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Abstract: Over the past decade, software development has evolved from a rigid, linear process to a
highly automated and flexible one, thanks to the emergence of continuous integration and delivery
environments. Nowadays, more and more development teams rely on such environments to build
their complex projects, as the advantages they offer are numerous. On the security side, however,
most environments seem to focus on authentication, neglecting other critical aspects, such as the
integrity of the source code and the compiled binaries. To ensure the soundness of a software project,
its source code must be secured from malicious modifications. Yet, no method can accurately verify
that the integrity of a project’s source code has not been breached. This paper presents P2ISE, a novel
integrity-preserving tool that provides strong security assertions for developers against attackers.
At the heart of P2ISE lies the TPM trusted computing technology, which is leveraged to ensure
integrity preservation. We have implemented the P2ISE and quantitatively assessed its performance
and efficiency.

Keywords: CI/CD pipeline; code integrity; trusted computing; TPM

1. Introduction

Recently, the programming community has witnessed a rapid increase in the adoption
of development methods, such as Development and Operations (DevOps), Agile and
Continuous Integration, and Continuous Delivery (CI/CD) by developers across the world.
Automation is a key aspect of the aforementioned methods, used to build, deliver, and
test high-frequent increments of features [1–3]. DevOps is defined as a set of practices
intended to optimize the time required between committing a change to the system and
for that change to be incorporated into the production code. Agile practices focus on
eliminating the aforementioned processes and accelerating product delivery, by quickening
the development life cycle. The CI/CD pipeline is considered to be among the best practices
for delivering code changes more frequently and reliably during code implementation. On
one hand, Continuous Integration (CI) can be described as the guided practices that enable
continuous surveillance in code repositories, allowing development teams to implement
changes in code and their check-in. To achieve this, relevant mechanisms are required for
the integration and validation of code changes derived from multi-platform features from
contemporary applications. Technically, we can define CI’s primary goal as providing a set
of tools to build, package and test applications in an automated and consistent way. This
consistency allows teams to increase the frequency of committing code changes, improving
both collaboration and software quality. On the other hand, the Continuous Delivery (CD)
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technique, which picks up at the end of CI, performs automation in application delivery
to particular infrastructures. The use of different environments for code production,
development, and testing, where multiple code changes are submitted at the same time,
has recently become a widely popular practice. CD provides an automated way to perform
those changes, keeping stored packaging parameters bound to every delivery.

Due to its features, CI/CD is one of the most popular practices used by software
developers to deliver code changes in the most reliable way. According to a survey by
DigitalOcean [4] on developer trends released in 2017, it was revealed that 42% of the
survey respondents and members of the DigitalOcean developer community use a CI/CD
solution, and they believe that its most beneficial aspect is that it allows developers to
quickly review and deploy code. The CI/CD pipeline consists of specific components;
however, it inherits the security considerations, which are related to the traditional IT
system but also connected to human behavior. Establishing mechanisms that protect
the integrity of a software project against cyber-attacks that threaten to compromise it is
of paramount importance for ensuring the robustness of the final product. Despite the
increasing popularity of CI/CD tools among the developer community and all the attention
they have been getting, to the best of our knowledge, there is no work in the literature
that proposes a way to guarantee the integrity of software projects as part of the CI/CD
pipelines. This paper identifies and analyzes the security gap that exists in the CI/CD
pipeline, regarding a software project’s integrity. To this end, we propose the P2ISE, a novel
tool that is tailored to the CI/CD concept and employs trusted computing technologies,
such as secure elements, to ensure the integrity of software projects. More specifically,
at the heart of P2ISE lies the TPM trusted computing technology that enables the secure
storage of critical data (e.g., cryptographic keys), as well as secure execution of sensitive
operations. The proposed P2ISE was designed, taking into account the existing, traditional
architecture of the CI/CD pipelines, which extends by introducing a new entity responsible
for ensuring the integrity of each software project. To assess the performance of P2ISE, we
have fully implemented and deployed a prototype utilizing a real TPM, which was used
to evaluate the median duration time, CPU utilization, and memory consumption of the
P2ISE processes against various software projects. Numerical results show that P2ISE can
efficiently operate without depleting developers’ resources. In summary, the paper makes
the following contributions:

• Define security and functional requirements of a tool that is meant to provide devel-
opers with CI/CD features following a security by design approach.

• Propose P2ISE, a solution for integrity preservation for software projects within CI/CD
environments based on the use of secure elements, in particular the TPM chipset. To
the best of our knowledge, this is the first paper that proposes a tool to bridge the
identified security gap.

• Assess the proposed P2ISE’s performance and qualitatively reason about its secu-
rity properties. For this purpose, we have implemented and evaluated it against
various projects.

The paper unfolds as follows: Section 2 presents essential background information on
CI/CD, the motivation of our work, the threat analysis we have performed on the CI/CD
pipeline, and finally the security and functional requirements we have identified based
on the developers’ needs. Next, Section 3 discusses the related work, whereas Section 4
elaborates on the processes of the P2ISE, describing in detail all the required steps. Section 5
includes a quantitative performance evaluation of P2ISE, and Section 6 discusses its security
properties. Lastly, Section 7 concludes the paper.

2. The CI/CD Concept
2.1. Definition and Participants

The CI/CD objective is to enable developers to deliver code changes as frequently as
needed, in the most reliable manner. For this reason, CI/CD foresees continuous testing,
which typically is offered as performance, regression, and another set of tests done within
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a CI/CD pipeline. Developers submit their code for commitment into the version control
repository. In addition, it is common practice to establish a minimal rate of daily code
commitments per team to facilitate the identification of defects and bugs on smaller delta
pieces of code rather than large-scale developments. Moreover, working on smaller commit
cycles reduces parallel working on the same code by multiple developer teams. Many
teams that implement continuous integration start with version control configuration and
practice definitions. Even though checking in code is frequently performed, features and
fixes are implemented in both short and longer time frames.

