
  information

Article

Topic Models Ensembles for AD-HOC Information Retrieval

Pablo Ormeño 1, Marcelo Mendoza 1,* and Carlos Valle 2

����������
�������

Citation: Ormeño, P.; Mendoza, M.;

Valle, C. Topic Models Ensembles for

AD-HOC Information Retrieval.

Information 2021, 12, 360. https://

doi.org/10.3390/info12090360

Academic Editor: Ralf Krestel

Received: 29 July 2021

Accepted: 30 August 2021

Published: 1 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Informatics, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile;
pablo.ormeno@usm.cl

2 Department of Informatics, Universidad de Playa Ancha de Ciencias de la Educación,
Valparaíso 2340000, Chile; cvalle@upla.cl

* Correspondence: marcelo.mendoza@usm.cl; Tel.: +56-23037213

Abstract: Ad hoc information retrieval (ad hoc IR) is a challenging task consisting of ranking text
documents for bag-of-words (BOW) queries. Classic approaches based on query and document text
vectors use term-weighting functions to rank the documents. Some of these methods’ limitations
consist of their inability to work with polysemic concepts. In addition, these methods introduce fake
orthogonalities between semantically related words. To address these limitations, model-based IR
approaches based on topics have been explored. Specifically, topic models based on Latent Dirichlet
Allocation (LDA) allow building representations of text documents in the latent space of topics, the
better modeling of polysemy and avoiding the generation of orthogonal representations between
related terms. We extend LDA-based IR strategies using different ensemble strategies. Model
selection obeys the ensemble learning paradigm, for which we test two successful approaches widely
used in supervised learning. We study Boosting and Bagging techniques for topic models, using
each model as a weak IR expert. Then, we merge the ranking lists obtained from each model using a
simple but effective top-k list fusion approach. We show that our proposal strengthens the results in
precision and recall, outperforming classic IR models and strong baselines based on topic models.

Keywords: ad hoc information retrieval; Latent Dirichlet Allocation (LDA); Bagging; boosting

1. Introduction

Information retrieval (IR) studies techniques and methods to retrieve information
from unstructured or semi-structured data sources [1]. Unstructured data sources often
correspond to collections of documents that cover a variety of subjects. The primary
descriptor of the content of a document is its text. For this reason, IR methods construct
representations based on the content of the documents, using words as content descriptors.

IR is an essential research area that pushes the development of information technolo-
gies and applications in many domains across the industry. IR-based systems are at the core
of many search engines, supporting tasks such as query routing [2], spam filtering [3], mul-
timedia retrieval [4], and user interest mining [5]. IR is also a fundamental building block
of many content-based recommender systems [6]. Other content modeling approaches
have also helped drive the development of these technologies, highlighting, for example,
the emergence of semantic web technologies [7], representation learning [8], and formal
concept analysis [9].

An IR system provides a query engine capable of retrieving an ordered list of doc-
uments according to the relevance to a given query [10]. Many classic IR methods use
term-weighting functions to achieve this goal, which measures the match between query
words and documents. If the cross-match between a query and a document is higher, the
ranking of the document will be higher [11]. Classic IR approaches based on the term-
matching principle, such as TF-IDF [12], achieve good results in precision and recall, being
strong baselines for other more sophisticated IR methods [13].

One of the main limitations of the classic IR methods is their inability to work with
polysemic terms [14]. A polysemic term is a word that, depending on the context, has
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different meanings. As IR term-matching systems rely on lexical matching, they can rank in
advanced positions documents whose semantic-matching with the query differs. Another
weakness of the classic IR methods is the production of fake orthogonalities between
semantically related terms. This pitfall is because two lexically different terms can denote
the same meaning. However, a term-weighting IR scheme will process them as unrelated
terms. Model-based IR methods have been introduced to address these limitations [15].
These models perform the query term-matching process on a latent feature space. Usually,
the latent space is inferred using techniques based on topic models, such as latent Dirichlet
allocation [16]. Topic models can identify semantic relationships between related terms,
generating vector representations of terms whose proximity is defined by the match in the
topic space of the documentary collection. Inferred representations in latent spaces capture
semantic relationships between related terms and can better handle polysemy [17].

Topic models have shown great utility in different domains, allowing improvements
in the descriptive capacity of documents based on the lists of related terms detected on
each topic. For example, Li et al. [18] show that topic models can improve the predictive
capacity of graded qualifications inference systems, which are widely used in reviews
systems. Another successful application of topic models shows their usefulness in user
interest mining, a relevant problem in social networks where the connections between users
are defined from shared topics. Dhelim et al. [5] show that topic modeling improves the
precision and recall of user interest recommender systems, increasing interactions between
users and favoring activity growth in the network of shared interests.

In a seminal paper on model-based IR, Wei and Croft introduced LDA-based IR [19],
a term-weighting scheme computed in the latent space of document topics. The model’s
core is based on the query likelihood model for IR [20], in which each document is scored
by the likelihood of its topic model generating the formulated query. While the classic
query likelihood strategy is based on maximum likelihood estimators calculated directly
on the documentary collection, the LDA-based model calculates the likelihood from each
document’s topic distribution. In this way, two documents that show a lexical match with
the query could rank differently, conditioned on the distribution of topics of each document.

One of the limitations of LDA is its sensitivity to hyperparameter tuning [16]. LDA
requires the user to choose the number of topics. In addition, some hyperparameters define
the characteristics of Dirichlet’s priors. Wei and Croft [19] show that these parameters must
be chosen carefully to avoid creating an uninformative topic model, with dire consequences
for ad hoc IR tasks. Unfortunately, hyperparameter tuning requires an exhaustive search
for possible configurations, which must be evaluated in curated data. Tuning a model
based on a curated dataset requires several conditions to avoid overfitting, such as data
variety and volume. Both conditions are challenging in the context of text IR.

One way to address the parametric sensitivity of LDA is to use ensemble learning [21].
Ensemble-based learning uses the outputs of various models to infer a model outcome.
In this way, the probability of errors generated by model artifacts is minimized. Topic
model ensembles have received attention due to their abilities to deal with the parametric
sensitivity of LDA [22]. Topic model ensembles have the potential for applications such as
distributed topic modeling for large corpora and incremental topic modeling for rapidly
growing corpora, being applied in various fields such as healthcare [23], biomedicine [24],
hospital readmission cost optimization [25], and social media content summarization [26].

We extend topic modeling ensembles to deal with ad hoc IR, studying the performance
of Bagging [27] and Boosting [28]. Then, we use a simple but effective list ranking fusion
strategy that combines the partial rankings delivered by each ensemble model into a single
ranking list. Using benchmark data to examine the performance of different IR models, we
found that our proposal outperforms classic IR methods and the method proposed by Wei
and Croft [19] in terms of precision and recall.

The main contributions of this work are the following:

- We extend topic modeling ensembles to the ad hoc IR domain, showing that this
approach performs well in precision and recall in benchmark data;
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- We combine the partial lists of each model into a consolidated ranking list. Our results
show that the strategy is effective.

