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Abstract: In Information Retrieval (IR), the semantic gap represents the mismatch between users’
queries and how retrieval models answer to these queries. In this paper, we explore how to use
external knowledge resources to enhance bag-of-words representations and reduce the effect of
the semantic gap between queries and documents. In this regard, we propose several simple but
effective knowledge-based query expansion and reduction techniques, and we evaluate them for the
medical domain. The query reformulations proposed are used to increase the probability of retrieving
relevant documents through the addition to, or the removal from, the original query of highly specific
terms. The experimental analyses on different test collections for Precision Medicine IR show the
effectiveness of the developed techniques. In particular, a specific subset of query reformulations
allow retrieval models to achieve top performing results in all the considered test collections.

Keywords: information retrieval; clinical trials; knowledge base; medical literature; precision
medicine; query reformulation; semantic gap

1. Introduction

Searching for medical information is an activity of interest for many users with
different levels of medical expertise. For example, a patient with a recently diagnosed
condition would generally benefit from introductory information about the treatment of
the disease, a trained physician would instead expect more detailed information when
deciding the course of treatment, and a medical researcher would require references and
literature relevant to their future research articles [1]. This diversity of users with different
information needs and medical expertise represents a central issue in medical Information
Retrieval (IR). In this paper, we are interested in the retrieval of textual medical information
such as patient-specific information (i.e., electronic health records) and knowledge-based
information (i.e., journal articles) [2].

A critical characteristic of the medical domain, and medical IR, is the prominence
of the semantic gap [3–5]. The semantic gap represents the mismatch between users’
queries and how IR systems answer to these queries [6,7]. Depending on the situation,
the semantic gap can hinder the retrieval of relevant documents, affect the quality of
the produced ranking list, or both. For instance, traditional IR models—which compute
the relevance score using heuristics defined over the lexical overlap between query and
document bag-of-words representations—fall short when the user’s query and a relevant
document describe the same concept but with different words, or when the query and an
irrelevant document describe different concepts using the same words. Put simply, they
fail to represent the semantics of queries and documents. From a user’s perspective, the
semantic gap prevents users from easily finding the most relevant documents for their
information need. In a medical scenario, the semantic gap leads physicians and medical
researchers to read through a large amount of literature before finding the most relevant
articles for their needs.
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To address this issue, knowledge-enhanced query reformulation techniques have been
successfully employed in medical retrieval for years [8–11]. With the advent of medical-
related Text REtrieval Conference (TREC) tracks, such as the Genomics Track [12–16]
(https://dmice.ohsu.edu/trec-gen/, accessed on 23 September 2021), the Clinical Decision
Support (CDS) Track [17–19] (http://www.trec-cds.org/, accessed on 23 September 2021),
and the recent TREC Precision Medicine (PM) Track [20–22] (http://www.trec-cds.org/,
accessed on 23 September 2021), there have been many proposals for new techniques
and systems. Among the different approaches, López-García et al. [23] relied on various
domain-specific knowledge resources to perform disease and gene expansions. Given a
query, the disease and gene fields were expanded using all the synonyms for the identified
concepts. Then, different tuning strategies were applied to the expanded queries with
the objective of diversifying the importance of the terms coming from different sources.
Building on the work by López-García et al. [23], Oleynik et al. [24] developed various
hand-crafted rules to mitigate the effect of detrimental information contained within either
documents or queries. Along the same lines, Sondhi et al. [25] found out that combining
retrieval models with selective query term weighting, based on medical thesauri and physi-
cian feedback, proves to be effective in term of retrieval performances. Similar findings
were also obtained by Zhu et al. [26] and Diao et al. [27], who relied on query expansion and
reweighting techniques to improve retrieval performances on medical records. Therefore,
query expansion and rewriting techniques—which enhance queries by leveraging on the
information contained within external knowledge resources—are relevant components in
the design of effective tools for accessing and retrieving medical information.

In this paper, we present a series of studies and analyses on the TREC PM Track to
investigate the effectiveness of simple query expansion and rewriting techniques on IR
models. First, we perform a preliminary study [28] on the TREC PM 2018 Clinical Trials
Track. Then, we deepen the analysis performed in the preliminary study and we extend
it to both scientific literature and clinical trials retrieval [29] on TREC PM 2017 and 2018
Tracks. Given the outcomes of the in-depth analysis, we conduct a validation study on
the TREC PM 2019 Track [30]. Based on the results achieved in the previous studies, we
perform an a posteriori analysis to understand the effectiveness of the query reformulations
developed for clinical trials retrieval over the three years of TREC PM [31]. Thus, this paper
contributes to provide a comprehensive and coherent view of all the different studies [28,30]
and analyses [29,31] we conducted over the three years of TREC PM. In particular, we set
these works into a single framework, and we critically examine the results and findings
obtained in a more mature perspective derived from the experience over three years of
investigations [32]. Moreover, the proposed techniques are simple enough to be used by
non-expert users to perform retrieval, thus helping physicians and medical researchers to
perform their work in a more efficient—and effective—way.

The rest of this paper is organized as follows. In Section 2, we report on the two types
of resources required to investigate and address the semantic gap in a precision medicine
scenario. In Section 3, we present the methodology we used in the different studies and
analyses we performed. In Section 4, we describe the preliminary study we conducted on
TREC PM 2018. In Section 5, we present the in-depth analysis performed on the scientific
literature and clinical trials retrieval tasks of TREC PM 2017 and 2018. In Section 6, we
report the validation study we conducted on the tested query reformulations for TREC
PM 2019. In Section 7, we present the a posteriori analysis we performed on the query
reformulations developed for clinical trials retrieval. Finally, in Section 8, we conclude the
paper with a discussion on main achievements and future directions.