Different techniques are used to control and filter code for production in CI. Among
the most common practices is that which requires developers to run regression tests
in their environments, which implies that only code that passed the regression tests is
committed. We notice that it is commonplace for development teams to have at least one
development and testing environment, which allows for reviewing and testing application
changes. A CI/CD tool, such as Jenkins (https://jenkins.io/) (accessed on 22 August 2021),
CircleCI (https://circleci.com/) (accessed on 22 August 2021), AWS CodeBuild (https:
//aws.amazon.com/es/codebuild/) (accessed on 22 August 2021), Azure DevOps (https://
docs.microsoft.com/en-us/azure/devops/?view=azure-devops) (accessed on 22 August
2021), Atlassian Bamboo (https://www.atlassian.com/software/bamboo) (accessed on 22
August 2021), or Travis CI (https://travis-ci.com/) (accessed on 22 August 2021), is used to
automate the steps and provide reporting. A typical CD pipeline [2] includes the following
stages: (i) build; (ii) test; and (iii) deploy. Nonetheless, improved pipelines include also the
following stages: (i) picking code from version control and executing a build; (ii) allowing
any automated action, such as restarting or shutting down both cloud infrastructures,
services, or service endpoints; (iii) moving code to the target computing environment; (iv)
setting up and managing environment variables; (v) enabling services as API services,
database services or web servers to be pushed to application components; (vi) allowing
the rollback environments and the execution of continuous tests; and (vii) alerting on
delivery state and providing a data log. A CI/CD environment consists of (i) the Source
Code Control Server, which is responsible for managing changes to the project’s documents,
(ii) the Assembly Server, which receives the changes and assembles them; (iii) the Testing
Server and Deployment Server that validates the project work and then publishes the latest
version. Conceptually, each previously mentioned server is located on different premises.

2.2. Motivation

Software development has radically evolved over the last years, from classical rigid
models, such as the waterfall, to agile methodologies providing less docking among mem-
ber functions developments and being more oriented toward the impending automation
demanded by Industry 4.0 [5]. However, the related security requirements elicited from
the procedures followed in recent models were not carefully addressed. DigitalOcean [6]
published as part of a CI/CD best practices tutorial that the proper way to ensure a CI/CD
environment for a company devoted to a virtual server deployment under the premises
is the isolation from external access. Protecting the CI/CD server is crucial, and for that
purpose, several solutions exist, such as the use of secure shell (SSH) or private keys for
APIs connecting through services, such as GitHub (https://github.com/) (accessed on
22 August 2021) or GitLab (https://about.gitlab.com/) (accessed on 22 August 2021), to
the CI/CD environment. Moreover, the use of a strong password and a two-factor authen-
tication solution is also widely recommended [7]. However, Milka [8] revealed that less
than 10% of Google users make use of a two-factor authentication solution. Failure in
securing those keys could lead to source code filtering or code modifications as a result of
impersonation attacks.

Furthermore, CI/CD solutions provide an intermediate interface to manage Assembly
and Testing Server (i.e., Jenkins or GitLab) through a web interface. In the case of Jenkins, it
is enabled as credential-based access, and thus, the security of this interface is another issue
to consider. We notice that many providers ignore recommendations about CI/CD server
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isolation. Additionally, Paul et al. in [9] revealed that developers who work with the CD
pipeline are only familiar with the general security attributes and lack in-depth security
knowledge. As described in [6], failures in a CI/CD pipeline are immediately visible and
could halt the advancement of the affected release to the later stages of the cycle.

Nowadays, dockerization and virtualization are used to protect against unexpected
events. However, currently deployed software is not considered trustworthy because, on
most occasions, software security measures are not carefully considered. Deployment
tends to be isolated in host machines, restricting privileges and hardware access as much as
possible; however, it is controversial as to whether developers can rely on these measures or
not. The underlying software that controls these virtual machines acting as an intermediary
layer between every virtual machine and the hardware is the Hypervisor. Dedicated to
handling virtual machines, Hypervisor can become a single point-of-failure. For instance,
an attacker who gains control of Hypervisor can handle every virtual machine without
leaving any trace that could reveal the source of the attack. This technique is known as
hyperjacking [10], and its most common implementation is to insert a malicious Hypervisor
to replace the original one. The above is an example of a deployment pipeline attack
scenario; however, there are many possible attack scenarios. Figure 1 depicts how this
attack could be implemented in four steps: (i) the Developer implements a new feature,
and this is uploaded to the Source Code Control Server (Git-based server in most cases); (ii)
changes finished in the Source Code Control Server are sent to the Assembly and Tests Server;
(iii) the Assembly and Tests Server assembles a new software version and conducts unitary
test and linkage prepared for this software; and (iv) once the recommended tests are passed,
a new version of the software is made public (deployment).

However, assuming that every communication between the participants is secure, we
have identified that the most vulnerable participant is the Assembly and Testing Server. In
most cases, it is considered to be trusted because its interaction is restricted to insert source
code. Notwithstanding, we have identified a security gap in a process that is described
below. For example, we assume the existence of a malicious agent that is granted access
to the Assembly and Testing Server and inserts a piece of code for detecting every time the
source code is generated and files are modified. Then, it replaces a piece of a key source
code file, opening a backdoor. The changes are deployed since at this point, the source
code is considered checked and valid. Once the deployment is done, then the attacker can
complete his attack.