The main purpose of this work is to determine if LDA-based ensembles strategies are
helpful in IR. Furthermore, the design and study of different IR-based models and their
validation in benchmark data will be helpful to elucidate whether the different ensemble
strategies that have proven to be successful in text classification also prove to be competitive
in IR. Accordingly, we can enumerate the main research questions that this work addresses:

- RQ1: What is the level of improvement that the strategies of ensembles of LDA-based
models introduce in IR?

- RQ2: Which ensemble strategies, based on LDA, are most useful in IR?

This work is organized in the following sections. In Section 2, we review related work.
Topic modeling ensembles for IR are introduced in Section 3. In Section 4, we present
experimental results. We discuss implications of results and limitations of this study in
Section 5. Finally, we conclude in Section 6, providing concluding remarks and outlining
future work.

2. Related Work

A pioneering work on the use of ensemble learning for text processing is BoosTexter [29].
The proposed method was based on boosting algorithms for multilabel multiclass text
categorization, outperforming text classifiers based on TF-IDF [12] and naive Bayes. The use
of LDA-based features in boosting algorithms was introduced by La et al. [30]. The method,
named LDABoost, uses latent topics extracted from one LDA model as text features. As base
classifiers, LDABoost uses naive Bayes. The authors use mutual information as a metric
for combination of basis classifiers, generating a strong classifier. The experimental results
show that LDABoost outperforms BoosTexter and other classical text classification methods.
LDABoost has been explored in Chinese language corpora [31], showing promising results
in high volume data, outperforming, in terms of precision, other text classification methods
based on the BOW approach. The use of LDA features for ensemble-based classifiers has
been applied in different tasks, such as visual concept detection in video [32], phishing
website detection [33], and classification of grants [34]. Wang and Guo [35] also use
LDA in text classification based on boosting. The proposed method uses several LDA-
based methods, each of which is used to build a classifier. The authors estimate the
classification error to calculate the weight of each classifier. Finally, a new classifier is
made based on the linear combination of the weak classifiers. The experimental results
demonstrate that this algorithm performs better than classical methods in multilabeled
corpora. Al-Salemi et al. [36] used supervised LDA [37] as a base model for text feature
selection. This method makes use of labeled corpora to obtain the supervised topic model.
The authors use a word selection method based on the LDA-topic weights to construct
vector representations of the documents. These representations are used with AdaBoost
for multilabel text categorization, showing promising results and outperforming classical
methods for text classification.

Shen et al. [22] proposes separating the corpus into subpartitions, fitting an LDA model
in each data partition. Then, a representation of the terms is obtained in the latent topic
space, concatenating the vectors of terms of each base topic model. The idea of partitioning
the corpus to build base LDA models was later applied to different domains, since it
allowed the information coming from the original corpus to be obfuscated. These privacy
guarantees were explored in applications to healthcare systems [23], biomedicine [24],
hospital readmission cost optimization [25], and social media content summarization [26].
Belford et al. [38] propose a method for topic modeling ensembles based on Non-Negative
Matrix Factorization (NNMF) [39]. The proposal disaggregates the matrix representation
of a corpus of tweets into two factors obtained using NNMF. To address the instability
limitations produced by matrix factorization, the method integrates several NNMF-based
models, consolidating the term-topic base matrices in a single term matrix representation.
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The procedure is evaluated in text clustering, improving the results obtained with a single
NNMF-based model.

The use of data fusion methods for text clustering has also been explored in topic
models. Pourvali et al. [40] propose calculating several topic models based on LDA, with
different configurations according to the number of topics. For each of them, the proposed
method leads a topic selection process at the level of each document. These topics are
used to create a vector representation of each document. Finally, the technique conducts a
document clustering process. Experimental results on different datasets show improve-
ments in clustering results. Topic selection was also explored by Mendoza et al. [41],
building document vector representations based on selected LDA-based topics according
to topic coherence. Experimental results show that the proposal outperforms TF-IDF in
text clustering tasks.

While LDA has been explored in ad hoc IR [19], topic modeling ensembles in IR
remain almost unexplored. A closely related work but with very different evaluation
assumptions is AdaRank [42]. AdaRank is an IR method based on boosting in the context
of learning to rank. Learning to rank models make use of relevance-labeled corpora to
train a supervised model for IR. In this context, the model is trained on pairs of documents
and queries labeled with relevance scores. This valuable information allows a supervised
learning algorithm to optimize the IR measure (e.g., mean average precision). AdaRank
makes use of AdaBoost to fulfill this purpose. It should be noted that the context of ad hoc
IR is different from that of learning to rank since ad hoc IR systems do not have relevance
scores to build their models, assuming an unsupervised learning scenario.

3. Topic Modeling Ensembles for IR
3.1. Background

We introduce the necessary knowledge background to present our proposal. The
environment needed for this work consists of the ad hoc IR method proposed by Wei and
Croft [19], which extends the query likelihood model using topic models.

Formally, let C be a text corpora. Each document di ∈ C is represented by a topic dis-
tribution Θdi

= {θdi ,1, θdi ,2, . . . , θdi ,K}, where K represents the number of topics. The topic
model provides a probability distribution φj over the words for each topic j. Accordingly,
the topic model of C corresponds to the collection of topics Φ = {φ1, φ2, . . . , φK}.

The method proposed by Wei and Croft [19] for ad hoc IR is based on the query
likelihood model, which uses a probabilistic language model to infer the likelihood model
of generating a query Q from a document d:

P(Q|d) = ∏
q∈Q

P(q|d), (1)

where q is a query term and P(Q|d) is the model likelihood generated for Q conditioned
on d. P(q|d) is specified using Dirichlet smoothing [20]:

P(q|d) = Nd
Nd + µ

PML(q|d) + (1 +
Nd

Nd + µ
)PML(q|C), (2)

where PML(q|d) is the maximum likelihood estimator of the query term q conditioned on
the document d given by

nd,q
Nd

, where nd,q is the number of occurrences of q in d, and Nd is the
number of tokens in d. PML(q|C) is the maximum likelihood estimator of q conditioned on
C, i.e., the term bias of q on the corpus C, also known as as the prior of q. The µ parameter
corresponds to the Dirichlet prior, which controls the relative weight of each factor in the
estimate. Note that if q does not appear in d, the first factor of the estimate goes to zero,
but the estimate PML(q|d) is not zero due to the use of the term bias factor P(q|C). The
smoothing effect improves the chances to recover more relevant documents in the ranking
list. Empirical results on benchmark data show that µ can be fixed at 1000, offering good
results in ad hoc IR tasks.
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The maximum likelihood estimator P(q|d) is critical for the retrieval task. Wei and
Croft [19] propose combining the original document modeling and the model obtained
using LDA. In this way, the authors propose a linear combination between both approaches:

P(q|d) = λ(
Nd

Nd + µ
PML(q|d) + (1 +

Nd
Nd + µ

)PML(q|C)) + (1− λ)Plda(q|d), (3)

where λ controls the relative weight between Dirichlet smoothing and LDA, with λ ∈ [0, 1].
When λ = 1, P(q|d) corresponds to the estimate proposed by Zhai and Lafferty [20]. Wei
and Croft [19] have shown that λ = 0.7 offers a good balance between Dirichlet smoothing
and LDA. As LDA models word correlations, Plda(q|d) may reach a high value if d includes
words that correlate with q even if q does not appear in d.

