
 information

Article

Hypergraph Application on Business Process Performance

Khawla Bouafia *,† and Bálint Molnár †

����������
�������

Citation: Bouafia, K.; Molnár, B.

Hypergraph Application on Business

Process Performance. Information

2021, 12, 370. https://doi.org/

10.3390/info12090370

Academic Editors: Robert

Stanisławski and Agnieszka

Zakrzewska-Bielawska

Received: 8 August 2021

Accepted: 6 September 2021

Published: 13 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Information Systems Department, Faculty of Informatics, Eötvös Loránd University (ELTE),
1117 Budapest, Hungary; molnarba@inf.elte.hu
* Correspondence: bouafia@inf.elte.hu
† These authors contributed equally to this work.

Abstract: The modeling of the graphical representation of business processes (BP) or workflows
in enterprise information systems (IS) is often to represent various activities, entities, relations,
functions, and communicate between them in an enterprise to achieve the major goal of operational
support. In this work, we decided to use graph representation approaches, especially hypergraphs
to depict the complex relationships that exist among the artifacts and constituents of BP for more
efficient and accurate manipulations. We used bipartite and further hypergraph formats for storing
and curating data. We have investigated the various descriptive languages and representation
models of BP as process modeling, workflow and process integration, and object-oriented (OO)
languages. We have carried out experiments using different approach combinations, but for observing
quiltedrepresentation, we focused on the main consistencies of “DBP”. As the final approach, we
used the “DBP” stream and data schemes that are defined by us to proceed with using pure Python
for manually generating data and external Python libraries to store, curate, and visualize “DBP”.

Keywords: hypergraph theory; BP models; bipartite graph; hypergraph representation; patterns;
generation and simulation BP data

1. Introduction

Nowadays, the term BP modeling and its management play an important role in orga-
nizations because they make available their business and data in a format that designers
can use for their models to represent the different processes. The hypergraph representa-
tion has shown its superiority in correlation formulation among samples, and has broad
applications for solving problems in several domains and various fields. The goal of this
paper is to show the value of several models by establishing a taxonomy for the nega-
tive and positive features (advantages and disadvantages) that facilitate making comparison
analysis between models. These similarities aid us in finding a syntactical element in the
representation codes and functionalities that prove helpful for the models’ transformations.
The other aim is to show the importance role of the hypergraph in different domains, and
especially for BP performance.

The hypergraph is widely used, which proves its importance nowadays. The repre-
sentation of the hypergraph concept implemented in Python using matrices and forms can
be applied in our future works. The hypergraph implemented is used for process instances
by several new methods, and the implementation aims to represent the hypergraph in
different ways for easier use later.

The paper structure follows the introduction with the second section, which introduces
several basic concepts associated with BP definition, while the third section defines the
concept of BP modeling, its patterns, and the purpose of those various BP modeling tools.

A survey on existing models with a detailed list of advantages and disadvantages
for each model is represented in the fourth section. In the same section, we summarize
the comparative points between the previously listed models. The relevant theories of the

Information 2021, 12, 370. https://doi.org/10.3390/info12090370 https://www.mdpi.com/journal/information

https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0001-5015-8883
https://doi.org/10.3390/info12090370
https://doi.org/10.3390/info12090370
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/info12090370
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info12090370?type=check_update&version=1

Information 2021, 12, 370 2 of 20

hypergraph as a sound ground representation, application domains, and their importance
are presented in Section five.

In the sixth section, an experimental part is represented with the various tools used.
The later three dedicated approaches that we established during research are defined in
the seventh section. This is followed by the different ways of representation.

The last section defines hypergraph-based representation for BP. Finally, the conclusion
summarized the various ideas discussed in the paper and describes future work, which
explains the expression of the hypergraph for ameliorating BP representation.

2. Business Processes

The notion of process has become an important asset for daily life in organizations
and enterprises. It helps to achieve organizational objectives and defines IS management.
It has a relevant role related to the concept of information. The use of BP can be consid-
ered diverse, according to the view of the company or the structure of resources used.
Taking into consideration various references, there are several perspectives defining and
conceptualizing BP:

The definition below is a combination of [1,2] in order to well define the concept:

Definition 1. BP is a collection of activities that takes one or more kinds of input and creates an
output that is of value to the customer. Generally, it is a set of activities undertaken in a specific
objective that can accomplish a specific organizational goal.

Another definition from [3] mentioned the following:

Definition 2. A BP is a step-by-step algorithm to achieve a business objective when the steps of
the process are called activities.

The Workflow Management Coalition (WfMC) defines BP as follows:

Definition 3. A BP is a set of procedures or activities related to each other to collectively achieve
a business purpose by challenging roles and functional interactions within an organizational
structure.

In addition, this definition given by [4] describes the term BP as follows:

Definition 4. BPs are a structured set of work activities that lead to specified business outcomes
for customers.

Grover and Teng [5] introduced BP as well by the following:

Definition 5. A BP is nothing more than logically related tasks that use the resources of a company
to achieve its defined business outcome.

The term BP is intended to embrace not only the control flow [6], i.e., the chronological
sequence of function execution, but also the descriptions of data, organizations, and
resources that are directly associated with it.

The definition of BP can be simple, including solely a sequence of activities, or a complex,
including a controlled composition of services and activities performed under condition, in
parallel, or encapsulated in sub-processes. In order to define a BP, it is necessary to define
the following:

• Activities which are the basic elements of a BP and assignment of resources.
• Business services providing a business operation.
• Business logic, including the rules that define the control through flow during the

BP execution.

Information 2021, 12, 370 3 of 20

A detailed consideration of the various referenced definitions is excluded from the
scope of this paper. The focus of this paper is on a BP model, and the definitions listed in
this paragraph are all acceptable definitions to accomplish the set goals. The next section
explores a BP modeling concept.

3. Modeling of Business Processes and Its Patterns

We often model BP to represent the activities, items, entities, their relation, and
intercommunication between them in an enterprise, which are needed for its success. BP
modeling and management [7] today emphasize the term BP because it renders available
the business and data in a format that designers can use for models.

Within a definition for a BP, in the last section, the next step is to define the BP model,
which is generally an abstract representation of reality that excludes much of the world’s
infinite detail. According to [8], the concept of the BP model is defined as the following:

Definition 6. The BP model is the abstraction of how systems and individuals collaborate to meet a
business need described in the notation and representation of knowledge and expertise of the practice
of the profession.

Another definition mentioned in [9] is as follows:

Definition 7. The model is an abstract representation of reality. Details that are unnecessary are
not included as a rule in most modeling efforts. The modeler determined which aspects of the real
system are of interest and which system elements are to be modeled.