2. Resources

In order to investigate the problem of the semantic gap in medical IR and how we
can employ authoritative and formal knowledge to reduce it, we require two types of
resources: test collections and knowledge resources. Test collections are reusable and
standardized resources that can be used to evaluate IR systems with respect to the system.

https://dmice.ohsu.edu/trec-gen/
http://www.trec-cds.org/
http://www.trec-cds.org/
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Knowledge resources provide access to authoritative relational information that can be
used by IR systems to address the semantic gap. In the following sections, we report on
the test collections and knowledge resources used in our work.

2.1. Test Collections

The TREC Precision Medicine (PM) track revolves around a real use case in Clinical
Decision Support (CDS), which is to provide physicians with tools capable of retrieving
relevant information for patients with cancer related pathologies. From 2017 to 2019, TREC
PM presented a unique feature: the provided test collection shared the same set of topics—
which were synthetic cases built by precision oncologists—between two documents sets,
targeting two different tasks. These two tasks concerned (i) the retrieval of biomedical
articles addressing relevant treatments for the given patient and (ii) the retrieval of clinical
trials addressing relevant clinical trials for which the patient is eligible [20–22]. The
idea behind this twofold dataset is the fact that relevant articles can guide physicians
to the best-known treatment options for the patient’s condition, but when none of the
known treatments works on patients, the physician can check the existence of undergoing
treatments in clinical trials.

In the following, we detail the document collections and the topics used in these
two tasks.

2.1.1. Scientific Literature

The Scientific Literature document set for TREC PM 2017 (PM17) and 2018 (PM18) is
composed by the following parts:

• 26, 759, 399 abstracts from MEDLINE (https://www.nlm.nih.gov/bsd/pmresources.
html, accessed on 23 September 2021);

• 37, 007 abstracts from the American Society of Clinical Oncology (ASCO)
(https://www.asco.org/, accessed on 23 September 2021),

• 33, 018 abstracts from proceedings of the American Association for Cancer Research
(AACR) (https://www.aacr.org/, accessed on 23 September 2021).

The document set for TREC PM 2019 (PM19) consists of an updated set of the MED-
LINE abstracts, for a total of 29, 138, 916 documents. Unlike PM17 and PM18, the ASCO
and AACR abstracts were not included in the PM19 document set.

2.1.2. Clinical Trials

The Clinical Trials document set for PM17 and PM18 consists of 241, 006 clinical
trials, obtained from ClinicalTrials.gov, a resource provided by the U.S. National Library
of Medicine (NLM) (https://clinicaltrials.gov/, accessed on 23 September 2021). In this
context, precision oncology trials use specific treatments for specific diseases with specific
genetic variants. The retrieval of clinical trials is a challenging task for an automated
retrieval system given the complexity of the criteria that describe the inclusion or exclusion
of a patient in a trial. As with Scientific Literature, the document set for PM19 is updated
to 306, 238 clinical trials.

2.1.3. Topics

PM17, PM18, and PM19 contain 30, 50, and 40 synthetic topics compiled by oncologists
in 2017, 2018, and 2019, respectively. In TREC PM 2017 [20], the topics are structured in
four fields: disease, genetic variants, demographic information, and additional information
that may be relevant for the treatment. In TREC PM 2018 [21] and 2019 [22], the organizers
provided the topics without the fourth field. Moreover, in 2019, 30 of the 40 topics were
created by precision oncologists, while the other 10 topics—unrelated to cancer—were
based on the American College of Medical Genetics and Genomics (ACMG) recommenda-
tions (https://www.ncbi.nlm.nih.gov/projects/dbvar/clingen/acmg.shtml, accessed on
23 September 2021). These topics were added to assess the relative difficulty of cancer
search versus other disciplines requiring precision medicine.

https://www.nlm.nih.gov/bsd/pmresources.html
https://www.nlm.nih.gov/bsd/pmresources.html
https://www.asco.org/
https://www.aacr.org/
https://clinicaltrials.gov/
https://www.ncbi.nlm.nih.gov/projects/dbvar/clingen/acmg.shtml
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2.2. Knowledge Resources

In this section, we detail the knowledge bases that were used in our experiments.

2.2.1. Systematized Nomenclature of Medicine—Clinical Terms

The Systematized Nomenclature of Medicine - Clinical Terms (SNOMED CT) [33] is a
logic-based healthcare terminology, which originated from the Systematized Nomenclature
of Pathology (SNOP) (http://www.snomed.org/, accessed on 23 September 2021). It is
the most comprehensive, multilingual clinical healthcare terminology worldwide. The
main objective of SNOMED CT is to enable users to encode different kinds of health in-
formation in a standardized way, thus improving patient care. SNOMED CT presents a
multi-hierarchical and multi-axial structure (i.e., concepts can have more than one superor-
dinate concept) and includes three components: concepts, terms, and relations. Concepts
are organized from the most general to the most specific through hierarchical, is-a re-
lationships. Then, associative relationships connect concepts whose meaning is related
in non-hierarchical ways. These relationships provide formal definitions and properties,
such as causative agent, finding site, pathological process, etc. Each concept has a
unique concept code (or ID) that identifies the clinical terms used to designate that concept.
The terms describing concepts can be divided into fully specified names, preferred terms,
and synonyms.

2.2.2. Medical Subject Headings

The Medical Subject Headings (MeSH) thesaurus [34] is a controlled and hierarchically
organized vocabulary used for indexing, cataloging, and searching biomedical and health-
related information (https://www.ncbi.nlm.nih.gov/mesh/, accessed on 23 September
2021) MeSH contains the subject headings appearing in MEDLINE, the NLM Catalog, and
other NLM databases. MeSH is available in several languages and presents a tree structure,
from the most general concept to the most specific. The terms describing concepts can
be divided into preferred terms and synonyms. MeSH is constantly updated by domain
specialists in various areas. Each year, hundreds of new concepts are added, and thousands
of modifications are made.