Plda(q|d) is obtained from a generative expression of q using Dirichlet priors:

Plda(q|d) =
k

∑
n=1

P(q|zn, β) · P(zn|θd) · P(θd|α),

where θd indicates topic proportions in d. Then, zn, the latent variable that produces q,
is conditioned on β and represents the sampling probability of q on d. The β parameter
controls the level of smoothness of the density function of the vocabulary simplex. Typically,
β is fixed at 0.01. The α parameter is known as the Dirichlet hyperparameter of LDA and
controls the level of smoothness/sharpness of the density function around the centroid of
the simplex.

3.2. Topic Modeling Ensembles

The general scheme of the strategies studied in this work is shown in Figure 1. For
all the ensemble learning strategies studied in this work, the corpus is divided into m
document partitions, and an LDA model is fitted in each of them. To tackle the ad hoc in-
formation retrieval task, we use the LDA-based IR strategy proposed by Wei and Croft [19].
Then, given a BOW query, we produce a ranking list from each model. Finally, we build
a consolidated document ranking list using a list merge method known as CombMNZ,
successfully validated in ad hoc IR [43].

We study three ensemble learning strategies for ad hoc information retrieval. First, we
split the corpus at random into m disjoint partitions. Accordingly, the models fitted to these
partitions are trained regardless of the relationship between them. A second approach is
based on Bagging [27], in which we sample the corpus at random with replacement. Ac-
cordingly, the models are related to each other because the partitions overlap and therefore
have documents simultaneously included in several LDA models. Finally, we examine the
performance of Boosting [28], sampling the corpus with an adaptive resampling strategy,
from which documents with a lower quality of fit to an LDA model have a higher probabil-
ity of being sampled. This approach defines a chained resampling strategy, from which
the sampling probability at the document level is dependent on the goodness of fit of the
previous models. Now we explain in detail each of these strategies.
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Figure 1. General scheme of the strategies studied in this work. First, the corpus is divided into m document partitions,
fitting an LDA model in each of them. Then, document ranking is performed merging the ranking lists obtained from each
LDA model using CombMNZ.

Disjoint partitions (LDA Ens): LDA Ens works on m disjoint partitions of the corpus.
This setting is similar to the one proposed by Shen et al. [22], in which the topic model
ensembles are used for multiclass text classification. In our problem setting, the m disjoint
partitions are obtained by splitting the corpus at random. All the documents in the corpus
are used to build the partitions.

Bagging-based corpus sampling (BAGG Ens): BAGG Ens works using document
sampling without replacement. This strategy implies that the probability of sampling one
document in a partition is independent of the probability of sampling other documents.
Since the sample is without replacement, a document can be included in more than one
partition and more than one time in the same partition. BAGG Ens considers each sample
corpus to be the same size as the original corpus. In this way, the strategy obtains m
versions of the corpus, introducing diversity between them.

Boosting-based corpus sampling (ADA Ens): ADA Ens works using adaptive boosting
(AdaBoost) [28]. This strategy fits the LDA models in sequence. Given a new model in
the ensemble, the partition on which the new model fits is obtained by sampling the
documents according to the document’s error of fitness to the immediately previous model.
The sampling probabilities are proportional to the error of fitness so that the new models
specialize in representing documents that have not been adequately modeled. To quantify
the error of fitness, we build a probabilistic language model Md from each document d in the
corpus. We create a unigram language model, so the word order is irrelevant. Accordingly,
the language model of a document d corresponds to a multinomial distribution over words:

P(d) =
Ld!

TFt1,d! · · · TFti ,d! · · · TFtM ,d!
P(t1)

TFt1,d · · · P(ti)
TFti ,d · · · P(tM)TFtM ,d ,
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where TFti ,d is the frequency of the ti term in d, Ld is the length of d measured as the
number of terms that compose it, and M is the number of words that compounds the
vocabulary of the corpus. The first term on the right-hand side is the multinomial co-
efficient that allows summing up all possible orderings of words. We can estimate the
probabilities of words from the document language model Md using maximum likelihood
estimation P̂ML(t|Md) =

TFt,d
Ld

. Given an LDA topic model Mlda, we can estimate the proba-
bility of a term t conditioned on the document d from a generative expression based on
Dirichlet priors:

Plda(t|d) =
k

∑
n=1

P(t|zn, β) · P(zn|θd) · P(θd|α),

where θd indicates topic proportions in d and zn is the latent variable that produces t,
conditioned on β. Therefore, to compute the error of fitness, we measure the divergence
between the probabilities of words of the language model and the LDA model, defined
from the Kullback–Leibler divergence:

DKL(Md||Mlda) =
M

∑
i=1

P̂ML(ti|Md)
P̂ML(ti|Md)

Plda(ti|d)
.

Finally, we use the standard Adaboost framework, defining an error coefficient
αd = 1

2 log 1−DKL(Md ||Mlda)
DKL(Md ||Mlda)

from the error of fitness of each document in the corpus. Then,
we define the document sampling probability for the t + 1-th iteration of the ensemble:

D(t+1)
d =

D(t)
d

Zt
eα

(t)
d ,

where D(t+1)
d , D(t)

d are the probabilities of sampling d in iterations t + 1 and t, α
(t)
d is the

error coefficient of d in the t-th iteration, and Zt is a normalization factor. To initialize the
sampling probabilities, in the first iteration D(1)

d = 1
N , ∀d ∈ C, where N is the number of

documents in the corpus C. ADA Ens works using document sampling without replace-
ment. Therefore, a document can be included in more than one partition and more than
one time in the same partition. ADA Ens considers each sample corpus to be the same size
as the original corpus.

3.3. Ranking Fusion Strategy

We combine top-k lists of relevant documents from each LDA model using a ranking
fusion strategy based on a linear combination of scores. The strategy takes advantage of
the fact that different retrieval models may retrieve various documents for a single query.
Thus, the potential global relevance of a document correlates with the number of models
that suggest it. Specifically, we use CombMNZ [44], which multiplies the number of top-k
lists where the document occurs by the sum of the scores obtained across all lists:

CombMNZ(d, q) = |{l|d ∈ l}| ·∑
l

Pl(q|d),

where Pl(q|d) is the score of d in the top-k rank list l. CombMNZ is a simple but effective
technique for ranking fusion that has shown good performance in TREC datasets, which is
the reason why we adopt it as a ranking fusion method for our proposal.

4. Experimental Results

We evaluate the proposal on four standard benchmark document collections. These
datasets are MED, CRAN, CISI, and CACM, which can be freely accessed (http://ir.dcs.gla.
ac.uk/resources/test_collections/ accessed on 1 March 2021). Table 1 shows basic statistics
of these datasets.

http://ir.dcs.gla.ac.uk/resources/test_collections/
http://ir.dcs.gla.ac.uk/resources/test_collections/
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Table 1. Basic statistics of each dataset used in our experiments.