Figure 1. Identified Risk in Continuous Integration Process.
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2.3. Threat Analysis

To identify all possible threats for a CI/CD pipeline (see Figure 1) we utilize Microsoft’s
threat modeling tool that supports the STRIDE (Spoofing, Tampering, Repudiation, Infor-
mation Disclosure, Denial of Service and Elevation of Privilege) methodology. The scenario
that we draw contains the basic entities that participate in a CI/CD pipeline, which are the
following: (i) Developer; (ii) Source Code Control Service; (iii) Assembly and Tests Server and
(iv) Public Service. We assumed that the Developer is a human and does not authenticate
his/herself. Moreover, the Source Code Control Service uses both authentication and autho-
rization mechanisms, while the Assembly and Tests Server utilizes only an authorization
mechanism. Finally, the Public Service is represented as a Web Service and presents the
relevant updates. Defining this architecture, we can observe that the assets in this scenario
are distinguished in information and physical assets; these are summarized in Table 1.
However, at this point, we have to mention that the identified threats (see below) are
related with the specific architecture (see Figure 2). By this, we mean that a different use
case may generate different threats applicable to our scenario.

Figure 2. CI/CD process scenario in Microsoft threat modeling tool.

Table 1. CI/CD assets.

Information Assets Physical Assets

User credential Server
Authorization mechanism Computer (Developer’s PC)

Log information
Project code

Product (Public Service)

By applying the STRIDE methodology to the aforementioned scenario, we identify
the threats that are presented below.

T1. Elevation using impersonation: the Source Code Control Service may be able to imper-
sonate the context of a Developer in order to gain additional privilege.

T2. Elevation using impersonation: the Assembly and Tests Server may be able to imperson-
ate the context of the Source Code Control Service in order to gain additional privilege.

T3. Weak authentication scheme: custom authentication schemes are susceptible to common
weaknesses, such as weak credential change management, credential equivalence,
easily guessable credentials, null credentials, downgrade authentication or a weak
credential change management system. Consider the impact and potential mitigation
for a custom authentication scheme.

T4. Source Code Control Service process memory tampered: if the Source Code Control Service is
given access to memory, such as shared memory or pointers, or is given the ability
to control what the Assembly and Tests Server executes (for example, passing back a
function pointer), then the Source Code Control Service can tamper with the Assem-
bly and Tests Server. Consider whether the function could work with less access to
memory, such as passing data rather than pointers. Copy in the data provided, then
validate them.

T5. Collision attacks: attackers who can send a series of packets or messages may be able
to overlap data. For example, packet 1 may be 100 bytes starting at offset 0. Packet 2
may be 100 bytes starting at offset 25. Packet 2 will overwrite 75 bytes of packet 1.
Ensure data are reassembled before filtering them, and ensure that these sorts of cases
are explicitly handled.
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T6. Assembly and Tests Server process memory tampered: if the Assembly and Tests Server is
given access to memory, such as shared memory or pointers, or is given the ability to
control what the Public Service executes (for example, passing back a function pointer),
then the Assembly and Tests Server can tamper with the Public Service. Consider whether
the function could work with less access to memory, such as passing data rather than
pointers. Copy in the data provided, and then validate them.

T7. Replay attacks: packets or messages without sequence numbers or timestamps can be
captured and replayed in a wide variety of ways. Implement or utilize an existing
communication protocol that supports anti-replay techniques (investigate sequence
numbers before timers) and strong integrity.

T8. Elevation using impersonation: the Public Service may be able to impersonate the context
of the Assembly and Tests Server in order to gain additional privilege.

T9. Cross-site scripting: the web server Public Service could be subject to a cross-site scripting
attack because it does not sanitize untrusted input.

2.4. Security and Functional Requirements

As previously mentioned, the CI/CD is a concept that provides many advantages to
developers but also attracts attackers’ attention. Moreover, a CI/CD ecosystem inherits
the risks (see Figure 1) of traditional IT systems as well as the risks posed by the devel-
opers’ poor security practices. This leads to the conclusion that security and functional
requirements need to be clarified. Since the functional requirements of CI/CD ecosystems
are well-established in the literature, lately, the focus appears to be shifting toward the
security-related conditions that must be met by every proposed solution. For solutions
designed to address the needs of developers who employ the CI/CD pipeline, we define the
following security and functional requirements after considering the CI/CD components,
users’ security and functional demands, and the related research. We have to notice that
we redefine functional requirements following security by the design approach.

2.4.1. Security Requirements

Since a CI/CD ecosystem involves risks inherited from both the traditional IT system
and developers’ poor security practices, we re-establish the set of standard security require-
ments applied to it [11–15]. In addition, in “Who is Using Jenkins” (https://wiki.jenkins.io/
pages/viewpage.action?pageId=58001258) (accessed on 22 August 2021) there are projects,
such as KDE (https://kde.org/) (accessed on 22 August 2021), Apache (https://www.
apache.org/) (accessed on 22 August 2021), AngularJS (https://angularjs.org/) (accessed
on 22 August 2021) and Ubuntu (https://ubuntu.com/) (accessed on 22 August 2021) that
are publicly accessible and may offer significant help in the integration of general
security requirements.

S1. Data confidentiality: Code of a project within the CI/CD environment should be avail-
able only to responsible developers. No adversaries should be able to read and edit
the code of the software project.

S2. Data integrity: All code transactions (e.g., push commands) among the engaging entities
(developers) should be protected against malicious alternations. Each process should
be monitored and verified.

S3. Non-repudiation: Once a developer completes an action (e.g., code changes) then they
should not be able to deny it; each actor should be responsible for their actions. This
leads to the fact that each action should be monitored and securely recorded.

S4. Accountability: A developer should be held accountable for his/her actions.

2.4.2. Functional Requirements

Apart from the security requirements, a CI/CD pipeline has processes that require
specific functionalities to be enabled. Analyzing the literature [12,15], we redefine the es-
tablished requirements following the developing norms and a security by design approach.

https://wiki.jenkins.io/pages/viewpage.action?pageId=58001258
https://wiki.jenkins.io/pages/viewpage.action?pageId=58001258
https://kde.org/
https://www.apache.org/
https://www.apache.org/
https://angularjs.org/
https://ubuntu.com/
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F1. Passive storage with no shared access: Data that should be accessed only by entities that
are authorized by the owner for specific actions need to be protected against access
attempts by unauthorized entities or to unauthorized actions, while maintaining
availability for authorized users.