A BP model or schema is a formal representation that must present all the elements
as well as the objective or the reason behind the creation of the process, the event causing
its initialization, the inputs, the outputs, the resources consumed, the activities carried
out, and the execution sequence. BP modeling tools that allow process representation is a
lighter digital method that can then be transferred to a live automated process.

BP modeling is one of the most commonly used techniques in requirements analysis [10],
often taking data flow diagrams as a form. There are several newly developed methods for
modeling, and these techniques vary significantly. Most BP modeling approaches focus on
some diagram-like graphics, which reveal the coordination between activities in BP.

The BP diagrams should contain activities and activities connectors, a way to represent
decision points, and other strategies to express various activity coordination patterns:
(patterns mean the recurrence of same basic features during the life cycle of a process)
sequential flow, branching, and parallel execution. In the following are defined various
basic patterns BP models:

• Sequence is an ordered series of steps following each other, or series of activities
where each activity starts after completing the previous one.

• Exclusive choice can be perceived as a branch that comes from a single activity and
goes to precisely one of several paths. The path is chosen either by using a decision or
by the mean of a condition.

• Parallel split is defined as a gateway that uses a simple control link to partition two or
more activities. These activities are processed and run in parallel. We can also define
it as a branch from a single activity that dispatches to multiple parallel paths.

• Multiple choice, compared to the exclusive choice, allows the choosability between all
possible alternative paths at the performance time. Its execution is made by choosing
only one or more parallel branches that satisfy a particular condition.

• Multiple merge is multiple paths merging without any control. It is a point at which
one or more branches of the control thread join without synchronization.

• Cycle is a mechanism that uses some conditions to repeat a collection of patterns defin-
ing a set of activities, actions, and work tasks, i.e., the same instructions multiple times.

The purposes of various BP modeling tools are as follows:

Information 2021, 12, 370 4 of 20

• A BP model is a kind of plan that guides the flow of the trade from the start to the end
to provide a clear understanding of how the process works;

• It provides the basis for improving the process and support BPM requirements;
• It serves as a basis for decision support, affects decisions by setting priorities on

objectives, and works as a basis for obtaining resources;
• It provides consistency and controls the process.

4. Business Process Models
4.1. Existing Business Process Models

Several researchers made a comparison between various existing models [11] and
compared them based on four views of a BP, namely, the informational view, the functional
view, the dynamic view, and the organizational view. In a previous study [12], we
compared several BP tools based on structural, syntactic and semantic factors. In the
literature, there exist different BP models and languages as bellow:

4.2. Petri-Nets

The classical petri-net was invented by Carl Adam Petri in the 1960s Since then,
researchers have used it to model and analyze all kinds of processes with applications
ranging from communication protocols, hardware, and embedded systems to flexible
manufacturing systems and user interactions. Recently, researchers extended the classical
Petri-net with color, time, and hierarchy [13]. These extensions facilitate the modeling of
complex processes, where data and time are important factors.

Petri-nets gained an increase in usage and acceptance as a method for describing
information flow and control [14]. As a modeling language, it graphically depicts the
distributed system’s structure as a directed graph with annotations. Such Petri-nets have
place nodes, transition nodes, and directed arcs connecting places with transitions. Petri-
nets model the dynamic behavior of systems. The places of a Petri-net contain tokens; the
firing of transitions removes tokens from the input places of the transition and adds them
to its output places.

Example 1. Figure 1 shows Petri-nets firing rules (https://www.sciencedirect.com/topics/computer-
science/petrinets, Accessed Date: 7 November 2020). (A) An unmarked net with one transition
t1 with two input places, p1 and p2, and one output place, p3. (B) The marked net, the net with
places populated by tokens; the net before firing the enabled transition t1. (C) The marked net after
firing transition t1, two tokens from place p1 and one from place p2, are removed and transported to
place p3.

Figure 1. Firing rules of Petri-nets.

https://www.sciencedirect.com/topics/computer-science/petrinets
https://www.sciencedirect.com/topics/computer-science/petrinets

Information 2021, 12, 370 5 of 20

4.2.1. Finite State Machines (FSM)

An FSM is a well-known model for formal system specification. It is also a standard
model used in the mathematical foundation of computer science. This model concept is
defined and discussed in innumerable books and papers. An FSM is a behavioral model
that contains states and transitions. In our dissertation, FSM representation is often used as
a BP model—the focus of this section. We present its components and its utility in detail.

FSM is composed of three sets: a set of states, a set of actions, and a set of transi-
tions labeled between states—an initial state and final states. It has a five-element tuple:
A = (M, Q, qo, F, R), where M is an input alphabet, Q is a finite set of states of A, qo in Q is
the initial state, F ⊆ Q is the final states, and R : Q ∗ X −→ Q is the transition function.

Figure 2 shows the structure and the different elements of the FSM, where s0 is the
initial state, s f is the final state, and a, b, c, d, e, f , g, i are transitions.

Figure 2. FSM structure.

4.2.2. Business Process Model Notation (BPMN)

BPMN is a fundamental ontology that represents domain information model entities.
BPMN [15] creates a standard to fill the gap between the design and implementation of BP.
It provides a visual language in the form of graphical notation for defining BP in a diagram.

BPMN is a standard language for describing BP, particularly at the domain analy-
sis level and high-level system design. A growing number of process design, EA, and
workflow automation tools provide modeling environments for BPMN.

The most significant advantage of BPMN is that it is a standard with a well-defined
syntax. Therefore, many business analysts are familiar with it, which makes collabo-
ration much more effortless. Additionally, most modeling tools support BPMN (https:
//creately.com/blog/diagrams/business-process-modelling-techniques/, Accessed Date:
8 November 2020), which makes it much easier to share and edit, even if using different
software. All these make BPMN the most popular BP modeling technique at the moment.

Figure 3 describes an example where an order of an iPhone from eBay (https://creately.
com/blog/examples/bpmn-templates-model-processes/, Accessed Date: 8 November
2020) is expressed by a BP.

https://creately.com/blog/diagrams/business-process-modelling-techniques/
https://creately.com/blog/diagrams/business-process-modelling-techniques/
https://creately.com/blog/examples/bpmn-templates-model-processes/
https://creately.com/blog/examples/bpmn-templates-model-processes/

Information 2021, 12, 370 6 of 20

Figure 3. BPMN diagram of iPhone ordering process from eBay.

This standard provides organizations the capability of understanding internal busi-
ness procedures in a graphical notation. It also provides an ability to communicate
these procedures in a standard manner. Furthermore, the graphical notation facilitates
the understanding of the performance [16], collaborations and business transactions
between organizations.