Dataset Documents Querys Terms

MED 1.033 30 5.775
CRAN 1.400 225 8213

CISI 1.460 112 10.170
CACM 3.204 64 9.961

We compare the performance of our three methods, LDA Ens, BAGG Ens, and ADA
Ens, with two strong baselines: LDA, the method introduced by Wei and Croft [19], and
TF-IDF [12], a classic and successful term-based weighted scheme used in ad-hoc IR. In
addition, we included in the evaluation two model-based IR methods. The first one is
DBNIRM (Dependency Bayesian Network-based Information Retrieval Model) [45], a
Bayesian network-based IR model that achieves good retrieval performance by detecting
the most salient dependencies between terms in a term-based Bayesian network. Iden-
tifying pairs of related terms is helpful in IR, determining semantic relations between
documents and query terms. We also included a second model-based IR method named
CCLR (Concept Coupling Learning Retrieval) [9], which uses concept lattices to model
dependency relationships between document terms. Like DBNIRM, CCLR allows identi-
fying the pairs of concepts that are most strongly related, combining criteria of conceptual
coupling intra- and inter-documents.

We use Mean Average Precision (MAP), Precision, Recall, and F1 at top-k lists with
5, 10, and 20 results as evaluation metrics. As the four datasets have vocabularies of
comparable sizes, we use the same number of topics for all the datasets. In [41], we
show that using a high number of topics in these datasets allows finding topics with high
coherence. Accordingly, we set the number of topics at 100 to help the topics identify lists
of highly correlated descriptive words.

Since our methods depend on the sampling process, each ensemble-based model was
evaluated five times. Accordingly, the reported results consider the average between the
five trials. In TF-IDF, LDA, DBNIRM and CCLR, the results do not vary between different
trials because they do not operate on corpus samples but on the entire collection. For LDA,
we tested 20 runs over different hyperparameter settings for α and β. We did not find
significant differences in terms of MAP for the different configurations used. Accordingly,
we decided to use the values proposed in [46], this is α = 50

k and β = 0.01.
We evaluate the effect of the number of models in each ensemble. We measure the

impact of the number of models in terms of the four performance measures, finding that
they show consistent results. We report the results in terms of MAP in Table 2 in top-10 lists.

Table 2 shows the lack of a clear pattern of dependency between the number of models
required to obtain the best configuration and the ensemble model. For LDA Ens, the best
results in MED, CRAN, and CISI are obtained using five models. However, in CACM,
LDA Ens requires ten models. BAGG Ens achieves its best results in MED and CRAN
using 15 models. In CISI, the best results are achieved using 20 models, but in CACM, only
one is needed. Finally, ADA Ens obtains its best result in MED and CACM using only one
model, while in CRAN, it requires five and in CISI ten.

In most cases, the performance improves when using more models. In the case of
LDA Ens, the best results are always obtained with five or more models. When using
BAGG Ens, both MED, CRAN, and CISI require at least 15 models. Regarding the datasets,
the most difficult is CACM, in which all strategies consistently obtain the lowest results. In
this dataset, BAGG Ens and ADA Ens show that ensemble learning achieves no perfor-
mance improvements.
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Table 2. Effect of the number of models in each ensemble strategy. Results are reported using
MAP@10. The reported results consider the average between the five trials. Bold fonts indicate the
best configurations. Differences between the number of models are statistically significant with 95%
confidence according to the Wilcoxon test.

# Models 1 5 10 15 20

M
ED

LDA Ens 0.722 0.771 0.756 0.757 0.756
BAGG Ens 0.802 0.797 0.805 0.806 0.805
ADA Ens 0.799 0.778 0.773 0.771 0.766

C
R

A
N LDA Ens 0.518 0.582 0.576 0.575 0.576

BAGG Ens 0.554 0.576 0.577 0.578 0.576
ADA Ens 0.565 0.576 0.575 0.573 0.573

C
IS

I LDA Ens 0.398 0.442 0.392 0.391 0.393
BAGG Ens 0.412 0.437 0.432 0.432 0.438
ADA Ens 0.428 0.441 0.443 0.441 0.437

C
A

C
M LDA Ens 0.138 0.157 0.162 0.161 0.160

BAGG Ens 0.192 0.186 0.185 0.183 0.181
ADA Ens 0.188 0.167 0.166 0.165 0.162

To compare the results of these strategies with the baselines, we use the best configu-
rations in terms of the number of models indicated in Table 2. The results in terms of MAP,
Precision, Recall, and F1 are shown for lists @5, @10, and @20 in Tables 3–5, respectively.

Table 3. Results reported using @5 lists.

LDA [19] TF-IDF [12] DBNIRM [45] CCLR [9] LDA Ens BAGG Ens ADA Ens

M
ED

MAP 0.869 0.789 0.758 0.714 0.789 ± 0.001 0.867 ± 0.012 0.809 ± 0.007
P 0.706 0.706 0.712 0.684 0.706 ± 0.002 0.751 ± 0.008 0.715 ± 0.011
R 0.171 0.175 0.178 0.162 0.175 ± 0.001 0.186 ± 0.002 0.178 ± 0.002
F1 0.276 0.281 0.284 0.262 0.281 ± 0.001 0.298 ± 0.003 0.285 ± 0.004

C
R

A
N

MAP 0.604 0.621 0.605 0.587 0.621 ± 0.001 0.629 ± 0.006 0.618 ± 0.005
P 0.344 0.352 0.358 0.342 0.351 ± 0.002 0.363 ± 0.004 0.361 ± 0.001
R 0.257 0.269 0.264 0.245 0.268 ± 0.001 0.277 ± 0.003 0.275 ± 0.001
F1 0.294 0.305 0.303 0.285 0.304 ± 0.001 0.314 ± 0.004 0.312 ± 0.001

C
IS

I

MAP 0.464 0.468 0.460 0.443 0.472 ± 0.001 0.472 ± 0.001 0.464 ± 0.008
P 0.307 0.292 0.298 0.286 0.285 ± 0.002 0.314 ± 0.004 0.314 ± 0.011
R 0.059 0.056 0.061 0.052 0.053 ± 0.001 0.061 ± 0.002 0.063 ± 0.002
F1 0.099 0.093 0.101 0.088 0.091 ± 0.001 0.101 ± 0.003 0.105 ± 0.003

C
A

C
M

MAP 0.158 0.146 0.148 0.135 0.146 ± 0.001 0.161 ± 0.004 0.149 ± 0.004
P 0.107 0.103 0.106 0.112 0.103 ± 0.001 0.115 ± 0.005 0.106 ± 0.001
R 0.039 0.038 0.041 0.042 0.038 ± 0.001 0.047 ± 0.004 0.039 ± 0.001
F1 0.057 0.055 0.059 0.061 0.056 ± 0.002 0.067 ± 0.005 0.057 ± 0.001