F2. Privileged activity tracking: All modification attempts should be monitored.
F3. Integrity verification: Each modification attempt should be verified via a hash function

before being deployed to avoid malicious activities.
F4. Key utilization: The keys that are used for modifications should be created and stored

only inside the TPM, preventing possible hardware attacks and data leakage.
F5. Time consuming: Since the deployment of project modifications depends on the

project’s size, the time added due to the extra verification should not negatively
affect the CI/CD performance.

3. Related Work

The literature in the field of P2ISE contains the security approaches in CI/CD environ-
ments and the technology of the secure element.

3.1. Security Approach in CI/CD Environment

While there is a plethora of works that highlight the importance of security in CI/CD
pipelines, to the best our knowledge, this is the first paper that proposes the incorporation
of an integrity-preserving method in the CI/CD pipeline, leveraging, for this purpose,
trusted computing technologies. This work is an extended version of the paper entitled
“ICITPM: Integrity Validation of Software in Iterative Continuous Integration Through
the Use of Trusted Platform Module (TPM)” by Muñoz et al., that was published in the
proceedings of the 1st Workshop on Dependability and Safety Emerging Cloud & Fog
Systems (DeSECSys 2020) [16]. In particular, this extended version includes the followin: (i)
a detailed model of possible threats in the study architecture and a precise justification of
the need to use a secure element as a trust anchor; (ii) a summary of different benchmarking
tests that were carried out to analyze different projects that exhibit a variety in terms of size
and conditions, which demonstrate with real figures the impact that the proposed solution
has in terms of performance; and (iii) a discussion related to the security features of P2ISE.
Parts of the work in [16] are reused in the present paper.

As mentioned above, the use of CI/CD has become a prominent practice within the
software development community. There are different works, such as [17], that review
some of the most commonly used practices for CI/CD with a specific provider (Azure
Kubernetes), while others focus on the use of proprietary tools, such as GitOps for a Kuber-
netes CI/CD pipeline. Other works propose ways for organizations to incorporate security
practices in the CD process [18] and the separation of duties with the consequent division of
development, security and operations roles (DevSecOps), by introducing automation mech-
anisms that reduce the need for a human interface, or by using a development framework
for Trusted Execution Environments (TEE) on top of deployment artifacts for their protec-
tion [11]. Moreover, authors in [6] proposed a gate-keeping mechanism that safeguards the
most important environments from untrusted code through a physical separation between
the Testing Server and Assembly Server. This, nevertheless, produces a false sense of security
since the integrity of the source code is not guaranteed.

We have to note that P2ISE is not the first work that utilizes secure elements to
reinforce the security of the CI/CD pipeline. The integration of secure elements was also
suggested in previous works. Despite the effort for different TEE implementations, such
as ARM TrustZone, Intel SGX and recently AMD SEV, to be introduced and leveraged
in the software development process, TEEs have so far been more prominent on mobile
devices [19]. The proposal from Asylo [11] achieves a breakthrough in improving the
CI/CD process by integrating an additional step so that artifacts are protected against
untrusted administrators, achieving a high level of protection, even from cloud service
providers. Yet, it does not provide a solution to the gap identified and solved in this work.
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Bass et al. [13] proposed an engineering process within trusted components embedded
in parts of the pipeline, which is intimately related to our approach, although the use
of trusted hardware is not foreseen. Moreover, in [14], different security tactics were
applied between CD components communications with encouraging results, whereas
Rimba et al. [15] presented an approach based on the use of composing patterns to address
security issues in the CD pipeline.

Moreover, Mood et al. presented Nomad [20], a defense system against known and
future side channels, and Deepa et al. [21] dealt with securing web applications from
injection and logic vulnerabilities or approaches based on static analysis and run-time
protection and the mitigation of the vulnerability impact based on security testing tech-
niques [22]. Lipke [23] studied threats in the CD pipeline, using the STRIDE methodology,
implementing a proof-of-concept based on Docker. Schneider [24] proposed a four-staged
dynamic security scanning methodology (pre-authentication scanning, post-authentication
scanning, back-end scanning and scanning workflows specific to the targeted application).
Additionally, the same author introduced the SecDevOps Maturity Model (SDOMM). This
can be considered instructions for automatically achieving particular security aspects in
the CI pipeline.

In summary, the related work on the security issues of the CI/CD pipeline copes with
various emerged challenges. However, the preservation of integrity is a requirement that
has not been met yet. Therefore, a new scheme dedicated to the integrity preservation is
required. The proposed P2ISE aims to bridge the gap and enhance the security level of the
CI/CD pipeline in general.

3.2. Secure Element as Trust Anchor

The technological pillar of the proposed solution that provides indisputable security
properties is a secure element (SE) with the role of the trust anchor. Our concept of secure
element is, by design, protected from unauthorized access via a microchip with features,
such as data storing and secure running of applications, inside itself.

SE can typically be found as a dedicated chip installed on the motherboard of a device
(i.e., a smartphone), in an external element, such as a flash memory card, in the circuitry of
devices, such as the SIM card itself, used in mobile phones, or as a cloud service in Host
Card Emulation technology. A new family of embedded environments, known as Trusted
Execution Environments (TEE) [25,26], has emerged. A TEE is a hardware environment
with a secure operating system that is isolated and completely separated from the mobile
platform. The concept behind a TEE implementation is to provide an independent execu-
tion environment that runs alongside the operating system [27]. This environment provides
certain security services to the native operation system [28]. Over the last few years, work
has been ongoing to standardize the TEE architecture itself as well as the interfaces to
interact with environments, such as secure environments and SE led by GlobalPlatform
(https://globalplatform.org/) (accessed on 22 August 2021). The main objective of this
standardization is to provide a hardware and software environment for securing applica-
tions, such as banking or corporate applications. Moreover, Matetic et al. [29] proposed a
flexible delegation system with a TEE-based implementation on any browser-based device
(smartphone, laptop, desktop, tablet, etc.) that can be also considered SE. In the case of TEE,
two implementations were taken as reference: the proposal of Intel SGX and the proposal
of TrustZone and the Global Platform TEE implementation. These two implementations
were taken as references since the range of TEE capabilities is very wide, and each alter-
native offers different sets of features, but these are widely used and representative of
different approaches.