2.2.3. National Cancer Institute Thesaurus

The National Cancer Institute (NCI) thesaurus [35] is the NCI’s reference terminology,
covering areas of basic and clinical science and built to facilitate translational research in
cancer (https://ncithesaurus.nci.nih.gov/ncitbrowser/, accessed on 23 September 2021). It
contains terms, concepts, and relations. The concepts are partitioned in subdomains, which
includes, among others, diseases, drugs, genes, anatomy, and biological processes—all
with a cancer-centric focus in content. Each concept presents a preferred name and a list
of synonyms, along with annotations like textual definitions and (optional) references to
external sources. Besides, concepts are defined by their relationships to other concepts.

2.2.4. Unified Medical Language Systems Metathesaurus

The Unified Medical Language System (UMLS) metathesaurus [36] is a large, multi-
purpose, and multilingual vocabulary database containing information about biomedical
and health related concepts, their name variants, and the relationships occurring between
them (https://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/,
accessed on 23 September 2021). The metathesaurus is composed of different thesauri, clas-
sifications, ontologies, code sets, and lists of controlled terms used in patient care, health
services, biomedical literature, etc. All the concepts in the metathesaurus have a unique and
permanent Concept Unique Identifier (CUI), as well as a preferred name and at least one
semantic type from the UMLS Semantic Network (https://semanticnetwork.nlm.nih.gov/,
accessed on 23 September 2021). Semantic types provide a consistent categorization of all
concepts in the metathesaurus at the high level presented in the Semantic Network. The
metathesaurus contains equivalence, hierarchical, and associative relationships between

http://www.snomed.org/
https://www.ncbi.nlm.nih.gov/mesh/
https://ncithesaurus.nci.nih.gov/ncitbrowser/
https://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/
https://semanticnetwork.nlm.nih.gov/
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concepts. Most of these relationships derive from individual source vocabularies, but some
are introduced by NLM during metathesaurus construction. The UMLS metathesaurus is
updated twice per year.

2.2.5. Cancer Biomarkers Database

The Cancer Biomarkers database [37] is an extension of a previous collection of
genomic biomarkers of anticancer drug response [38], which contains information on
genomic biomarkers of response (sensitivity, resistance, or toxicity) to different drugs
across different types of cancer (https://www.cancergenomeinterpreter.org/biomarkers/,
accessed on 23 September 2021). Negative results of clinical trials are also included in the
database. Biomarkers are organized according to the level of clinical evidence supporting
each one, ranging from results of pre-clinical data, case reports, and clinical trials in early
and late phases to standard-of-care guidelines. The Cancer Biomarkers database is updated
by medical oncologists and cancer genomics experts.

3. Methodology

The proposed methodology is composed of six steps: indexing, pre-retrieval query
reformulation, retrieval, post-retrieval query reformulation, filtering, and rank fusion.
Depending on the experiment, a subset of these steps is performed and evaluated.

3.1. Indexing

Indexing consists of two phases. First, for both clinical trials and scientific literature
collections, we employed MetaMap [39]—a biomedical concept mapper developed by
NLM—to extract from each document all the concepts belonging to the following UMLS
semantic types: Neoplastic Process (neop); Gene or Genome (gngm); and Amino Acid,
Peptide, or Protein (aapp) (https://metamap.nlm.nih.gov/SemanticTypesAndGroups.
shtml, accessed on 23 September 2021).

Then, for clinical trials, we indexed documents using the following fields: <docid>,
<text>, <max_age>, <min_age>, <gender>, and <concepts>. The <max_age>, <min_age>,
and <gender> fields are obtained from the eligibility section of clinical trials and are
required to perform filtering. The <text> field stores the whole content of each clinical trial,
including the information contained in <docid>, <max_age>, <min_age>, and <gender>
fields. The <concepts> field contains the list of UMLS CUIs extracted by MetaMap.

On the other hand, for scientific literature, we indexed documents using <docid>,
<text>, and <concepts>. As with clinical trials, the <text> field stores the whole content
of each document.

3.2. Pre-Retrieval Query Reformulation

We used two types of query reformulation: query expansion and query reduction.

3.2.1. Query Expansion

In this phase, a knowledge-based query expansion is performed by extracting the
UMLS concepts in the queries with MetaMap. These concepts belong to Neoplastic
Process (neop), Gene or Genome (gngm); Cell or Molecular Dysfunction (comd); and Amino
Acid, Peptide, or Protein (aapp) UMLS semantic types. Specifically, the concepts belong-
ing to gngm, comd, and aapp semantic types are extracted from the <gene> query field, while
the concepts belonging to neop are extracted from the <disease> query field. Furthermore,
when the <other> query field is present, MetaMap extracts concepts without restrictions
on semantic types.

In addition, we retrieved all the name variants of the extracted concepts from the
following knowledge resources within UMLS: NCI thesaurus [35], MeSH thesaurus [34],
SNOMED CT [33], and UMLS metathesaurus [36]. All the knowledge resources are author-
itative and manually curated by professionals. An optional step in this process is to use the
term “solid” when a query is not related to blood-related cancers—such as “lymphoma” or

https://www.cancergenomeinterpreter.org/biomarkers/
https://metamap.nlm.nih.gov/SemanticTypesAndGroups.shtml
https://metamap.nlm.nih.gov/SemanticTypesAndGroups.shtml
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“leukemia”—because, as suggested by Goodwin et al. [40], there are several relevant trials
for a query that do not mention specific disease but use a generic term like “solid tumor”.

At the end of this process, the expanded query consists in the union of the original
query terms with all the name variants associated to the extracted concepts.

3.2.2. Query Reduction

We performed this type of query reformulation to diminish the over-specificity of
topics, a situation which may affect the performance of the retrieval when the query is (or
contains terms) too specific compared to the documents [24]. For this reason, we removed
gene mutations from the <gene> field (whenever they are present). We relied on the Cancer
Biomarkers database [37] to identify gene mutations. To exemplify, if a topic contains the
value “BRAF (V600E)” in the <gene> field, first, we verified whether “BRAF (V600E)” is
in the Cancer Biomarkers database, then, we removed the mutation “(V600E)” from the
query. After the reduction process, the <gene> field becomes “BRAF”. In addition, we did
not consider the <other> query field, when this field is present, as it contains information
that could be a source of noise for retrieving relevant information for patients.