Differences between models and baselines are statistically significant with 95% con-
fidence according to the Wilcoxon test. The results in Tables 3–5 show that LDA is very
competitive, outperforming TF-IDF in MED and CACM in all comparisons. However,
the LDA results in CRAN and CISI show a deterioration compared to those obtained
by TF-IDF. DBNIRM is also a competitive method, outperforming CCLR and achieving
competitive results with TF-IDF on all datasets. This result indicates that identifying
dependencies between pairs of terms is relevant to improving the description of documents
and better matches the query terms. This idea is also exploited by topic models, which
identity, for each topic, lists of related terms that improve the descriptive capacity of the
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documents. Specifically, DBNIRM obtains very competitive results in CRAN and CISI,
especially in lists @10 and @20, where it manages to surpass LDA and TF-IDF in MAP and
precision but obtains lower results in recall. On the other hand, CCLR consistently shows
lower results than DBNIRM, showing its best results in MED and CACM for @20 lists.
By extending LDA with ensemble learning, some results show significant improvements
in many cases. For example, BAGG Ens outperforms in MED, CRAN, and CACM all its
competitors by a substantial margin in results @5. The difference between BAGG Ens and
LDA narrows in @10 and @20 results. BAGG Ens outperforms its competitors in MED
and CRAN in results @10. In results of @20, LDA is the most robust method, being only
surpassed by BAGG Ens in CACM. LDA Ens is also a competitive method, obtaining
good performance results @10, achieving the best results in MAP for CRAN and CISI. LDA
Ens maintains its good performance in CISI for results @20, obtaining the best performance
in MAP. Regarding ADA Ens, this strategy outperforms its competitors only in results @5
in CISI. In the rest of the comparisons, ADA Ens fails to beat its competitors.

The fact that ADA Ens fails to outperform its competitors indicates that adaptive sam-
pling is ineffective when working in tandem with topic models. On the other hand, domain
partitioning based on disjoint partitions (LDA Ens) or bootstrap resampling (BAGG Ens)
shows greater effectiveness. This finding is related to the potentialities and limitations of
the topic models used to generate the ensembles, which fail to identify more valuable topics
for complex documents. Instead, LDA takes more advantage of non-adaptive resampling
strategies. Resampling allows discarding documents in specific partitions, introducing a
greater variety in the samples.

Table 4. Results reported using @10 lists.

LDA [19] TF-IDF [12] DBNIRM [45] CCLR [9] LDA Ens BAGG Ens ADA Ens

M
ED

MAP 0.802 0.756 0.780 0.689 0.771 ± 0.001 0.806 ± 0.006 0.799 ± 0.001
P 0.680 0.611 0.625 0.606 0.607 ± 0.003 0.658 ± 0.008 0.636 ± 0.011
R 0.324 0.291 0.308 0.288 0.291 ± 0.002 0.315 ± 0.005 0.307 ± 0.006
F1 0.439 0.394 0.412 0.391 0.392 ± 0.002 0.427 ± 0.006 0.414 ± 0.008

C
R

A
N

MAP 0.568 0.572 0.573 0.447 0.582 ± 0.001 0.578 ± 0.007 0.576 ± 0.006
P 0.265 0.261 0.264 0.249 0.259 ± 0.001 0.271 ± 0.001 0.269 ± 0.003
R 0.386 0.384 0.381 0.346 0.384 ± 0.001 0.394 ± 0.001 0.391 ± 0.005
F1 0.315 0.311 0.311 0.289 0.309 ± 0.001 0.321 ± 0.001 0.319 ± 0.004

C
IS

I

MAP 0.426 0.431 0.438 0.396 0.442 ± 0.003 0.438 ± 0.004 0.443 ± 0.008
P 0.275 0.263 0.274 0.268 0.258 ± 0.004 0.271 ± 0.002 0.266 ± 0.003
R 0.095 0.111 0.107 0.108 0.107 ± 0.003 0.101 ± 0.006 0.097 ± 0.002
F1 0.142 0.156 0.153 0.154 0.151 ± 0.003 0.146 ± 0.007 0.142 ± 0.002

C
A

C
M

MAP 0.191 0.161 0.184 0.165 0.162 ± 0.001 0.192 ± 0.004 0.188 ± 0.001
P 0.121 0.088 0.116 0.084 0.088 ± 0.001 0.112 ± 0.003 0.101 ± 0.002
R 0.116 0.078 0.099 0.101 0.078 ± 0.002 0.102 ± 0.003 0.098 ± 0.003
F1 0.118 0.082 0.106 0.092 0.082 ± 0.002 0.107 ± 0.003 0.101 ± 0.001

Table 5. Results reported using @20 lists.

LDA [19] TF-IDF [12] DBNIRM [45] CCLR [9] LDA Ens BAGG Ens ADA Ens

M
ED

MAP 0.759 0.711 0.736 0.712 0.711 ± 0.001 0.738 ± 0.011 0.713 ± 0.001
P 0.596 0.497 0.562 0.573 0.497 ± 0.002 0.558 ± 0.007 0.527 ± 0.008
R 0.546 0.455 0.514 0.489 0.455 ± 0.001 0.516 ± 0.005 0.481 ± 0.008
F1 0.571 0.475 0.536 0.527 0.475 ± 0.002 0.536 ± 0.006 0.503 ± 0.008

C
R

A
N

MAP 0.509 0.525 0.517 0.496 0.525 ± 0.001 0.522 ± 0.008 0.516 ± 0.002
P 0.188 0.172 0.198 0.164 0.171 ± 0.001 0.181 ± 0.001 0.179 ± 0.001
R 0.526 0.484 0.499 0.414 0.483 ± 0.001 0.506 ± 0.001 0.504 ± 0.003
F1 0.278 0.253 0.283 0.235 0.252 ± 0.001 0.267 ± 0.001 0.264 ± 0.001
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Table 5. Cont.

LDA [19] TF-IDF [12] DBNIRM [45] CCLR [9] LDA Ens BAGG Ens ADA Ens

C
IS

I

MAP 0.385 0.396 0.391 0.351 0.397 ± 0.003 0.395 ± 0.011 0.386 ± 0.002
P 0.245 0.221 0.237 0.208 0.214 ± 0.002 0.232 ± 0.001 0.228 ± 0.001
R 0.176 0.163 0.168 0.152 0.156 ± 0.001 0.166 ± 0.003 0.161 ± 0.003
F1 0.205 0.187 0.196 0.175 0.181 ± 0.002 0.193 ± 0.002 0.189 ± 0.001

C
A

C
M

MAP 0.188 0.169 0.181 0.159 0.169 ± 0.001 0.184 ± 0.005 0.171 ± 0.001
P 0.098 0.079 0.092 0.076 0.079 ± 0.001 0.101 ± 0.004 0.093 ± 0.001
R 0.164 0.132 0.154 0.125 0.131 ± 0.001 0.177 ± 0.003 0.159 ± 0.004
F1 0.122 0.098 0.115 0.094 0.098 ± 0.001 0.128 ± 0.004 0.118 ± 0.002

5. Discussion

An interesting result shown in Tables 3–5 is related to the effectiveness of the ensemble
learning techniques in terms of the lengths of the results lists. While ensemble learning
results are better on shorter lists (@5), they deteriorate as the lists become longer. In fact, in
@20 lists, LDA outperforms ensemble learning in MED, CRAN, and CISI, while BAGG Ens
only maintains its performance in CACM. This finding indicates that ensemble learning
techniques allow identifying more relevant results only in the first positions of the lists,
suggesting that the descriptive word lists of the topics found may differ. This fact would
explain the differences between the ensemble strategies.