4.2.3. Unified Modeling Language (UML)

UML is one of the most used modeling languages. UML is a meta-model with several
packages; each package introduces concepts expressed through graphical notation and
diagrams. The UML language is a standard offered by the Object Management Group
(OMG) that allows defining functional and technical needs in an object-oriented (OO)
development environment, using several diagrams and several concepts to increase the
semantics of these models.

UML is a standard offered by the OMG, allowing functional and technical needs
in an OO development environment. It uses several diagrams and several concepts to
increase the semantics of these models. UML is used when modeling BP, using OO
analysis tools. Jacobson and Booch Rumbaugh developed UML as a universal notation for
OO analysis. UML offers specialized diagrams (including diagrams of activity diagram,
sequence diagram, class diagram, state charts, etc.), each having a specific function.

The diagram commonly used in UML to model processes is the activity diagram. It
allows the description of the process behavior in the form of flow or activity flow. We
can use UML to model BP, model the logic of the use cases or user scenarios, or model
a business participant with the related business activities and business logic. The UML
activity diagrams are the OO equivalent to the data flow and flowchart diagrams using
structured development methods.

The diagram commonly used in UML to model processes is the activity diagram.
Figure 4 (https://www.uml-diagrams.org/document-management-uml-activity-diagram-
example.html, Accessed Date: 15 December 2020) illustrates an example of document
management process activity.

https://www.uml-diagrams.org/document-management-uml-activity-diagram-example.html
https://www.uml-diagrams.org/document-management-uml-activity-diagram-example.html

Information 2021, 12, 370 7 of 20

Figure 4. An example of document management process activity.

4.2.4. Business Process Execution Language (BPEL)

BPEL [17,18] is a standardized language for specifying the behavior of a BP based on
interactions between a process and its service partners. It defines how multiple services
interact with a web service, using WSDL documents through a set of operations and
messages to deal with it.

A BPEL process uses a set of variables to represent the messages exchanged between
partners (they also represent the state of BPs). The WSDL document is represented through a
set of operations and statements to deal with it. A BPEL process uses a set of variables to
represent the messages exchanged between partners. They also represent the state of BP.

BPEL with the XML semantics have become the rapid method for information exten-
sion. We use it as an interactive language for web services. BPEL is XML-based in textual
format and contains complex constraints. The article [19] used it to model BP, and provides
a fundamental ontology to represent domain information model entities.

Example 2. <process name = “Supplier process”>
<partnerLinks>
<partnerLink name = “client” . . . />
<partnerLink name = “warehouse” . . . />
</partnerLinks>
<variables>
<variable name = “BdC” type = “xsld: Command”/>
<variable name = “resBDC” messageType = “string” />
<variable name = “availability” type= “string”/>
</variables>
<sequence>
<receive name = “receiveBdC”
partnerLink = “client” portType =“ptCommand”
operation = “opCommand” variable =“BdC”
createInstance = “yes”/>
<invoke name = “demandavailability”
partnerLink = “warehouse”
. . .
inputVariable = “BdC”
outputVariable = “availability”/>
<switch>
<case . . . > < ! available case >
< ! Initialize var repBdC with positive response >

Information 2021, 12, 370 8 of 20

<reply name = “ResponseBdC”
partnerLink = “client”
portType = “ptCommand”
operation = “opCommand”
inputVariable = “resBDC”/>
<ow>
<invoke name = “sendShippingSlip” . . . />
<receive name = “ReceiveTransferOrder” . . . />
</ow>
</case>
<case . . . > < ! case availability >
< ! Initialize var resBdC with negative response >
. . .
</case>
</switch>
</sequence>
</process>

In this Example 2 of BPEL code, named supplier process, we have two main tags:
variables, partnerlinks and the part of the activities between the two tags of the start and end
of the process (the root element of the BPEL).

• Partnerlinks: there are two partners who represent the participants of the customer
and warehouse process.

• Variables: BdC, resBDCand availability.
• The activities part: this is a sequence of activities (receive, invoke, switch) included

between the two kicks at the start and end of the sequence.

4.2.5. Process Algebras

In computer science, the process algebras (or process calculi) is a diverse family of related
approaches for formally modeling concurrent systems. Process algebras provides a tool for
the high-level description of interactions, communications, and synchronizations between
a collection of independent agents or processes [20].

Process algebra is a specification approach for communication between processes and
events. Its essential components are the syntax as determined by the well-formed combina-
tion of operators and more elementary terms. The syntax of a process algebra [12] is the set
of rules that define the combinations of symbols. These symbols are correctly structured
programs in that language: the process algebra described by the structural operational
semantic (SOS) approach, and the various approaches of the calculus of communicating
systems (CCS), communicating sequential processes (CSP) and algebra of communicating
processes (ACP). The semantic-based on algebraic laws are the fundamental axioms of an
equations system and process.

4.2.6. Event Driven Process Chain (EPC)

A flowchart called “event-driven process chain” (also known as merely “EPC”) is used
for modeling the BP, configuring a so-called “enterprise resource planning” implementation
as well as for improving the BP. It is also a modeling language invented by Professors
Wihelm and Nuttgens in 1992, EPC; instead, a semi-formal modeling language [21] for the
description of BP is used for its visualization and analysis in the realm of BPM. The EPC
representation allows signifying other business IS features, such as data structure resources
and functions, using nine elements, including events, functions, a unit of organization,
paths, control flows, logical connectors, information flows and materials, moreover and
organizational unit assignment. EPC is used to describe the operational sequence of
processes using rules for EPC modeling.

Information 2021, 12, 370 9 of 20

A simple event-driven process chain (Figure 5) (https://www.ariscommunity.com/
event-driven-process-chain, Accessed Date: 20 December 2020) may look as follows:

Figure 5. Example of EPC.

4.3. BP Models Advantages and Disadvantages

From several references and deep research about BP models, we conclude the two
Tables 1 and 2 below, which show the various advantages and disadvantages of each model
described in the previous section.

Table 1. BP models’ advantages.

Models Advantages

Petri-nets The multitude of Petri-net verification mechanisms on business models and the ability to transform many
models to Petri-nets;
Petri-nets are minimal and very general, but also very rich in mathematical properties.

FSM A power theory and formal methods for requirement specifications, modeling, design and test case genera-
tion;
Its theory has proved useful in capturing the static as well as dynamic behavior of systems.

BPMN Fully acceptable model;
Existence of relation between real BP and its execution;
Easy to understand.