Since specific requirements were extracted (see Section 2), we have decided to inte-
grate the implementation of Infineon’s TPM as a technology of the Trusted Computing
standard. The Trusted Platform Module (TPM) is useful for data protection, as well as for
the generation of platform integrity tests, which for our case is a basic feature. However,
TPM devices are known to come with certain restrictions. Among them, the most significant

https://globalplatform.org/
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one is the investment required for this device. For these reasons, we have include a detailed
comparison among these TPM and TEE implementations to support our decision.

Vasudevan et al. [30] described the following TEE objectives: (i) isolated execution;
(ii) secure storage; (iii) integrity, confidentiality; (iv) freshness; (v) remote attestation;
(vi) secure provisioning; and (vii) path of trust. Among these required properties, for any
TEE, we have to assume that it is difficult to find all of them in the same TEE implementation.
Another TPM advantage is that its specification is open with all that this entails in terms of
transparency and evolution, while the Intel SGX implementation is a closed one.

Regarding the functional requirements described above (see Section 2), passive storage
with no shared access can be achieved using both TPM and TEE. However, we have to
consider the number of vulnerabilities found in TEE implementations, as those focus
on the isolation between worlds [31,32], the wide attack surface [33,34], and memory
side-channel attacks [35–42]. Moreover, there are side-channel attacks focusing on the
TEE covert channel communication Prime + Probe [35], Evict + Time [35], Flush(Evict) +
Reload [36] and Flush + Flush [37]. Therefore, we can safely deduce that TPM is a more
robust alternative than TEE.

Furthermore, the activity tracking requirement can be addressed, using both TPM
and TEE. However, the integrity verification related to that required tamper-proof resistant
feature to avoid possible attacks, such as meltdown [43] and spectre [44], is provided
only from TPM. As keys are issued and stored within the TPM, this feature contributes
to building the integrity required. The last functional requirement to be considered is the
time consumption. However, in terms of efficiency, TPM is less efficient since it only has a
slow communication bus with the CPU, while in TEE, the code is executed directly on a
more powerful main CPU, giving a higher level of efficiency, being faster as well as having
access to all the RAM available to the OS at the time of execution.

In terms of functionality, the design of the TPM states that the processor of the module
itself remains isolated from the CPU. For this reason, the TPM can only operate with what
is provided to it, i.e., it is a passive device that must be accompanied by certain software to
make use of its functionality. Indeed, an additional software is needed but some implemen-
tations, such as tpm2 (https://github.com/tpm2-software) (accessed on 22 August 2021)
and xaptum (https://github.com/xaptum) (accessed on 22 August 2021), follow the rec-
ommendations set out by the Trusted Computing Group (https://trustedcomputinggroup.
org/) (accessed on 22 August 2021). Among the different TEE alternatives, TrustZone
only allows an isolated section. In the case of Intel SGX, there is a strong linkage to the
CPU that allows it to control the management of virtual memory and context switches,
as well as high-speed communications. On its part, TPM functionality is fully integrated
into the hardware, and its design is aimed at providing flexibility. Additionally, flashing
allows arbitrary code to be executed, but has no access to the operating system or drivers.
Therefore, only computation and very simple I/O is possible.

Finally, protection against physical attacks is a mandatory requirement; however, TEE
does not provide protection against physical attacks. SGX solution provides a protection
mechanism against this category of attacks. However, certain weaknesses have appeared,
such as the interface to the CPU, which is not protected at all; the trusted zone keys may be
in unencrypted flash memory or the SGX keys may be in the CPU, which should not be
trivial to extract. In contrast, the TPM guarantees the physical protection of the keys, so the
model is much more robust and secure; therefore, in spite of the additional cost and other
mentioned restrictions, we consider it the suitable choice to our proposed tool to bridge
the integrity gap previously described (see Section 2).

4. The P2ISE Concept

In this section, we present a blueprint of the proposed tool’s architecture along with
the process that takes place for its seamless integration with the CI/CD platform as shown
in Figure 3. In P2ISE, apart from the standard entities that participate in a CI/CD pipeline
(see Section 2), we introduce the Trusted Integrity Platform (TIP) (see also Table 2), an

https://github.com/tpm2-software
https://github.com/xaptum
https://trustedcomputinggroup.org/
https://trustedcomputinggroup.org/
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additional entity that we consider the pillar of our scheme. TIP is a server equipped with a
TPM and a trust software stack for testing the software project integrity. The TPM is used
as the anchor for integrity and validation proofs, as it provides guarantees for building a
robust TIP server with a controlled software stack that P2ISE leverages, so it can assure
that no malicious code can alter the project. The integrity of the TIP server is secured
by the TPM public key since its trusted boot process is bound to the corresponding TPM
sealed key.

Figure 3. Architectural components.

Table 2. Main entities participating in P2ISE.

Entity Description

Developer A developer who initiates commands.
Source Code Control Server Track changes in source code.
Assembly and Test Server Receives changes and assembles them.

Deployment Server Deploy changes.
Trusted Integrity Platform Proves software project’s integrity.

4.1. P2ISE

P2ISE consists of three individual integrity proofs. The first one is taken before
installing all the required software dependencies and guarantees integrity between code
instances from the Assembly and Testing Server and Source Code Control Server. The second
integrity check guarantees that the source code under the Assembly and Testing Server
remains unchanged from external agents. The third validation checks that the whole
process is successfully completed and the code remains unchanged after the assembling.