To illustrate the differences between the four methods based on topic models, we
compare the top-5 words of the highly coherent topics detected for LDA in each dataset.
These topics were searched in the other methods (LDA Ens, BAGG Ens and ADA Ens),
identifying the differences between these words lists. For each topic model strategy, we
selected the model closest to the average performance showed in Tables 3–5, making the
comparison consistent and fair. The results of this comparative analysis are shown in
Table 6.

In Table 6, we highlight some words that complements the list of words detected by
LDA. First, for each topic, we computed the IDF score of the top-5 LDA words. Then,
new words identified by LDA Ens, BAGG Ens, or ADA Ens that are above the maximum
IDF or below the minimum IDF are considered as words with more specific or general
meanings, respectively. The most generic words are indicated in red, while the most specific
ones are displayed in blue.

Table 6 shows that the three ensemble strategies manage to identify new words
concerning the topics detected by LDA. While most of the detected words are generic,
some specific words complement the description of the original topic. All the words added
by these strategies have a semantic relationship to the original topic, except for drum
(indicated in green), which has no apparent semantic connection with topic 2 in CACM.
Both LDA Ens, BAGG Ens and ADA Ens seem to detect specific words depending on the
topic. This finding is interesting since it shows that the topics detected may have more or
less specificity depending on the ensemble strategy. We note some differences between
the strategies. LDA Ens works on independent partitions of the corpus. This partitioning
strategy allow detecting more generic words. In the case of BAGG Ens and ADA Ens,
because these strategies specialize in more complex documents to model, they tend to
detect more specific words. We show in Figure 2 the IDF factor distributions for each of the
strategies in each dataset studied in this work to corroborate this intuition.
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Table 6. Top-5 words per topic for the ensemble strategies proposed. The most generic words are indicated in red, while the
most specific ones are displayed in blue. Off-topic words are displayed in green color.

TID LDA [19] LDA Ens BAGG Ens ADA Ens

M
ED

1 alveolar, line, lung acid, alveolar, lung alveolar, line, lung alveolar, information,
pulmonary, surface perform, rate mouse, pulmonary line, lung, lymphatic

2 female, male, rat, demonstrate, female, intact, conjugate, female, normal, female, normal, patient,
testosterone, tissue show, testosterone plasma, testosterone plasma, testosterone

3 body, cool, hypothermia, heart, hypothermia, patient body, cool, hypothermia, body, coronary, hypothermia,
perfusion, temperature perfusion, surgery perfusion, temperature perfusion, temperature

4 blood, brain, control, blood, brain, group, blood, brain, increase, blood, brain, hypoxia,
lactate, response study, surface lactate, rise lactate, rise

5 cancer, carcinoma, case, cancer, carcinoma, decrease, cancer, carcinoma, case, cancer, carcinoma, cell,
lung, primary enzyme, pulmonary lung, tumor lung, radiation

C
R

A
N

1 equation, method, numerical, base, equation, method, equation, method, problem, boundary, method, problem,
problem, solution problem, solution solution, solve solution, solve

2 body, flow, hypersonic, flow, hypersonic, show body, flow, hypersonic, flow, hypersonic, inviscid,
nose, pressure theory, velocity pressure, shock pressure, shock

3 buckling, cylinder, pressure, buckling, cylinder, shell, buckling, creep, cylinder, buckling, creep, cylinder,
shell, theory wall, wave initial, shape equation, flow

4 airplane, altitude, boom, airplane, altitude, boom, airplane, altitude, boom, airplane, altitude, flight,
flight, shock flight, shock flight, mach mach, number

5 dimensional, disturbance, flow, aircraft, disturbance, flight, amplitude, dimensional, disturbance, cone, dimensional, disturbance,
small, solution ground, level energy, wave surface, wave

C
IS

I

1 book, collection, librarian, base, book, collection, book, circulation, collection, book, circulation, collection,
library, university concept, subject library, medical fact, size

2 information, provide, reference, entry, information, provide, information, organization, citation, information,
service, university search, user provide, service, type literature, provide, reference

3 health, library, manpower, center, health, international, health, hospital, library, health, library, manpower,
professional, science library, national manpower, science program, scale

4 comparative, economic, problem, addition, economic, experimental, country, economic, interest, economic, international,
project, scientist system, theoretical problem, view project, series, time

5 change, data, model, data, entry, large, base, data, information, data, idea, library,
rate, storage research, storage large, model memory, model

C
A

C
M

1 correctness, program, algorithm, make, program, correctness, program, proof, correctness, program, proof,
proof, prove, technique proof, similar prove, technique prove, specification

2 algorithm, class, function, algorithm, class, identify, algorithm, class, equation, algorithm class, drum,
processor, schedule improve, reduce problem, solution schedule, time

3 fortran, input, language, computer, input, processing, input, machine, output, data, information, input,
output, program program, provide program, user processing, program

4 debug, design, feature, applicable, debug, program, debug, input, operating, communication, debug, illustrate,
program, system solve, user process, program program, user

5 hash, method, search, algorithm, efficiency, hash, hash, method, quadratic, hash, language, search,
table, technique length, table size, table structure, table

To create the boxplots in Figure 2, we selected the top-20 highly coherent topics of
each strategy in each dataset. Then, we picked its top-10 most descriptive terms for each
of these topics, calculating their IDF scores in the dataset. The boxplots of Figure 2 show
some interesting results. The IDF distributions in MED are the most disparate, being BAGG
Ens and ADA Ens, the strategies that manage to identify more specific words. This result
coincides with the performances obtained by these strategies, which are the best found in
this study. On the other hand, in both CRAN and CACM, ADA Ens cannot identify specific
words, having the lowest median IDF of the four strategies. In these datasets, LDA and
BAGG Ens slightly outperform the other strategies in median IDF. Finally, in CISI, none of
the strategies can identify more specific words than the rest. This result coincides with the
fact that the performances of the four strategies indicated in Tables 3–5 are quite even. In
summary, Figure 2 shows that the ability of each strategy to identify specific words in each
topic varies according to the datasets. While BAGG Ens and LDA identify specific words, the
other strategies do not seem to have a significant ability to detect specific words in each topic.