UML Capture activities of difficult software;
Better illustration of sequence between activities;
Chronological system flow;

BPEL Express BP using standard language;
Allow to cancel the processing done by activity in case of failure;
Easy to understand because of the XML based;
BPEL processes have a well defined life-span and their life-cycle can be controlled in order to maintain the
execution of activities for a long period;
Describe the logic of BP through the composition of web services.

https://www.ariscommunity.com/event-driven-process-chain
https://www.ariscommunity.com/event-driven-process-chain

Information 2021, 12, 370 10 of 20

Table 1. Cont.

Models Advantages

Process algebra Process algebra efficient and can be helpful to tackle choreography problems;
Support a variety of algebraic laws to manipulate systems and support to the whole process development
both at the design stage and for reverse engineering issues;
Explain the semantics of conceptual BP models.

EPC Integration of system features;
Understandable notation;
Used to facilitate the adoption and customization of process oriented IS, thereby serving as a starting point
for the actual implementation;
Representation and explanation of BP.

Table 2. BP models’ disadvantages.

Models Disadvantages

Petri-nets In system modeling of events in which it is possible for some events to occur concurrently, there are
constraints on the concurrence, precedence, or frequency of these occurrences;
Inability to test for specific marking in an unbounded place and to take action on the outcome of the test;
Petri-nets lack means to model the timing of actions represented by transition firings, but extensions have
been developed to remedy this limitation.

FSM Need more static memory to store the lookup table that stores the FSM events;
The simplicity of FSM has also become one of their disadvantages. Systems that need an indeterminate
amount of states cannot be modeled by a FSM, evidently.

BPMN No state transitions;
Hierarchical maintenance does not exist;
Limited data and tasks details.

UML Activity diagrams do not give much detail about behavior or interaction of objects;
UML diagrams insufficient to define semantic functionality of the system to be developed;
UML has still no structure and specification for modeling user interfaces;
Do not have much mathematical foundation to represent pre/post conditions and data constraints to be
useful in validation and verification of the procedures.

BPEL Limited data and tasks details;
BPEL enables the top-down realization of service oriented architecture (SOA) through composition, orches-
tration, and coordination.

Process algebra Global states and global activities are not basic notions;
Enable on composing larger from smaller ones in a structured way.

EPC An ambiguity concerning the modeling of start and end events occur in the EPC.

4.4. Viewpoints of Comparison

There are numerous BP models in the literature; we have chosen some particular BP
models that proved to be useful. To see the similarities and the discrepancies, we may
highlight various viewpoints in our comparison. Mainly, we can group them based on
several aspects, including context, ambiguity, structure, semantic, notation, terminology:

• Petri-net has a simple structure, and it is easy to analyze, simple and, suitable for
testing the model. However, the low-level net is not suitable for performance analysis.
To enable this function, we need to use time and color.

• Petri-net is a graphical and mathematical tool, usually applied in the simulation of
discrete-event dynamic systems.

• FSM is easy to understand by users and its well-known formal model can be easily
checked.

• UML Activity diagrams and BPMN are quite similar technologies, and they are
suitable for static modeling of BP. Nonetheless, BPMN is more convenient and has

Information 2021, 12, 370 11 of 20

much more symbolic power than UML since BPMN covers simulation and executing
process models by automating (wherever possible) the process steps.

• UML is a visual language for OO modeling approaches; it is mainly used in software
modelling and helps model class connections.

• Both FSM and UML are techniques used during both design and specification phases
of development depending on mathematical and computational tools.

• Petri-nets and process algebra are formal graphical representations that are under-
standable because of their design in the form of a graph, they have useful connections
both to graph and linear algebra which can be exploited for the verification of systems.

• Often, we use BPMN and BPEL (Initially and by design) in conjunction: BPMN for the
business user-centered perspective and BPEL for the technical specification.

• Both the EPC and UML activity diagrams have similar concepts and have different
contexts under which they are developed. They focus on modeling a system (process
inside system). No restrictions appear to exist on the structures of EPC, but non-trivial
structures can involve parallelism and have ill-defined execution semantics. Once
they are as we described, they resemble UML activity diagrams.

• The UML models are richer of concept than others because of the higher view of
modeling for specific cases, but EPC structure can be expressed more efficiently rather
than UML.

5. Hypergraph as a Sound Ground Representation
5.1. Theory of the Hypergraph Concept and Definitions

Hypergraphs as representational structures are apt for system modeling, analysis and
specification, exclusive to information and software systems. Formal tools consistency
checking are available by test algorithms.

Unlike other mathematical theories of the 20th century, the hypergraph theory is one
of the fresh independent theories proposed to generalize the theory of graph. The 1960s
witnessed the birth of this hypergraph theory in France (France school) by C. Berge, and the
leaders of mathematics from Hungary: Paul Erdös, László Lovász, Paul Turán. . . . It was the
first generalization of hypergraph concepts. It was a generalization of the concept of graphs
into the hypergraph, which they extended, as well as the concept of edge into (hyperedge).

A hypergraph is a structure that describes complex relationships that can be explored
among models during the analysis and design of IS; it is a generalized graph theory that
plays a vital role in discrete mathematics [22]. We start with its basic definitions as follows.

Hypergraphs generalize the notion of a graph by defining hyperedges that contain
families of vertices, unlike conventional edges which join only two vertices. From a
theoretical point of view, hypergraphs make it possible to generalize certain theorems of
graphs, or even to factor several of them into one. From a practical point of view, they are
sometimes referred to as graphs since they better model certain types of constraints. In this
section, we present some essential terms of hypergraphs.

Definition 8. We say Hypergraph H is pair (V, E) of a finite set of V = v1, v2, . . . , vn and a set
E. where V are vertices (without repetition) and E elements are edges, which are a subset of V [23],
where m Ei 6= ∅; (i = 1, 2, 3, . . . , m), and

⋃m
i Ei = V.

Example 3. The example below Figure 6 shows the structure of hypergraph, where E = {e1; e2; e3}
are edges and V = {v1; v2; v3; v4; v5} are vertices (nodes).

Information 2021, 12, 370 12 of 20

Figure 6. Hypergraph structure.

Formally, let G(V, E, w) denote a hypergraph [24], where V denotes a finite set of
nodes V, E denotes the set of hyperedges e, and w is a weight function defined as w : E→ R.
Each hyperedge e ∈ E is a subset of V and is assigned a positive weight w(e).

Definition 9. We say a hypergraph is of order n if | V |= n and the size of a hypergraph is equal
to the number of occurrences of the vertices in its hyperedges.