3.3. Retrieval

We used BM25 [41] to perform retrieval. Given a collection D of N documents and
a query q expressed as a bag-of-words q = {qi}n

i=1 ∈ V, where qi is a word, V is the
vocabulary, and n = |q| is the query length, BM25 computes the score between the query q
and a document d as follows:

score(q, d) =
n

∑
i=1

IDF(qi) ·
tf (qi, d) · (k1 + 1)

tf (qi, d) + k1 · (1− b + b · |d|avgdl )
(1)

where IDF(qi) represents the Inverse Document Frequency (IDF) weight of the query term
qi, tf (qi, d) represents the term frequency of qi within the document d, |d| represents the
document length, k1 and b are two hyperparameters (The values for k1 and b will be
defined later on as part of the experimental procedures of the following sections.), and
avgdl represents the average length of documents in the document collection. Given a
query term, the IDF(qi) formula is

IDF(qi) = log
(N − N(qi) + 0.5

N(qi) + 0.5

)
(2)

where N is the size of the document collection and N(qi) is the number of documents
containing the query term qi. The value of the score computed in Equation 1 increases with
the frequency of the query term in the document and it is inversely proportional to the
frequency of the same term in the collection; score(q, d) has a minimum equal to zero if all
the terms in the query are absent in the document.

Furthermore, we weighted the terms added in the expansion step with either a value
of 1.0 or—to limit noise injection in the retrieval process [42]—with a value of 0.1. In other
words, we assigned a weight to expansion terms so that the impact of such terms when
computing the score between the query q and the document d is either equal to the impact
of terms in the original query or scaled by a factor of 0.1.

3.4. Post-Retrieval Query Reformulation

We performed a Pseudo Relevance Feedback (PRF)-based query expansion. The set of
documents retrieved by BM25 using the pre-retrieval reformulated query is used to select
expansion terms for the second round of retrieval. Given the top k retrieved documents, we
selected the document concepts—identified by MetaMap during the indexing step—that
match the concepts associated to the query terms. Then, for each matched concept, we con-
sidered the name variants of its neighbor concepts, that is, concepts that present a hierarchi-
cal or associative relation within UMLS with the matched concept (https://www.nlm.nih.

https://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/release/abbreviations.html
https://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/release/abbreviations.html
https://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/release/abbreviations.html
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gov/research/umls/knowledge_sources/metathesaurus/release/abbreviations.html, ac-
cessed on 23 September 2021). We limited neighbor concepts to those concepts belonging
to the same semantic types used in the pre-retrieval query reformulation step. In this
way, we avoided introducing information that is not strictly related to the contents of the
query. Finally, the name variants identified with the PRF based query expansion are used
to further reformulate the query.

3.5. Filtering

Within clinical trials, the eligibility section contains some detailed information about
the patient (such as age or gender) that are necessary for the eligibility of the patient for
that trial. In particular:

• minimum age represents the minimum age required for a patient to be considered
eligible for the trial. In case of absence of the attribute, we avoided setting a lower
threshold on patient’s age.

• maximum age represents the maximum age required for a patient to be considered
eligible for the trial. In case of absence of the attribute, we avoided setting an upper
threshold on patient’s age.

• gender represents the gender required for a patient to be considered eligible for the
trial. In case of absence of the attribute, we kept the trial regardless of patient’s gender.

In our experiments, we performed a filtering step—based on the three demographic
aspects described above—to filter out clinical trials for which a patient is not eligible. Given
a patient’s case (i.e., a topic), we removed trials from the list of candidate trials when the
topic field <demographic>—which contains age and gender information—does not match
the eligibility criteria. When part of the demographic data is missing, we kept or discarded
a clinical trial according to the remaining demographic information. For example, when
a clinical trial does not report a minimum age in its eligibility section, then it is kept or
discarded depending on the maximum age and gender values.

3.6. Rank Fusion

We performed a rank fusion step to combine the rankings obtained with different query
reformulations. We adopted CombSUM [43] to perform rank fusion and we normalized
scores using min-max normalization.

4. Preliminary Study: TREC Precision Medicine 2018

In this section, we describe the preliminary study we performed on the TREC PM
2018 Clinical Trials Track. The study served to identify what features are required to
build effective query expansions, and what instead should be avoided. The proposed
approach consists of a procedure to (1) expand queries iteratively—relying on medical
knowledge resources—to increase the probability of finding relevant trials by adding
neoplastic, genetic, and proteic term variants to the original query, and (2) filter out trials,
based on demographic data, for which the patient is not eligible.

The objective of the study is twofold: (i) evaluate the effectiveness of a recall-oriented
approach based on iterative—and increasingly aggressive—query expansions, and (ii)
investigate the correlation between the effectiveness of the retrieval approach and the
quality of the relational information stored within the knowledge resource(s) used in the
expansion process.

4.1. Experimental Setup
4.1.1. Test Collection and Knowledge Resource

We considered the Clinical Trials collection of the TREC PM 2018 (PM18) Track [21]. We
used all the query fields and we performed experiments on the 50 topics provided. As for
the knowledge resource, we relied on the 2018AA release of the UMLS metathesaurus [36].

https://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/release/abbreviations.html
https://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/release/abbreviations.html
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4.1.2. Evaluation Measures

In order to compare our results with the ones provided by the organizers of the TREC
PM 2018 Track, we used the following measures: inferred nDCG (infNDCG), R-precision
(Rprec), and Precision at rank 10 (P@10).