Now, we study the nature of the queries in which the proposed methods perform
better than their competitors. First, we determine the set of queries where any of the
LDA-based methods beats its contenders by at least 10% in MAP@5, so that the advantage
obtained by the method is significant. The average performance model indicated in Table 3
is used to conduct this analysis, favoring a fair comparison between the different strategies
considered in this work. Queries, where none of the methods managed to gain a significant
margin, were excluded from the analysis. We show in Table 7 the list of queries for each
dataset where a clear winning method was observed in MAP@5. We show the id of the
query, its query words, and the name of the winning method.
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Figure 2. IDF distributions of each LDA method across the datasets used in this study.

The results in Table 7 show that LDA and BAGG Ens are the methods that, by surpassing
their competitors, achieve more advantages in terms of MAP@5. While in MED and CISI,
BAGG Ens manages to outperform its competitors in more queries than the rest of the
methods; in CRAN and CACM, both BAGG Ens and LDA are very competitive. In none
of the queries does LDA Ens manage to significantly outperform its competitors in MAP@5,
showing that this method, although it obtains an interesting average result, does not manage
to outperform the rest consistently. On the other hand, ADA Ens only manages to outperform
its competitors in some queries of CRAN. Undoubtedly, both LDA and BAGG Ens are the
ones that manage to outperform the rest of the methods, offering competitive results in all
datasets. The column that indicates the length of the queries shows that there is no relationship
between this variable and the winning method. Both BAGG Ens and LDA exhibit the best
performances in long or short queries, not clearly observing a pattern that shows dependence
between the type of ensemble strategy and the query length.

The results show another important finding. While CRAN has twice as many queries
as CISI, the number of queries in which our ensemble methods outperform their competi-
tors show a ratio of 4 to 1. This ratio can be attributed to the fact that CRAN’s vocabulary
is smaller than CISI, which would make it easier to model. The results of Tables 3–5 show
that the datasets in which the methods obtain better results are MED and CRAN, which
are the datasets that have smaller vocabularies.

Limitations of This Study

Due to the high computational cost involved in the experiments, which implied
carrying out several trials for each topic model, it was not easy to experiment on datasets
of greater volume, such as the Tipster datasets (TREC), which are not in the public domain.
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Instead, and due to the limitations of access to computational resources, the experiments
were carried out in datasets of smaller size, which allowed to control the use of resources
available for this study. Although this limitation of the study is important, it does not limit
the validity of its conclusions since the four datasets used in the experimental validation are
frequently used in studies of this type. It would be desirable to overcome these limitations
with a work that involves studying different aspects of the efficiency of these methods,
which allow them to scale to larger documentary collections. However, the study of these
aspects exceeds the objectives of this article, despite which we understand that they are
fundamental for the applicability of these methods.

Table 7. Queries and methods that obtained the best results.

QID Query Words L Winning

M
ED

3 [‘electron’, ‘microscopy’, ‘lung’] 3 BAGG Ens
12 [‘effect’, ‘azathioprine’, ‘systemic’, ‘lupus’, ‘erythematosus’, ‘regard’, ‘renal’, ‘lesion’] 8 BAGG Ens
16 [‘separation’, ‘anxiety’, ‘infancy’, ‘year’, ‘preschool’, ‘child’, ‘separation’, ‘child’, ‘mother’] 9 BAGG Ens

17 [‘nickel’, ‘nutrition’, ‘requirement’, ‘method’, ‘analysis’, ‘relation’, ‘enzyme’, ‘system’, ‘toxicity’, 20 LDA‘human’, ‘laboratory’, ‘animal’, ‘deficiency’, ‘sign’, ‘symptom’, ‘level’, ‘foodstuff’, ‘level’, ‘blood’, ‘tissue’]
21 [‘language’, ‘development’, ‘infancy’, ‘pre’, ‘school’] 5 LDA

22 [‘mycoplasma’, ‘infection’, ‘presence’, ‘embryo’, ‘fetus’, ‘newborn’, ‘infant’, ‘animal’, ‘pregnancy’, ‘gynecologic’, 15 LDA‘disease’, ‘related’, ‘chromosome’, ‘chromosome’, ‘abnormality’]

24 [‘compensatory’, ‘renal’, ‘hypertrophy’, ‘stimulus’, ‘result’, ‘mass’, ‘increase’, ‘hypertrophy’, ‘cell’, ‘proliferation’, 16 BAGG Ens‘hyperplasia’, ‘remain’, ‘kidney’, ‘unilateral’, ‘nephrectomy’, ‘mammal’]

25 [‘chlorothiazide’, ‘diuril’, ‘hydrochlorothiazide’, ‘hydrodiuril’, ‘treatment’, ‘nephogenic’, ‘diabetes’, ‘insipidus’, 18 BAGG Ens‘child’, ‘also’, ‘sodium’, ‘aldactone’, ‘spironolactone’, ‘treatment’, ‘childhood’, ‘nephogenic’, ‘diabetes’, ‘insipidus’]

C
R

A
N

5 [‘chemical’, ‘kinetic’, ‘applicable’, ‘hypersonic’, ‘aerodynamic’, ‘problem’] 6 LDA
17 [‘three’, ‘dimensional’, ‘problem’, ‘transverse’, ‘potential’, ‘flow’, ‘body’, ‘revolution’, ‘reduce’, ‘two’, ‘dimensional’] 11 LDA
32 [‘approximate’, ‘correction’, ‘thickness’, ‘slender’, ‘thin’, ‘wing’, ‘theory’] 7 BAGG Ens

33 [‘interference’, ‘free’, ‘longitudinal’, ‘stability’, ‘measurement’, ‘make’, ‘free’, ‘flight’, ‘model’, ‘compare’, ‘similar’, 16 BAGG Ens‘measurement’, ‘low’, ‘blockage’, ‘wind’, ‘tunnel’]
37 [‘theoretical’, ‘method’, ‘predict’, ‘base’, ‘pressure’] 5 BAGG Ens
38 [‘transition’, ‘hypersonic’, ‘wake’, ‘depend’, ‘body’, ‘geometry’, ‘size’] 7 LDA
40 [‘transition’, ‘phenomenon’, ‘hypersonic’, ‘wake’] 4 LDA
43 [‘transonic’, ‘flow’, ‘arbitrary’, ‘smooth’, ‘airfoil’, ‘analyse’, ‘simple’, ‘approximate’] 8 BAGG Ens
47 [‘exist’, ‘solution’, ‘hypersonic’, ‘viscous’, ‘interaction’, ‘insulate’, ‘flat’, ‘plate’] 8 BAGG Ens

60 [‘simple’, ‘practical’, ‘method’, ‘numerical’, ‘integration’, ‘mix’, ‘problem’, ‘blasius’, ‘three’, ‘point’, ‘boundary’, 12 LDA‘condition’]