Example 4. Figure 7 illustrates a hypergraph H = (V, E) of order 8 and size 15: V =
{1, 2, 3, 4, 5, 6, 7, 8} and E = {{1, 2}, {2, 3, 7‘}, {3, 4, 5}, {4, 6}, {6, 7, 8}, {7}}.

Figure 7. Hypergraph example.

A Generalized hypergraph could be defined as follows.

Definition 10. We define a generalized or extended hypergraph [25] in that some of the hyperedges
are denoted in certain cases as vertices; therefore, a generalized hyperedge e may consist of both
vertices and hyperedges, as well. The hyperedges that are contained within the hyperedge e should
be different from hyperedge e.

In defining [26], we have the concept of directed hyperedge or hyperarcs as follows.

Definition 11. A hyperarc is an ordered pair (From, To) E = (X, Y) of (possibly empty) disjoint
subsets of vertices; X is the tail T(E) of E, while Y is the head H(E). The concept of the directed
hypergraphs is an ordered pair of vertices and hyperarcs that are directed hyperedges, i.e., each
hyperarc is an ordered pair that contains a tail and a head.

5.2. Application of Hypergraph Representation

In recent years, hypergraphs have been largely applied in various studies and in
different domains. In this section, we introduce several domains to explain more the value
of the hypergraph.

Hypergraph learning has achieved considerable performance in many implementa-
tions and areas. Several authors [27] expressed the hypergraph for clustering by using a
clique average to transform it into a simple graph.

Information 2021, 12, 370 13 of 20

In addition, the hypergraph is also used in the domain of data structure [28], multiple
learning [29] and video segmentation [30]; they are used to solve many difficulties in the
field of images processing [31], classification and to connect the high order of relationships
and samples, where samples are vertices and edges are similarity between two ones.

Another researcher [32] suggested a semi-supervised learning method called hyper-
prior for group factor expression data by using biological knowledge as a constraint.

In [30], the researcher used the task of image clustering as an issue of hypergraph
partition. Each image and its nearest neighbors form two kinds of hyperedges based
on the descriptors of shape or appearance. In another work [26], a hypergraph-based
image retrieval approach was proposed, where hypergraph-based 3D object recognition
was proposed.

The big importance and the huge application areas of hypergraph representation solve
different issues, and thus is important as follows:

• The hypergraph model has a strong theory for solving real-world problems;
• The hypergraph could be a networks model because of its mathematical tools;
• The hypergraph generalizes theorems on the graph;
• Hypergraphs are an appropriate structure for modeling, examining and

specifying systems;
• Its formal tools for consistency checking are available by test algorithms;
• It is able to describe complex relationships during the design and analysis phase of

the IS;
• Hypergraphs can be grasped in their capabilities to describe heterogeneous finite structures.

6. Experiment: Hypergraph Representation

BP modeling is mainly used to map a workflow so that we can understand, ana-
lyze, and make positive changes to that workflow or process. The usage of diagram
visualizations helps us to understand this process and make better decisions.

Our experiments can be represented as three dedicated and independent approaches.
The first two approaches are Amazon Web Services (AWS) services, wrapped up with
Python programming language. The last is assumed as pure Python implementation
with HyperNetX (HyperNetX library: https://github.com/pnnl/HyperNetX, Accessed
Date: 8 February 2021)), NetworkX (NetworkX library official documentation: https:
//networkx.github.io/X, Accessed Date: 8 February 2021) and Pandas (Pandas library
official documentation: https://pandas.pydata.org/, Accessed Date: 8 February 2021),
external libraries.

Approaching AWS services, we realized that it is too costly a decision, which invoked
the reason to swap to the last approach with manual generating data and the rest of
activities. Beyond this, it was conceived that AWS allows us to handle a very wide range of
tasks. However, we need to focus on a more tidy problem definition. We concluded that
most of the known models are outdated and are not as flexible as we needed. However, it
must be highlighted that some of them are used far more effectively in other industries
and for different purposes. Because of that, we considered focusing on simulating within
the bipartite graph and hypergraph representations.

6.1. AWS Services

We decided to use multiple AWS services as the main components because they allow
us to increase the time-box for achieving results. AWS is a cloud computing service and
the world’s most comprehensive and broadly adopted cloud platform, offering over 175
fully-featured services from data centers globally. While experimenting, we used as in the
Figure 8 the following services:

• S3 (AWS S3: official Amazon Cloud Services documentation, https://aws.amazon.
com/s3/, Accessed Date: 10 February 2021):simple storage service that offers industry-
leading scalability, data availability, security, and performance.

https://github.com/pnnl/HyperNetX
https://networkx.github.io/X
https://networkx.github.io/X
https://pandas.pydata.org/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/

Information 2021, 12, 370 14 of 20

• Lambda-service (AWS Lambda, official Amazon Cloud Services documentation,
https://aws.amazon.com/lambda/, Accessed Date: 20 February 2021):lets us run
code without provisioning or managing servers.

• DynamoDB-key-value and document database (AWS DynamoDB, official Amazon
Cloud Services documentation, https://aws.amazon.com/dynamodb/, Accessed
Date: 22 February 2021):delivers single-digit millisecond performance at any scale.

• Neptune—fast and reliable, fully-managed graph database service (AWS Neptune,
official Amazon Cloud Services documentation, https://aws.amazon.com/neptune/,
Accessed Date: 25 February 2021):makes it easy to build and run applications that
work with highly connected datasets.

• Redshift—fully managed (AWS Redshift, official Amazon Cloud Services documenta-
tion, https://aws.amazon.com/redshift, Accessed Date: 25 February 2021) petabyte-
scale data warehouse service in the cloud.

• DynamoDB + Cache + Titan—Amazon DynamoDB Storage Backend for Titan, enables
storing Titan graphs of any size in fully-managed DynamoDB tables. Graph databases
are optimized for fast traversal of complex relationships required for social networks,
recommendation engines, fraud detection, inventory management, and more. Titan is
a popular graph database designed to efficiently store and traverse both small and
large graphs up to hundreds of billions of vertices and edges.

• CloudWatch—monitoring and observability service (AWS CloudWatch, official Ama-
zon Cloud Services documentation, https://aws.amazon.com/cloudwatch/, Ac-
cessed Date: 26 February 2021) built for DevOps engineers.

Figure 8. AWS services.

6.2. AWS CloudWatch

CloudWatch as in the Figure 9 bellow, stood as one of the main components within our
experiments, because it collects monitoring and operational data in the form of logs, metrics
and events, and visualizes it, using automated dashboards so that we can obtain a unified
view of the AWS resources, applications, and services that run in AWS and on-premises.
It can correlate the metrics and logs to better understand the health and performance of
the resources.

https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/neptune/
https://aws.amazon.com/redshift
https://aws.amazon.com/cloudwatch/

Information 2021, 12, 370 15 of 20

Figure 9. AWS CloudWatch.