4.1.3. Experimental Procedure

The implementation of (part of) the methodology described in Section 3 is provided hereby.
Indexing:

• Use MetaMap to select the UMLS concepts belonging to neop and gngm semantic types
in the clinical trials and create a new field <concepts>.

• Index the fields <docid>, <text>, <max_age>, <min_age>, <gender>, and <concepts>.

Pre-Retrieval Query Reformulation:

• Use MetaMap to select the UMLS concepts belonging to neop for <disease> and gngm,
comd for <gene>.

• Get name variants of selected concepts from all the knowledge sources contained
within UMLS and expand the original query with them.

First Round of Retrieval:

• Weight expansion terms with a value m = 1.0.
• Perform retrieval with the pre-retrieval reformulated query using BM25.

Post-Retrieval Query Reformulation:

• Take the top k clinical trials retrieved by BM25 using the pre-retrieval reformulated query.
• Select document concepts that match the concepts associated to query terms.
• Select neighbor concepts—restricted to neop, gngm, and aapp semantic types—that

present a hierarchical or associative relation within UMLS with matched concepts.
• Obtain from neighbor concepts all the name variants belonging to the knowledge

sources contained within UMLS.
• Expand the pre-retrieval reformulated query with the name variants of neighbor con-

cepts.

Second Round of Retrieval:

• Weight expansion terms with a value m = 1.0.
• Perform retrieval with the post-retrieval reformulated query using BM25.

Filtering

• Filter out candidate clinical trials for which the patient is not eligible.

We considered three different combinations of the above procedure to address the
objectives of this study. The first combination (base) performs indexing, retrieval, and
filtering—that is, pre- and post-retrieval query expansions are not applied. The second
combination (QE) adds the pre-retrieval query expansion to the pipeline, whereas the third
one (QE/PRF) includes all the previous steps as well as the post-retrieval query expansion.
In this way, we were able to evaluate how iterative—and increasingly aggressive—query
expansions affect performance and whether the effectiveness of the retrieval approach can
be correlated with the relational information stored within UMLS.

4.1.4. Parameters

We used the Whoosh python library (https://whoosh.readthedocs.io/, accessed on
23 September 2021) as a search engine using a BM25 retrieval model with default settings
for the parameters k1 = 1.2 and b = 0.75. We kept the default values as they are within
the optimal range suggested by Robertson and Zaragoza [41] and they are equal to the
default values of most of the main search engines (e.g., Lucene (https://lucene.apache.org,
accessed on 23 September 2021), Terrier (http://terrier.org, accessed on 23 September 2021),
ElasticSearch (https://www.elastic.co/elasticsearch/, accessed on 23 September 2021)).
The search for optimal or ideal parameters, such as the work of Lipani et al. in [44], in

https://whoosh.readthedocs.io/
https://lucene.apache.org
http://terrier.org
https://www.elastic.co/elasticsearch/
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combination with query reformulation approaches is left for future work. Regarding the
PRF based query expansion, we set the number of feedback documents k = 10.

4.2. Experimental Results

The summary of the results for the TREC PM 2018 Track were provided by TREC in
terms of best, median, and worst values for each topic. In Table 1, we present the results
of the three considered models—base, QE, and QE/PRF—for P@10, Rprec, and infNDCG
averaged across topics, as well as the median values for the Clinical Trials task.

Table 1. Retrieval performances on the TREC PM 2018 Clinical Trials task. Retrieval performances
of the considered models on the TREC PM 2018 Clinical Trials task. The first combination (base)
performs indexing, retrieval, and filtering only. The second combination (QE) adds the pre-retrieval
query expansion to the pipeline, whereas the third one (QE/PRF) includes all the previous steps
as well as the post-retrieval query expansion. Median refers to the average median values of the
Clinical Trials task and it is computed considering all the runs submitted to the task. Precision at
rank 10 (P@10), inferred nDCG (infNDCG), and R-precision (Rprec) are shown. Bold values refer to
the highest scores between models and median.

P@10 infNDCG Rprec

base 0.5680 0.5421 0.4142
QE 0.2920 0.3003 0.1908
QE/PRF 0.1180 0.1468 0.0865

median 0.4680 0.4297 0.3268

The results from Table 1 show that BM25 performs best when none of the considered
query expansions are used. On average, the base model outperforms median values
by a large margin—with an average gap grater than or equal to 0.10 for all measures.
Conversely, the use of both pre- and post-retrieval query expansions significantly worsens
performances. QE and QE/PRF models achieve scores lower than the median values for all
measures. In particular, QE/PRF shows the lowest performances among the three models
considered. This suggests that the developed knowledge-based techniques are sensitive
to topic drift—which often occurs when the query is expanded with terms that are not
pertinent to the information need [45].

We performed a per-topic analysis to better understand the performances of the
proposed models. The analysis compares, for each measure, the three models with the task
median values. Figures 1–3 display, topic by topic, the difference in performance between
each model and the median values. For a positive difference (model better than median), a
green bar plot is shown, whereas for a negative difference (model worse than median), a
red bar plot is shown.