Regarding the high-level design of the proposed solution, the underpinning idea is that
the TIP safeguards the integrity of a CI/CD pipeline, establishing a secure and trustworthy
code integrity control when an assembly code computer is not trusted, utilizing the TPM
technology. One of the novelties of P2ISE lies in the fact that we propose a three-factor
security check. In particular, the third security check provides strong security assertions
since it utilizes the TPM keys that are safely stored in the module. P2ISE provides a set of
functionalities related to software integrity, where trust is ensured by default, thanks to
the use of the TPM trusted technology. Moreover, P2ISE follows a user-centric approach.
Developers are responsible for submitting their code for commitment to a corresponding
Source Code Control Server and are assumed to be trustworthy by the owner of a specific
software project. However, end-users have always been susceptible to different kinds of
attacks or bad security practices, making them the weakest link in a CI/CD ecosystem.

We consider that a three-factor integrity proof [45,46] is the most appropriate for the
CI/CD pipeline. A comprehensive description of the complete process is described below:
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• The first integrity proof measure is taken before installing all dependencies required
for the project; this guarantees that the source code from the Assembly and Testing
Server is identical to that of the Source Code Control Server.

• The second integrity proof measure guarantees that the source code under assembly
remains unchanged from external agents in the assembly and testing servers.

• The third integrity proof measure guarantees that the whole process is successfully
completed without undesired modifications after the project is assembled.

Figure 4 shows a sequence diagram with the TIP process communications in the CI/CD
pipeline. This shows the three-factor verification described above, as well as the check
point of every integrity proof.

Figure 4. Sequence diagram CI/CD pipeline within the TIP server.

The algorithm that enables communication with the TIP server actually implements
project integrity validation. This script is based on PowerShell, and it is tested on Jenkins.
The procedure script is included as part of the CI/CD pipeline testing batches. Additionally,
we have included the TIP server script communication from Jenkins in PowerShell.
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Every integrity proof is taken following particular steps, which we have categorized
in the following phases (see also Figure 4):

• Suspicious code reception: Assembly and Testing Server forwards to TIP server a
compressed file with the suspicious source code. If the uncompressing phase is not
successful, this file is discarded, and the integrity proof is considered invalid.

• Trust code reception: TIP server retrieves source code from the Git repository that is
considered to be trusted.

• BigHashes proofs: TIP server verifies, using the respective TPM functionalities, that
the content of the compress file and the corresponding source code from the repository
are identical. This is conducted consulting every hash file from the Git server. These
Git-registered metadata are linked as a unique chain named bigHash, and the TPM
hash functions are used to verify bigHash values. Therefore, when both bigHash
values (project bigHash and the compressed file bigHash) are identical, the integrity
proof is considered successful.

4.2. Technical Approach and Methodology

In this section, we analyze how P2ISE internally relies on the aforementioned processes
to achieve the three-factor integrity validation proof.

4.2.1. First Integrity Validation Check

For the first integrity check, we assume that the Developer has already executed the
Git commands to the Source Code Control Server. The latter forwards the changes to the
TIP. Hence, a temporary folder within the TIP Server is created to contain every Jenkins
work-space file. Next, all files from Jenkins work-space are compressed into a file (e.g.,
ZIP file), and the first security check is initiated. Once the compression is completed, the
files from the selected folder are taken and filtered; those included in the ToExclude list are
removed preserving work-space. Once the file is sent to the TIP server, we have a variable
$tipServer as a script input parameter. TIP server is implemented in PHP, and it contains
the gateway.php file, which is the main one responsible for the TIP server and includes the
configurable variables. Most of those variables are HTTP control headers to allow remote
deployment of the TIP server. Once all settings are complete, then the TIP server tries
to decompress it. If the decompression process is successfully completed, then the first
integrity validation check is concluded. Moreover, the file is uncompressed in a folder
labeled as suspect. We have to note that the communication among the Source Code Control
Server repository and the TIP server are performed through POST requests.

4.2.2. Second Integrity Validation Check

During the second integrity check, the trustworthy repository cloning takes place.
Once it is successfully cloned, the BigHash values are computed using a PowerShell script;
then, TPM hashes are retrieved from the trusted repository. After the BigHash value of
the suspicious repository is also computed, the two bigHash values are compared, and the
result of validity is obtained.

In our scheme, to compute the hash values, we use the SHA-256 function, taking
into account both the levels of security provided (SHA-256 is considered secure, while
for SHA-1, several vulnerabilities are identified [47]), as well as the length of the output.
Specifically, the P2ISE solution takes advantage of the available TPM functions to compute
the hash values, so the size of the hash does not exceed the TPM input buffer limit, which
is 32 bytes [48]. Moreover, to compute a complete Git folder hash, every file has to be
accessed to link every hash value to a file.

4.2.3. Third Integrity Validation Check

The third integrity validation check completely relies on the intrinsic functionality
of the TPM. TPM-equipped computers can use the TPM functions for issuing and using
keys that never leave the chip. These keys are used by internal functions within the chip
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and can only be accessed by authorized interfaces, but keys are never accessible. This fact
enables the protection of the created key from disclosure. TPM works with a particular key
hierarchy that starts with an endorsement root key that is unique for each TPM chipset and
is assigned while manufacturing. We highlight that the private part of the endorsement
key will not be exposed, as we have used it in the TIP server.

This step consists of each change being submitted to the Git server, carrying a complete
copy of the project being signed, using the Developer’s private key. This key is considered
to be trusted since it is created and stored within the TPM. To this end, the TIP server
stores the project copy when an integrity proof is required; it can be decrypted using the
Developer’s public key (see Figure 5). Therefore, three copies are taken as input integration
proofs; these versions should be identical. Creating a private key inside the TPM is a trivial
process, while extracting this key to a hard disk is not. At this point, we have to mention
that we have taken into consideration the fact that CI/CD ecosystems include users with
different privileges. This, however, does not create any problems for the proposed P2ISE
solution, as the user who uploads the code can also upload updates without corrupting
any step imposed by the CI/CD process.