7. The Approaches Used

The diagram below Figure 10 presents the two first approaches that the schema used.
First of all, we partially set up these tools as a pipeline. The key was to obtain first the
“environment” and observations immediately. Therefore, we decided to focus not on
creating a complicated chain of tools, but we tried to obtain that setup as soon as possible.
We created a script that parses data from a 3rd party API (as a source of data, we decided
to take the London transportation API (Transport for London API official documentation:
https://tfl.gov.uk/, Accessed Date: 8 April 2021) , as we mentioned before). We obtained
data about car accidents for different years. Here, we solely focused on the process rather
than the actual data.

Figure 10. Approaches schema.

After passing the data to S3 under a dedicated bucket and with a specified key,
AWS Lambdas were automatically triggered to process and forward data to DynamoDB

https://tfl.gov.uk/
https://tfl.gov.uk/

Information 2021, 12, 370 16 of 20

and Redshift in parallel. We decided to use two different databases because, firstly, we
considered storing processed data and logs separately, and we wanted to create processes
similar to the real work pipelines.

We aligned the processing steps because the format of input data from TFL was in
JSON format. We converted it into “.csv” (CSV: Comma Separated Value) for further
convenience to interact with DBs. In the meanwhile, all the used AWS components were
tracked by CloudWatch. We monitored it also. Once the data were passed to DynamoDB,
we prepared pure Python functionality to grep data from CloudWatch to analyze the
features of processes as well as to explore and define the CloudWatch custom metrics.

The main complexity within DynamoDB is found in the Titan App and Elastic Cache.
Titan and the others are not favored, and they are not maintained properly; moreover, it
lacks documentation. Based on that, we decided to simplify our chain of tools, but on
another, we kept the complexity of the processes. The second approach came up here.

The first few steps remained unchanged. Needless to say, we found that few other
AWS services fit our purpose best by the provided documentation. Here, the main dif-
ference is in AWS Neptune and Gremlin, which allows obtaining from out of the box,
graph-based features, and language (Gremlin) to query that data from Neptun.

We established in the second approach a specified scheme in the documentation, but
once we launched that chain of tools, we received an alarm immediately (which we have set
up beforehand for such kinds of expected cases). We would like to point out that AWS Neptun
is the best service, out of the box, to store and manage graph-based data.

After all, we were looking at the most time-efficient methods of solving our task.
Based on that, we manually generated data, and then we applied open-source tools to
analyze these data and pass them into a bipartite graph and further into a hypergraph.
Then, we tried to compute the performance of the finally collected observations.

The third approach schema is presented in the following diagram Figure 11:

Figure 11. Third approach schema.

After exploring the metrics, we assumed the following types for process type data:
bulk; load; download; remove; and create. For activity types, we considered the following:
multiple merge; multiple choice; parallel; exclusive choice; sequence; and cycle. Finally, we
defined the following characteristics for process features: process id; process type; process cost;
execution time; and user role. These are the steps followed:

• Generate simulated BP data;
• Pass generated data into a bipartite graph;
• Pass BP data into hypergraph;
• Apply Smith normal form.

7.1. Simulation of Generated BP Data

We defined process types and activity types that stand for interactions inside of process
types and process features, additionally. Figure 12 shows more details, as follows:

Information 2021, 12, 370 17 of 20

Figure 12. Generate simulated BP data.

7.2. From Bipartite Graph to Hypergraph

After we generated the data, we forwarded them into a bipartite graph, shown in
Figure 13.

Figure 13. From bipartite graph to hypergraph.

The reason for this is to have a more convenient basis to form a hypergraph itself from
the obtained bipartite graph, which will be more convenient to form a hypergraph itself
from the obtained bipartite graph. In this context, we relied on two dedicated functions.
We first handled the input (previously generated data) and created a bipartite graph; then, we
cast the bipartite graph into a hypergraph.

7.3. Smith Normal Form

Afterward, we applied the Smith normal form as the figure explain Figure 14 to find
similar process groups and make further computations.

Figure 14. Smith normal form.

Information 2021, 12, 370 18 of 20

In mathematics, the Smith normal form (HyperNetX, homology and Smith normal
form: https://pnnl.github.io/HyperNetX/build/algorithms/algorithms.html#homology-
and-smith-normal-form, Accessed Date: 13 April 2021) is a normal form that is defined for
any matrix with entries in a principal ideal domain (PID) in a simplistic way.

An incidence matrix is a matrix that shows the relationship between two classes of
objects. If the first class is X and the second is Y, the matrix has one row for each element
of X and one column for each element of Y.

The purpose of computing the homology groups for data generated hypergraphs
is to identify data sources that correspond to interesting features in the topology of
the hypergraph.

The elements of one of these homology groups are generated by k dimensional cycles
of relationships in the original data that are not bound together by higher-order relation-
ships. Ideally, we want the briefest description of these cycles; we want a minimal set of
relationships exhibiting interesting cyclic behavior. This minimal set is the basis for the
homology group.

The cyclic relationships in the data are discovered using a boundary map represented
as a matrix. To discover the basis, we compute the Smith normal form of the boundary map.
This module computes the homology groups for data represented as an abstract with chain
groups Ck and Z2. The boundary matrices are represented as rectangular matrices over Z2.
These matrices are diagonalized and represented in Smith normal form. The kernel and
image bases are computed, and the Betti numbers and homology basis are returned.

As an output of the Smith normal form “step”, we obtained an array of calculated
homology and then invoked interpretation, which returned the data as represented in Ck
associated with the array. Later on, we could visualize the obtained interpretations.

8. Hypergraph Based Representation for BP

We used the hypergraphs as a tool for describing IS from various viewpoints, a
formal method to analyze the system, and to check the conformance, compliance, and
consistency of the set of models. It was used to define the different elements of processes,
its analysis tools being based on mathematics with several algorithms of computer science.
Hypergraphs can be for the description of BP.

The BP plays a big role in the Enterprise IS upon which we based on the process
because if the workflow of the BP is well represented and organized, we can keep ensure
the success of the whole IS. The BP representation can be made by using the transformation
to FSM, which is described in hypergraphs. Then, we perform model checking activities
on the representation [33].

The common goal in the modeling is to yield a conceptual and technical view that
represents effectively and systematically all elements; the hypergraph can be used for BP,
where each edge can associate with any number of nodes. The various parts of the process
should be well defined with the different elements of the hypergraph, taking into account
the properties of the process flow and patterns.