The analysis of Figures 1–3 confirms the trend found for average performances. The
base model performs consistently better than task median values for most queries. Con-
versely, both pre- and post-retrieval expansions significantly worsen the performances
for most queries. We attribute this performance drop to two main reasons: (i) we did not
apply a weighting scheme on the query terms, and (ii) we employed all the knowledge
resources contained within UMLS. Applying a weighting scheme on query terms can
reduce the impact of noisy terms when performing retrieval, while selecting a specific
subset of knowledge resources can improve the quality of the extracted concepts and
terms. For this reason, in Section 5, we performed an in-depth analysis of pre-retrieval
query reformulation techniques to understand if the use of weighting schemes and tailored
knowledge resources can be beneficial for retrieval effectiveness. Besides, improving the
effectiveness of pre-retrieval techniques has a positive effect also on post-retrieval ones,
like PRF, as the number of relevant documents retrieved in the first round grows larger.
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Figure 1. Per-topic difference between base model and clinical trials median values. A topic is a
synthetic case built by oncologists. Inferred nDCG (infNDCG), R-precision (Rprec), and precision at
rank 10 (P@10) are shown. For a positive difference (model better than median), a green bar plot is
shown, whereas for a negative difference (model worse than median), a red bar plot is shown.
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Figure 2. Per-topic difference between QE model and clinical trials median values. A topic is a
synthetic case built by precision oncologists. Inferred nDCG (infNDCG), R-precision (Rprec), and
precision at rank 10 (P@10) are shown. For a positive difference (model better than median), a green
bar plot is shown, whereas for a negative difference (model worse than median), a red bar plot
is shown.
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Figure 3. Per-topic difference between QE/PRF model and clinical trials median values. A topic
is a synthetic case built by precision oncologists. Inferred nDCG (infNDCG), R-precision (Rprec),
and precision at rank 10 (P@10) are shown. For a positive difference (model better than median), a
green bar plot is shown, whereas for a negative difference (model worse than median), a red bar plot
is shown.

Comparison with TREC PM 2018 Top Systems

When we look at the detailed analysis in the TREC PM 2018 overview [21], we see
that the base model is one of the top 10 performing systems for all the evaluation measures
in the Clinical Trials task. Specifically, it is the second best system for P@10 and Rprec,
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and the third one for infNDCG. Besides, the performance variations of our model across
topics are among the smallest ones of all top-performing systems (see “IMS_TERM” run in
Figure 3 of TREC PM 2018 overview [21]). This is a promising result, as it highlights the
robustness of our baseline model to the set of topics considered. Thus, in the next section,
we kept this model as a core component to investigate the effectiveness of pre-retrieval
query reformulations relying on weighting schemes and specific knowledge resources.

5. In-Depth Analysis of Query Reformulations

Given the outcomes of the preliminary study presented in Section 4, we performed an
in-depth analysis of pre-retrieval query reformulations. Compared to the previous study,
we performed the analysis on both tasks of TREC Precision Medicine—that is, Scientific
Literature and Clinical Trials—and we considered the test collections from 2017 and 2018
tracks. In this way, we leveraged the dual nature of TREC PM collections, and we evaluated
several pre-retrieval query expansion and reduction techniques to investigate whether a
particular combination can be helpful in both scientific literature and clinical trials retrieval.

5.1. Experimental Setup
5.1.1. Test Collections and Knowledge Resources

We considered TREC PM 2017 (PM17) [20] and 2018 (PM18) [21] Tracks. We per-
formed experiments on both Scientific Literature and Clinical Trials collections using
the 30 and 50 topics provided, respectively, in 2017 and 2018. For query expansion, we
adopted the following knowledge resources: NCI thesaurus [35], MeSH thesaurus [34],
SNOMED CT [33], and UMLS metathesaurus [36]. For each resource, we considered the
version contained within the 2018AA release of UMLS. For query reduction, we relied on
the Cancer Biomarkers database [37]. In this case, we adopted the database version of 17
January 2018.

5.1.2. Evaluation Measures

Compared to the official measures presented in Section 4.1, we could not compute the
infNDCG for the 2017 Clinical Trials task because the sampled relevance judgments are
not available, and we do not report P@5 and P@15 since they were used only for the 2017
Clinical Trials task (subsequently replaced by infNDCG and Rprec in 2018 and 2019).

5.1.3. Experimental Procedure

The procedure representing (part of) the methodology presented in Section 3 is
as follows.

Indexing:

• Index clinical trials with the following fields: <docid>, <text>, <max_age>, <min_age>,
and <gender>.

• Index scientific literature with the following fields: <docid> and <text>.

Pre-Retrieval Query Reformulation:

• Extract from queries the UMLS concepts belonging to neop for <disease>, gngm/comd
for <gene>, and all for <other> using MetaMap.

• Get the name variants of extracted concepts from NCI, MeSH, SNOMED CT, and
UMLS metathesaurus knowledge resources.

• Expand topics not mentioning blood-related cancers with the term “solid”.
• Reduce topics by removing, whenever present, gene mutations from the <gene> field.
• Remove the <other> query field whenever present.

Retrieval:

• Adopt any combination of the previous reformulation strategies.
• Weight expansion terms with a value m = 0.1.
• Perform a search using reformulated queries with BM25.
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Filtering:

• Filter out candidate clinical trials for which the patient is not eligible.

Regarding pre-retrieval query reformulations, query expansion and reduction tech-
niques can be used alone or in combination with each other.

5.1.4. Parameters

We used the same parameters setting presented in Section 4.1.4.

5.2. Experimental Results

In Table 2, we report the results of our experiments (upper part) and compare them
with the top-performing systems at TREC PM 2017 and 2018 (lower part). For each year
and task, we present the five top performing query reformulations in terms of P@10.
Each line depicts a particular combination (yes or no values) of semantic types (neop,
comd, gngm), usage and expansion of <other> field (oth, oth_exp), query reduction (orig),
and expansion using weighted “solid” (tumor) keyword. We report the results for both
Scientific Literature (sl) and Clinical Trials (ct) tasks. We highlighted in bold the top 3
scores for each measure, and we used the symbols † and ‡ to indicate two combinations
that perform well in both years. Regarding TREC PM systems, we selected systems from
those participants who submitted runs in both years and reached top 10 performances for
at least two measures [20,21]. The results reported in the lower part of Table 2 indicate
the best score obtained by a particular system for a specific measure; in general, the best
results of a participant’s system are often related to different runs. The symbol ‘−’ means
that the measure is not available, while ‘<’ indicates that none of the runs submitted by
the participant achieved top 10 performances. For comparison, we added for each measure
the lowest score required to enter the top 10 TREC results list, and the score obtained by
our best combination. The combination is indicated by the line number, which refers to its
position in the upper part of Table 2.

