecting a proper threshold that filters out the gray back-
ground and eliminates shadows and other impairments, leaving only the object contour
after the conversion to black and white.

The two proposed methods could be used in conjunction to enhance accuracy and
reliability. The optimal threshold calculated by our methods may be used to guide paramet-
ric popular edge-detection filters towards the best results. The resulting black and white
images can feed a target recognition system which could apply machine learning methods
in order to automatically classify the objects [4,43,44].

The produced black and white images highlight the target contour masking several
impairments and reduce the volume of storage needed; hence, they can facilitate automatic
target recognition, as well as classification and storage in large-scale multimedia databases.
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