As we mentioned before, the hypergraphs are apt tools for representing complex and
simple structures because of the strong mathematical structure, where the activities of the
process are represented by vertices that are linked with relationships defined by hyperarcs,
respecting the direction of the flow and the relationship between them, which is described
by the tails and the heads of the hyperarcs.

A design problem of workflows and BP is providing consistent and timely feedback
about a case to the involved citizens. A formal model grounded in graph theory provides
the opportunity to reconcile various aspects in an integrated and consistent view. The
systematic description of the complex relationships makes it possible to monitor, track, and
manage the cases.

The formalized model can solve the above-mentioned problems with case management,
which appears in document-centric IS, with a special emphasis on BP. The BP description
in hypergraphs is transformed into bipartite graphs and showcased in matrices, according

https://pnnl.github.io/HyperNetX/build/algorithms/algorithms.html#homology-and-smith-normal-form
https://pnnl.github.io/HyperNetX/build/algorithms/algorithms.html#homology-and-smith-normal-form

Information 2021, 12, 370 19 of 20

to the Smith normal form. The Smith normal form representation offers an opportunity to
evaluate the dissimilarities between business processes, i.e., the violation of integrity and
consistency in the case of dynamically changed business processes can be highlighted.

9. Conclusions

To conclude, we should consider the following achievements:

• We achieved an automatic method of generating simulated BP data with dedicated features;
• We established an automatic method of obtaining a visualization of generated data in

terms of hypergraphs and bipartite graphs;
• We applied the Smith normal form to detect similar BP within generated data;
• We realized that with AWS, it is too costly for research work (excepting research

within enterprises);
• Generating simulated data needs a lot of domain knowledge of BP.

Moreover, we can say that any model has its advantage and disadvantages, which
can make it strong or weak, and any model has its specific domain to apply more, but
the formal models are still strong because of the easy understanding and the ability for
verification and checking. From this definition of the hypergraph, it is easy to see the
simplicity and the significance of the hypergraph representation, which will be applied in
our future work as a DBP model to describe the complex process as well as its resources
and functionalities.

Author Contributions: K.B. and B.M. worked on the conceptualization of the raised issue; they
wrote the original draft version, and then carried out editing the revision. K.B. carried out the
operationalization and coding of the models. B.M. proofread the draft and revision, and supervised
the process. B.M. acquired funding to support the creation of the paper. Both authors have read and
agreed to the published version of the manuscript.

Funding: The project was supported by the European Union, co-financed by the European Social
Fund (EFOP-3.6.3-VEKOP-16-2017-00002) and the project was partially supported by “Application
Domain Specific Highly Reliable IT Solutions” project, which was implemented with the support
provided from the National Research, Development and Innovation Fund of Hungary, financed
under the Thematic Excellence Programme TKP2020-NKA-06 (National Challenges Subprogramme)
funding scheme.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data and code presented in this study are available on request
from the author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Brahimi, M.; Bouzidi, L. Eléments D’architecture Pour Une Mémoire D’ Entreprise Orientée Processus Métier. Rev. Electron.

Suisse Sci. L’Inf. (RESSI) 2008, 1661–1802. Available online: http://campus.hesge.ch/ressi/Numero_7_mai2008/articles/HTML/
RESSI_043_Brahimi.htm (accessed on 8 December 2020).

2. Mejia Bernal, J.F.; Falcarin, P.; Morisio, M.; Dai, J. Dynamic Context-aware Business Process: A Rule-based Approach Supported
by Pattern Identification. In Proceedings of the 2010 ACM Symposium on Applied Computing; ACM: New York, NY, USA, 2010;
pp. 470–474.

3. Havey, M. Essential Business Process Modeling; O’Reilly Media, Inc.: Newton, MA, USA, 2005.
4. Davenport, T.H.; Beers, M.C. Managing Information about Processes. J. Manag. Inf. Syst. 1995, 12, 57–80. [CrossRef]
5. Grover, V.; Kettinger, W.J.; Teng, J.T.C. Business Process Change in the 21st Century. Bus. Econ. Rev. 2000, 46, 14–18.
6. Kirchmer, M.; Scheer, A.W. Change Management—Key for Business Process Excellence. In Business Process Change Management;

Springer: Berlin/Heidelberg, Germany, 2003; pp. 1–14.
7. Chen, Q.; Reichard, G.; Beliveau, Y. Interface management-a facilitator of lean construction and agile project management.

Int. Group Lean Constr. 2007, 1, 57–66.
8. Salinesi, C.; Thevenet, L.H. Enterprise Architecture, Des Problèmes Pratiques à L’innovation. Ing. Syst. D’Inf. 2008, 13, 75–105.

[CrossRef]

http://campus.hesge.ch/ressi/Numero_7_mai2008/articles/HTML/RESSI_043_Brahimi.htm
http://campus.hesge.ch/ressi/Numero_7_mai2008/articles/HTML/RESSI_043_Brahimi.htm
http://doi.org/10.1080/07421222.1995.11518070
http://dx.doi.org/10.3166/isi.13.1.75-105

Information 2021, 12, 370 20 of 20

9. Whitman, L.; Ramachandran, K.; Ketkar, V. A Taxonomy of a Living Model of the Enterprise. In Proceedings of the 2001 Winter
Simulation Conference (Cat. No. 01CH37304), Arlington, VA, USA, 9–12 December 2001; Volume 2, pp. 848–855.

10. Abdulmalek, F.A.; Rajgopal, J. Analyzing the benefits of lean manufacturing and value stream mapping via simulation: A process
sector case study. Int. J. Prod. Econ. 2007, 107, 223–236. [CrossRef]

11. Vasilecas, O.; Vysockis, T.; Rusinaite, T. On goal-oriented business process simulation. In Proceedings of the 2016 IEEE 4th
Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE), Vilnius, Lithuania, 10–12 November 2016;
pp. 1–4.

12. Molnár, B.; Bouafia, K. Adaptive Case Management and Dynamic Business Process Modeling A proposal for document-centric
and formal ap-proach. In Proceedings of the AIS 2017 12 th International Symposium on Applied Informatics and Related Areas,
Beijing, China, 21–24 August 2017; pp. 2–6.

13. Moldt, D.; Wienberg, F. Multi-agent-systems based on coloured Petri nets. In Lecture Notes in Computer Science, Proceedings of the
18th International Conference on Application and Theory of Petri Nets, Toulouse, France, 23–27 June 1997; Azéma, P., Balbo, G., Eds.;
Springer: Berlin, Germany, 1997; Volume 1248, pp. 82–101.