5.2.1. Analysis of Query Reformulations

The results from Table 2 (upper part) highlight different trends in 2018 and 2017. In
2018, there is a clear distinction in terms of performances among the combinations that
achieve the best results for Scientific Literature and Clinical Trials tasks. For Scientific
Literature, considering the semantic type neop expansion without using the umbrella term
“solid” provides the best performances for all the measures considered. On the other hand,
two of the best three runs for Clinical Trials (lines 5 and 9) use no semantic type expansion,
but rely on the “solid” (tumor) expansion with weight 0.1.

In 2017, the situation is completely different. Lines 12 and 13 show two combinations
that achieve top 3 performances for both Scientific Literature and Clinical Trials tasks.
These two combinations use query reduction and a weighted 0.1 “solid” (tumor) expansion.
The use of a weighted 0.1 “solid” expansion, as well as a reduced query (orig = n), seems
to improve performances consistently for all measures in 2017. The semantic type gngm
seems more effective than neop, while comd does not seem to have a positive effect at all.

Thus, the analysis of query reformulations shows that no clear pattern emerges for
both tasks. Overall, a query expansion approach using a selected set of semantic types helps
the retrieval of scientific literature. On the other hand, a query reduction approach and a
“solid” (tumor) expansion improve performances on clinical trials retrieval. Nevertheless,
most of the proposed query reformulations perform well for both tasks. Besides, we found
that a particular combination (marked as ‡ in Table 2) could have been one of the top 10
performing runs for many evaluation measures in both TREC PM 2017 and 2018.
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Table 2. The results of the experiments (upper part) and a comparison with the top-performing systems at TREC PM 2017 and 2018 (lower part). In the upper part, each line depicts a
particular combination (yes or no values) of semantic types (neop, comd, gngm), usage and expansion of <other> field (oth, oth_exp), query reduction (orig), and expansion using weighted
“solid” (tumor) keyword. We report the results for both Scientific Literature (sl) and Clinical Trials (ct) tasks. We highlighted in bold the top 3 scores for each measure, and we used the
symbols † and ‡ to indicate two combinations that perform well in both years. The results reported in the lower part indicate the best score obtained by a particular system for a specific
measure. The symbol ‘−’ means that the value for that measure is not available, while ‘<’ indicates that none of the runs submitted by the participant achieved top 10 performances. As a
reference point, we added for each measure the lowest score required to enter the top 10 TREC results list, and the score obtained by our best combination.

Semantic Type Field Other sl ct sl ct sl ct

Line Year Neop Comd Gngm oth oth_exp Orig Solid P_10 P_10 infNDCG infNDCG Rprec Rprec

1 2018 y y n n n y n 0.5660 0.5540 0.4912 0.5266 0.3288 0.4098
2 2018 y n n n n y n 0.5640 0.5600 0.4961 0.5264 0.3288 0.4138
3 2018 y n y n n y n 0.5480 0.5660 0.4941 0.5292 0.3266 0.4116
4 2018 n n n n n y n 0.5460 0.5680 0.4876 0.5411 0.3240 0.4197
5 2018 n n n n n y 0.1 0.5440 0.5740 0.4877 0.5403 0.3247 0.4179
6 2018 n y n n n y n 0.5440 0.5540 0.4853 0.5403 0.3236 0.4130
7 2018 y n n n n n n 0.5420 0.5700 0.4636 0.5345 0.3180 0.4134

8 † 2018 n n y n n y n 0.5340 0.5640 0.4877 0.5337 0.3229 0.4106
9 ‡ 2018 n n n n n n 0.1 0.5300 0.5820 0.4635 0.5446 0.3148 0.4205
10 2018 y n y n n n n 0.5140 0.5680 0.4572 0.5393 0.3144 0.4122

11 2017 y n y n n n 0.1 0.5033 0.3759 0.3984 − 0.2697 0.3206
12 2017 n n y n n n 0.1 0.4900 0.3931 0.3881 − 0.2677 0.3263

13 ‡ 2017 n n n n n n 0.1 0.4800 0.4034 0.3931 − 0.2728 0.3361
14 2017 y n n n n n 0.1 0.4767 0.3862 0.3974 − 0.2714 0.3202
15 2017 n n n n n n n 0.4733 0.3931 0.3943 − 0.2732 0.3241
16 2017 y n y n n y 0.1 0.4733 0.3828 0.3567 − 0.2329 0.3253

17 † 2017 n n y n n y n 0.4633 0.3862 0.3442 − 0.2254 0.3243

TREC PM Participant Identifier

18 2018 UTDHLTRI 0.6160 0.5380 0.4797 0.4794 < 0.3920
19 2018 UCAS 0.5980 0.5460 0.5580 0.5347 0.3654 0.4005
20 2018 udel_fang 0.5800 0.5240 0.5081 0.5057 0.3289 0.3967
21 2018 NOVASearch < 0.5520 < 0.4992 < 0.3931
22 2018 Poznan < 0.5580 < 0.4894 < 0.4101

2018 Top 10 threshold 0.5800 0.5240 0.4710 0.4736 0.2992 0.3658

2018 Best combination of our approach (1) 0.5660 (9 ‡) 0.5820 (2) 0.4961 (9 ‡) 0.5446 (1) 0.3288 (9 ‡) 0.4205

23 2017 UTDHLTRI 0.6300 0.4172 0.4647 − 0.2993 −
24 2017 udel_fang 0.5067 < 0.3897 − 0.2503 −
25 2017 NOVASearch < 0.3966 < − < −
26 2017 Poznan < 0.3690 < - < −
27 2017 UCAS < 0.3724 < − 0.2282 −

2017 Top 10 threshold 0.4667 0.3586 0.3555 − 0.2282 −

2017 Best combination of our approach (11) 0.5033 (13 ‡) 0.4034 (11) 0.3984 − (15) 0.2732 (13 ‡) 0.3361
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5.2.2. Comparison with TREC PM Systems

The results in Table 2 (lower part) mark a clear distinction between the performances
of participants’ systems for Scientific Literature and Clinical Trials tasks. For Scientific Lit-
erature, many of the participants’ runs do not reach the top 10 threshold for the considered
measures, especially in 2017. The only exceptions are the systems of the research group
from the University of Delaware (see udel_fang in Table 2), whose best runs always achieve
top 10 performances for this task. Conversely, most of the participants’ runs achieve top
10 performances for Clinical Trials. In particular, all participants’ runs surpass the top 10
threshold in 2018.