Figure 5. Third integration verification step—developer verification.

4.3. Security Appraisal

In this section, we evaluate P2ISE against the nine threats that were identified (see
Section 2) using the STRIDE methodology. The proposed tool effectively addresses all threats.

First, elevation using impersonation from the Source Code Control Service (T1), and
Assembly and Tests Server (T2) as well as Public Service (T8) can be prevented by P2ISE since
it takes advantage of the TIP approach. The TIP server is equipped with a controlled server
stack that guarantees that there is no possibility of containing malicious code, which leads
to the fact that the software project is protected against any possible threat of impersonation.
Moreover, P2ISE can successfully avert threats related to memory tampering of the Source
Control Service (T4) and Assembly and Tests Server (T6). Again, it is achieved, thanks to the
use of TPM, that it is a tamper-proof device. This valuable feature is extensively presented
in Section 3, and it is the main reason for choosing to integrate TPM in P2ISE instead of
TEE. Last but not least, the design of the proposed solution can avert attacks related to the
implementation of a weak authentication scheme (T3). As we have already mentioned
in the above paragraphs, P2ISE utilizes the sealed bind keys of the TPM device. Finally,
as mentioned in the description of the protocol, communications among the participated
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entities are designed to avoid possible collusion (T5), replay (T7), and cross-site scripting
attacks (T9). Concluding, we can observe that the presence of a TPM and a trusted boot
system that guarantees each of the boot and execution steps is necessary.

5. Performance Evaluation

In this section, we analyze the performance of the proposed tool, investigating its
feasibility and efficiency. We specifically focus on the added overhead as a result of the
newly introduced TIP to different CI/CD processes. Due to the nature of the integrity
checking process, the results vary from project to project and are also highly depended
on hardware performance. For this reason, several different tests were performed to get
an idea in global terms. These results offer, in conclusion, a baseline reference for the
evaluation of the proposed scheme, using relatively modern and fast x86 hardware.

For the prototype implementation, we developed P2ISE in C# language, utilizing the
TPM library, which is also written in C# [49]. Additionally, the TIP server was implemented,
using PowerShell scripts, and receives a PHP script as input. Moreover, Powershell 7.2 was
chosen as the CLI to be used for the communication among Jenkins and the TIP server. For
the prototype evaluation, we have employed a desktop PC equipped with an AMD Ryzen
2700 CPU at 3.7 GHz, 32 GB RAM, and an AMD TPM v3.6.0.3 (compliant with the TPM 2.0
specification) integrated into the ASUS ROG B450-F motherboard. Regarding the software
that was used to perform these benchmarks, the PC’s OS was Microsoft Windows 10 Pro
20H2, and Jenkins was the CI/CD environment of choice. The reason behind designing
and developing P2ISE for Windows OS was that many large organizations were utilizing
Windows Servers to run their services. Additionally, Microsoft Server was the market
leader with a 48% share of the total server OS shipments in 2018 [50]. P2ISE is a tool that
can be integrated into day-to-day processes by these organizations that rely on the code
integrity of their projects providing strong integrity guarantees.

To assess the performance of P2ISE, we calculated the median duration time of each
process individually: (i) integrity check; (ii) CI/CD build process; and (iii) dependency tree
resolution. For evaluation purposes, we decided to assess the performance of our tool
against three well-known and open-source projects: (i) the Caddy Server v2 project [51],
which was developed in Go language and is approximately 32,000 lines of code (LoC);
(ii) the Nuxt.js + Vuetify project [52], developed in JavaScript with around 1,427,000 LoC;
amd (iii) the Svelte project [53] developed primarily in JavaScript with only 318 LoC. In
all the above cases, the LoC is counted using scc ( scc. Sloc, Cloc and Code on GitHub.
Retrieved 29 March 2021, from https://github.com/boyter/scc/). These three projects with
different LoC were selected to highlight how P2ISE affects the deployment of projects based
on their LoC. While large software projects are more common to come across, compared
to small ones like Svelte, through these tests, we aimed to assess the proposed solution’s
performance against both types of projects. To calculate the median duration of each
process, we executed each experiment five times, and only the necessary processes were
executed at the same time. Jenkins and the TIP server were managed through a web
browser application software, and only one Jenkins job ran at a time to prevent possible
hardware bottleneck. The duration of each process was measured via the Jenkins timestamp
plugin. The results are as follows (see also Table 3):

Caddy Server v2: Measuring the performance of our tool against this project, we
noticed that the integrity check overhead does not exceed the project’s compiling time. The
integrity check overhead was found to be stable between the different tests performed, and
the results show that P2ISE adds a small delay, compared to the advantages it bears by
ensuring the software integrity.

Nuxt.js+Vuetify project: Assessing the performance of our tool against this project, we
highlight that the integrity check overhead was consistent throughout the testing process
and practically negligible.

Svelte project: For Svelte, we observe that the integrity check overhead is on par with
the build time, which we consider a reasonable addition to this project since the overall

https://github.com/boyter/scc/
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time spent on each CI/CD cycle is very low. Finally, it is interesting to mention here that the
Svelte project is compiled even faster than other projects with similar LoC, because it acts
as a compiler itself.

From the numerical results, we can deduce that the overhead caused by our tool
is little and well within reason. Overall, it is beyond any doubt that the development
community will greatly benefit from adopting the proposed technique since it creates a
much safer CI/CD pipeline.

Table 3. Median duration per process.