14. Peterson, J.L. Petri nets. ACM Comput. Surv. (CSUR) 1977, 9, 223–252. [CrossRef]
15. Specification, O.F.A. Business Process Modeling Notation Specification. 2006. Available online: https://www.omg.org/bpmn/

Documents/OMG_Final_Adopted_BPMN_1-0_Spec_06-02-01.pdf (accessed on 20 November 2020).
16. Petrillo, A.; Di Bona, G.; Forcina, A.; Silvestri, A. Building excellence through the Agile Reengineering Performance Model

(ARPM): A strategic business model for organizations. Bus. Process. Manag. J. 2018, 24, 128–157. [CrossRef]
17. Jordan, D.; Evdemon, J.; Alves, A.; Arkin, A.; Askary, S.; Barreto, C.; Bloch, B.; Curbera, F.; Ford, M.; Goland, Y.; et al. Web

services business process execution language version 2.0. Oasis Stand. 2007, 11, 5.
18. Bouafia, K.; Khebizi, A.; Molnár, B. Nouvelle Approche Fonctionnelle de Transformation aux Specifications Abstraites des

Services Web Basees sur les afd a Partir des Programmes Bpel. Am. J. Innov. Res. Appl. Sci. 2020, 4, 148–164.
19. Business Process Model And Notation Specification. Business Process Model and Notation; Object Management Group: Needham,

MA, USA, 2006; Volume 2.
20. Baeten, J.C. A brief history of process algebra. Theor. Comput. Sci. 2005, 335, 131–146. [CrossRef]
21. Kopp, O.; Unger, T.; Leymann, F. Nautilus Event-Driven Process Chains: Syntax, Semantics, and Their Mapping to BPEL.

Available online: http://ceur-ws.org/Vol-224/epk2006-paper5.pdfs (accessed on 21 November 2020).
22. Cui, K.; Yang, W.H.; Gou, H.Y. Experimental research and finite element analysis on the dynamic characteristics of concrete steel

bridges with multi-cracks. J. Vibroeng. 2017, 19, 4198–4209.
23. Bretto, A. Hypergraph theory. In An Introduction. Mathematical Engineering; Springer: Cham, Switzerland, 2013.
24. Li, D.; Xu, Z.; Li, S.; Sun, X. Link prediction in social networks based on hypergraph. In Proceedings of the 22nd International

Conference on World Wide Web, Rio de Janeiro, Brazil, 13–17 May 2013; pp. 41–42.
25. Berge, C. Hypergraphs: Combinatorics of Finite Sets; Elsevier: Amsterdam, The Netherlands, 1984; Volume 45.
26. Molnár, B.; Benczúr, A. Facet of Modeling Web Information Systems from a Document-Centric View. Int. J. Web Portals

2013, 5, 57–70. [CrossRef]
27. Ausiello, G.; Italiano, G.F.; Laura, L.; Nanni, U.; Sarracco, F. Structure theorems for optimum hyperpaths in directed hypergraphs.

In International Symposium on Combinatorial Optimization; Springer: Berlin/Heidelberg, Germany, 2012; pp. 1–14.
28. Saligny, L.; Bouillé, F. La Méthode HBDS: Hypergraph-Based Data Structure. 2011. Available online: https://halshs.archives-

ouvertes.fr/halshs-00959477/ (accessed on 18 February 2021).
29. Sun, L.; Ji, S.; Ye, J. Hypergraph Spectral Learning for Multi-label Classification. In Proceedings of the Fourteenth ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, Las Vegas, NV, USA, 24–27 August 2008; pp. 668–676.
[CrossRef]

30. Ducournau, A. Hypergraphes: Clustering, Réduction et Marches Aléatoires Orientées pour la Segmentation D’images et de
Vidéo. Ph.D. Thesis, Ecole Nationale D’ingénieurs de Saint-Etienne, Saint-Etienne, France, 2012.

31. Rital, S. Hypergraphe de Voisinage Spatiocolorimétrique: Application en Traitement D’images. Ph.D. Thesis, Université de
Bourgogne, Dijon, France, 2004.

32. Tian, Z.; Hwang, T.; Kuang, R. A hypergraph-based learning algorithm for classifying gene expression and array CGH data with
prior knowledge. Bioinformatics 2009, 25, 2831–2838. [CrossRef] [PubMed]

33. Bouafia, K.; Molnár, B. Formal Verification of Analysis Approach for Enterprise Information Systems Architecture Using
Hypergraph Representation Based on Finite State Machines for Supporting Business Process Requirements. J. Appl. Bus. Econ.
2020, 22, 265–273. [CrossRef]

http://dx.doi.org/10.1016/j.ijpe.2006.09.009
http://dx.doi.org/10.1145/356698.356702
https://www.omg.org/bpmn/Documents/OMG_Final_Adopted_BPMN_1-0_Spec_06-02-01.pdf
https://www.omg.org/bpmn/Documents/OMG_Final_Adopted_BPMN_1-0_Spec_06-02-01.pdf
http://dx.doi.org/10.1108/BPMJ-03-2016-0071
http://dx.doi.org/10.1016/j.tcs.2004.07.036
http://ceur-ws.org/Vol-224/epk2006-paper5.pdfs
http://dx.doi.org/10.4018/ijwp.2013100105
https://halshs.archives-ouvertes.fr/halshs-00959477/
https://halshs.archives-ouvertes.fr/halshs-00959477/
http://dx.doi.org/10.1145/1401890.1401971
http://dx.doi.org/10.1093/bioinformatics/btp467
http://www.ncbi.nlm.nih.gov/pubmed/19648139
http://dx.doi.org/10.33423/jabe.v22i9.3686

	Introduction
	Business Processes
	Modeling of Business Processes and Its Patterns
	Business Process Models
	Existing Business Process Models
	Petri-Nets
	Finite State Machines (FSM)
	Business Process Model Notation (BPMN)
	Unified Modeling Language (UML)
	Business Process Execution Language (BPEL)
	Process Algebras
	Event Driven Process Chain (EPC)

	BP Models Advantages and Disadvantages
	Viewpoints of Comparison

	 Hypergraph as a Sound Ground Representation
	Theory of the Hypergraph Concept and Definitions
	Application of Hypergraph Representation

	Experiment: Hypergraph Representation
	AWS Services
	AWS CloudWatch

	The Approaches Used
	Simulation of Generated BP Data
	From Bipartite Graph to Hypergraph
	Smith Normal Form

	Hypergraph Based Representation for BP
	Conclusions
	References