73 [‘role’, ‘effect’, ‘chemical’, ‘reaction’, ‘particularly’, ‘equilibrium’, ‘play’, ‘similitude’, ‘law’, ‘govern’, ‘hypersonic’, 15 LDA‘flow’, ‘slender’, ‘aerodynamic’, ‘body’]
77 [‘close’, ‘comparison’, ‘shock’, ‘layer’, ‘theory’, ‘exist’, ‘experiment’, ‘reynolds’, ‘number’, ‘merge’, ‘layer’, ‘regime’] 12 BAGG Ens
79 [‘aerodynamic’, ‘derivative’, ‘measure’, ‘hypersonic’, ‘mach’, ‘number’, ‘comparison’, ‘theoretical’, ‘work’] 9 ADA Ens
88 [‘satellite’, ‘orbit’, ‘contract’, ‘action’, ‘drag’, ‘atmosphere’, ‘scale’, ‘height’, ‘varies’, ‘altitude’] 10 BAGG Ens
91 [‘interference’, ‘effect’, ‘transonic’, ‘speed’] 4 BAGG Ens
95 [‘theoretical’, ‘heat’, ‘transfer’, ‘distribution’, ‘hemisphere’] 5 BAGG Ens

119 [‘effect’, ‘initial’, ‘axisymmetric’, ‘deviation’, ‘circularity’, ‘linear’, ‘large’, ‘deflection’, ‘load’, ‘deflection’, ‘response’, 14 BAGG Ens‘cylinder’, ‘hydrostatic’, ‘pressure’]

120 [‘previous’, ‘analysis’, ‘circumferential’, ‘thermal’, ‘buckling’, ‘circular’, ‘cylindrical’, ‘shell’, ‘unnecessarily’, 13 LDA‘involve’, ‘assume’, ‘form’, ‘mode’]
126 [‘thrust’, ‘vector’, ‘control’, ‘fluid’, ‘injection’, ‘dash’, ‘paper’] 7 LDA
165 [‘stable’, ‘profile’, ‘compressible’, ‘boundary’, ‘layer’, ‘induced’, ‘move’, ‘wave’] 8 LDA
172 [‘solution’, ‘blasius’, ‘problem’, ‘three’, ‘point’, ‘boundary’, ‘condition’] 7 BAGG Ens
184 [‘work’, ‘small’, ‘oscillation’, ‘re’, ‘entry’, ‘motion’] 6 LDA
203 [‘simple’, ‘empirical’, ‘method’, ‘estimate’, ‘pressure’, ‘distribution’, ‘cone’] 7 ADA Ens
204 [‘viscous’, ‘effect’, ‘pressure’, ‘distribution’] 4 BAGG Ens
222 [‘investigate’, ‘shear’, ‘buckling’, ‘stiffen’, ‘plate’] 5 LDA
223 [‘paper’, ‘shear’, ‘buckling’, ‘unstiffened’, ‘rectangular’, ‘plate’, ‘shear’] 7 BAGG Ens

C
IS

I

13 [‘criterion’, ‘developed’, ‘objective’, ‘evaluation’, ‘information’, ‘retrieval’, ‘dissemination’, ‘system’] 8 BAGG Ens
19 [‘technique’, ‘machine’, ‘match’, ‘machine’, ‘search’, ‘system’, ‘cod’, ‘match’, ‘method’] 9 BAGG Ens
28 [‘computerize’, ‘information’, ‘system’, ‘field’, ‘related’, ‘chemistry’] 6 ADA Ens
34 [‘method’, ‘cod’, ‘computerize’, ‘index’, ‘system’] 5 LDA

44 [‘presently’, ‘fifty’, ‘technical’, ‘journal’, ‘publish’, ‘average’, ‘million’, ‘article’, ‘year’, ‘attempt’, ‘cope’, 18 BAGG Ens‘scientific’, ‘publication’, ‘term’, ‘analysis’, ‘control’, ‘storage’, ‘retrieval’]

98 [‘online’, ‘retrieval’, ‘system’, ‘difficult’, ‘user’, ‘heterogeneity’, ‘complexity’, ‘investigation’, ‘concerned’, ‘concept’, 33 BAGG Ens‘computer’, ‘interface’, ‘mean’, ‘simplify’, ‘access’, ‘operation’, ‘heterogeneous’, ‘bibliographic’, . . .]

C
A

C
M

7 [‘interested’, ‘distribute’, ‘concurrent’, ‘program’, ‘process’, ‘communicate’, ‘message’, ‘passing’, ‘area’, 19 LDA’include’, ‘fault’, ‘tolerance’, ‘technique’, ‘understand’, ‘correctness’, ‘algorithm’, ‘Fred’, ‘Schneider’, ‘dist’]
14 [‘optimal’, ‘implementation’, ‘sort’, ‘algorithm’, ‘database’, ‘management’, ‘application’, ‘Kenneth’, ‘Wilson’, ‘sort’, 13 BAGG Ens‘physic’, ‘Newman’, ‘database’]
28 [‘information’, ‘packet’, ‘network’, ‘algorithm’, ‘rout’, ‘deal’, ‘topography’, ‘interested’, ‘hardware’, ‘Dean’, ‘jJgels’, ‘net’] 12 BAGG Ens
36 [‘fast’, ‘algorithm’, ‘context’, ‘free’, ‘language’, ‘recognition’, ‘parse’, ‘juris’, ‘hartmanis’, ‘fast’, ‘lang’, ‘recog’, ‘parse’] 13 BAGG Ens

58 [‘algorithm’, ‘statistical’, ‘package’, ‘anova’, ‘regression’, ‘square’, ‘generalize’, ‘linear’, ‘model’, ‘design’, ‘capability’, 20 LDA‘formula’, ‘interest’, ‘student’, ‘test’, ‘Wilcoxon’, ‘sign’, ‘multivariate’, ‘component’, ‘include’]
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6. Conclusions

This study has extended the ensemble strategies based on topic models to the ad-hoc
IR domain. These classic machine learning strategies have been widely studied in text
classification, but their use in IR still seems incipient. Accordingly, we have studied three
different ensemble strategies for IR, showing that these strategies manage to identify more
relevant documents than two competitive baselines at the top of the results lists. However,
when the results lists are longer, the differences between these methods decrease. Our
experiments show that performance is related to the specificity of the words detected in
the topics, for which BAGG Ens emerges as the most effective strategy. No dependence
was detected between the performance of the methods and the length of the queries.

Concerning RQ1, this work shows that model ensemble strategies based on LDA topic
models are competitive in IR, offering improvements over solid baselines such as TF-IDF
and outperforming IR strategies based on Bayesian networks of terms or conceptual lattices.
The advantages they offer over other strategies are especially relevant in the first positions
of the results lists, but they lose effectiveness as the lists becomes longer. Regarding RQ2,
this work shows that the most effective strategy is BAGG Ens. This strategy is especially
effective on @5 lists, in which it achieves statistically significant advantages over other
competitive methods. However, although ADA Ens manages to identify more specific
words in some queries, which produces improvements in the descriptive capacity of queries
and documents, this does not necessarily imply an improvement in precision or recall. This
result is similar to that identified in models based on networks of terms such as DBNIRM
or models based on concepts such as CCLR, which effectively identify pairs of related
terms, but this does not necessarily imply an improvement in precision and recall.

In future work, the efficiency aspects of these methods should be studied with care. In
addition, the enormous volume of data on the web indicates that the scalability of these
methods is an issue that needs to be addressed carefully in future studies.
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