Process Duration (in s) Caddy Server v2 Nuxt + Vuetify Server Svelte Server

Integrity check 5.5 2.2 1.9
CI/CD build process 7.1 36.6 1.7

Dependency tree resolution n/a 13.6 2.6
Baseline 1.1 39.12 2.1

Figure 6 depicts the summarized results of the performance evaluation for each
process. The obtained results are compared in terms of total lines of code of each project,
establishing homogenization between them. As expected, the heaviest process is the
build process, while the time required for the integrity check, regardless of the number
of lines, remains low and stable. We consider this an indisputable advantage of our tool
since the newly introduced integrity check process does not severely affect the overall
developer routine.

Figure 6. Performance evaluation results.

Additionally, we measured the average CPU utilization and memory consumption of
the processes (integrity check, CI/CD build process and the dependency tree resolution)
as shown in Table 4. Regarding the Caddy Server v2, we observed that the CPU utilization
for the integrity check is 10.6%, while for the CI/CD build process, it is 38.3%; the memory
consumption is 26.4% for both said processes. As we mentioned above, we did not evaluate
the process of the dependency tree resolution since it is supported by this project. However,
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for the Nuxt+Vuetify and Svelte Server projects, we computed the CPU utilization and
memory consumption for all processes. The integrity check process for the Nuxt+Vuetify
Server project is 6.5% and the memory consumption is 23.2%; the CI/CD building process
uses 10.2% of the CPU and 26.1% of the memory, while the dependency tree resolution
process utilizes 26.6% of the CPU and 23.6% of the memory. Last but not least, the CPU
utilization for the Svelte Server during the integrity check, CI/CD build process, and the
dependency tree resolution is 14.8%, 14.2%, and 25% respectively, while the memory
consumption for the aforementioned processes is 25.7%, 26%, and 25.9%. Overall, the most
resource-consuming process is apparently the CI/CD build, while the integrity check that
is introduced by P2ISE is usually well below the consumption percentages recorded for
the build process, regardless of the project and its size (LoC). Last but not least, we can
observe that the introduction of a TPM chip does not entail a high additional cost. Finally,
the results of our experiments have confirmed that the P2ISE processes do not deplete
developers’ resources nor delay the total deployment time, while they guarantee that the
final product maintains the integrity of the source code.

Table 4. P2ISE overhead.

Software Project P2ISE Process CPU Utilization Memory Consumption

Caddy Server v2
Integrity Check 10.6% 26.4%

CI/CD build process 38.3% 26.4%
Dependency tree resolution n/a n/a

Nuxt + Vuetify Server
Integrity Check 6.5% 23.2%

CI/CD build process 10.2% 26.1%
Dependency tree resolution 26.6% 23.6%

Svelte Server
Integrity Check 14.8% 25.7%

CI/CD build process 14.2% 26%
Dependency tree resolution 25% 25.9%

6. Security Analysis

In this section, we evaluate the security level provided by P2ISE in relation with the
security requirements presented in Section 2. The results show that the proposed tool
meets all the objectives, a conclusion that can be further corroborated in different cases.
First, even an adversary who manages to steal the credentials of a legitimate developer
is not in a position to manipulate the source code, since they cannot verify their identity
because the keys used for this purpose (see Section 4) safely reside in the TPM. This way,
both confidentiality and integrity are achieved.

Moreover, all modern CI/CD environments keep records of developers’ actions, using
them as evidence also in cases where an abnormal or malicious behavior is detected. P2ISE
ensures the accountability and non-repudiation for each one of these actions (i.e., commit
command) by having them signed with the developer’s secret key, which is securely stored
in the TPM. This way, no participants can deny their actions since they can be uniquely
identified through the use of their key.

Critical processes, such as the generation and storage of cryptographic keys, and
the execution of other important cryptographic functions (i.e., hash functions) take place
within the TPM chip. Moreover, in our scheme, each developer authenticates his/herself
by utilizing the TPM’s unique key, which is hardcoded into itself. Due to the above, adding
a layer of physical protection becomes essential, as all security critical procedures are
bound to the hardware. By leveraging the TPM technology, which provides multiple
physical security mechanisms, the P2ISE operations are also proofed against physical
attacks. Overall, P2ISE takes advantage of the features that are provided by the TPM to
improve the CI/CD security.

Finally, an assertion indirectly related to the security characteristics of the proposed
scheme is that, instead of designing new protocols from scratch, we have opted for a
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solution that includes a long-established technology. More specifically, P2ISE is based on
a solution that was extensively analyzed and reviewed; to date, there are no imminent
threats that can break its security properties. This makes P2ISE not only provably secure,
but also easier to be incorporated into industrial development environments.

7. Conclusions

This paper is the first to introduce an integrity preserving tool specifically designed
for developers that use CI/CD pipelines to manage their software projects. As the security
status of a project depends not only on the underlying IT infrastructure, but also on the
personal security habits of the developers, it inherits the security considerations of both.
Based on this observation, in this paper, we proposed, designed, and implemented the
P2ISE, a novel integrity preserving tool for CI/CD pipelines based on the use of secure
elements. The crux of P2ISE is the TPM trusted technology, which offers undeniable
integrity assertions in the project and helps prevent unauthorized actions. Having designed
and implemented the P2ISE, we quantitatively evaluated its performance and showed that
it can cope with highly demanding projects without depleting developers’ resources. As the
number of developers who leverage the CI/CD pipelines in their software delivery routine
is expected to increase over time, new security challenges will emerge. We hope that the
research outcomes of this work become a precursor for designing schemes, frameworks,
and tools for enhancing the security features of the CI/CD pipelines, as we did with the
newly introduced P2ISE.

The research outcomes of this paper can be extended as future work in many ways. For
this proof-of-concept implementation of P2ISE, we designed and developed a prototype
for Windows environments. Next, we plan to implement P2ISE for Linux- and Unix-based
servers, use it alongside different Assembly and Testing Servers environments besides Jenkins
and GitLab, and finally, test its performance against large-scale software projects and
distributed development environments. This will help us identify additional use cases for
our tool, optimize its existing features, and extend its functionality with new ones.
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