When we consider the top 3 query reformulations from Table 2 (upper part), we
see that they achieve performances higher than the top 10 threshold for most measures.
The only exception is P@10 in the 2018 Scientific Literature task, where none of the three
best query reformulations reaches the top 10 threshold. Compared to the participants’
systems, most of our query reformulations achieve higher performances for most measures
in both the 2017 and 2018 Clinical Trials tasks. The only notable exception is P@10 in
2017, where the system of the research group from the University of Texas at Dallas (see
UTDHLTRI in Table 2) outperforms our top 5 query reformulations. A different situation
occurs for Scientific Literature tasks, where our query reformulations do not achieve best
performances for any measure in both 2017 and 2018. Nevertheless, the top 3 query
reformulations achieve better results than most of the considered participants’ systems.

Thus, the in-depth analysis, which stemmed from our preliminary study on the TREC
PM 2018 Track, shows the effectiveness of applying a weighting scheme on expansion terms
and selecting tailored knowledge resources for query expansion and reduction techniques.
In particular, the results highlight the robustness of our approach across different collections
and tasks. Therefore, in the next section, we conducted a validation study on the TREC
PM 2019 Track to investigate whether the findings of this analysis remain valid. In other
words, we evaluated how the proposed query reformulations generalize to TREC PM 2019
collections, how they affect retrieval performances, and if the trends found are confirmed.

6. Validation Study: TREC Precision Medicine 2019

Given the outcomes of the in-depth analysis of query reformulations, we conducted a
validation study on the TREC PM 2019 Track. We performed experiments on both tasks,
with a particular focus on the Clinical Trials task. The objective of the study is twofold:
First, we wanted to validate the effectiveness of the top query reformulations found in the
previous analysis for the 2019 track. Second, we wanted to verify if combining the rankings
obtained using such query reformulations proves effective.

6.1. Experimental Setup
6.1.1. Test Collection and Knowledge Resources

We considered the TREC PM 2019 (PM19) Track [22]. We performed experiments on
both Scientific Literature and Clinical Trials collections using the 40 topics provided. For
query expansion and reduction, we considered the same knowledge resources used in
Section 5.1.1.

6.1.2. Evaluation Measures

We adopted the official measures used in the TREC PM 2019 Track, which are infNDCG,
Rprec, and P@10.

6.1.3. Experimental Procedure

We adopted the same procedure presented in Section 5.1.3, plus the rank fusion step
that we summarize below.

Rank Fusion:

• Perform rank fusion using CombSUM and min-max normalization over the three
most effective query reformulations for Clinical Trials.
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• Perform rank fusion using CombSUM and min-max normalization over the three
most effective query reformulations for Scientific Literature.

For each task, we considered five different combinations of the above procedure to
address the objectives of this study.

Clinical Trials:

• base: refers to the baseline model, that is BM25 plus filtering.
• neop/reduced: refers to neop expansion over reduced queries.
• solid/original: refers to “solid” expansion over original queries.
• solid/reduced: refers to “solid” expansion over reduced queries.
• qrefs/combined: refers to the combination of the above query reformulations using

CombSUM.

Scientific Literature:

• base: refers to the baseline model, that is BM25.
• neop/original: refers to neop expansion over original queries.
• neop+comd/original: refers to neop and comd expansions over original queries.
• neop+gngm/original: refers to the neop and gngm expansions over original queries.
• qrefs/combined: refers to the combination of the above query reformulations using

CombSUM.

6.1.4. Parameters

We used two different search engine libraries to index, retrieve, and filter the given
collections: Whoosh for Clinical Trials and ElasticSearch for Scientific Literature. We moved
from Whoosh to ElasticSearch for Scientific Literature because Whoosh could not efficiently
handle the increased collection size—which presents over two million documents more
than the 2017 and 2018 collections. As for BM25, we kept the same parameters used in
Sections 4 and 5.

6.2. Experimental Results

The organizers of the TREC PM 2019 Track provided the summary of the results in
terms of best, median, and worst value for each topic for P@10, infNDCG, and Rprec. In
Table 3a,b, we report the results of the five considered models, as well as the median values,
for the Clinical Trials and Scientific Literature tasks, respectively.

The results from Table 3a show that the top query reformulations, identified in the
in-depth analysis from Section 5, remain effective for precision-oriented measures in clinical
trials retrieval. Indeed, all the knowledge-enhanced models outperform the baseline by a
margin greater than 2% for P@10. On the other hand, the improvements are less marked for
infNDCG and Rprec—where only the model employing “solid” expansion (solid/original)
and the combined model (qrefs/combined) outperform the baseline. We attribute the
drop in performance of the other knowledge-enhanced models to the use of reduction
techniques. In fact, reducing queries helps to focus more on relevant terms—thus increasing
precision—but can hamper recall, as fewer terms are used to perform retrieval. Thus, the
results suggest that the developed query reformulations are precision-oriented rather than
recall-oriented.
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Table 3. Retrieval performances on the TREC PM 2019 Clinical Trials task a and Scientific Literature
task b. Retrieval performances of the considered models on the TREC PM 2019 Scientific Literature
task. Base refers to the baseline model (BM25 plus filtering); neop/reduced refers to neop expansion
over reduced queries; solid/original refers to “solid” expansion over original queries; solid/reduced
refers to “solid” expansion over reduced queries; qrefs/combined refers to the combination of
the above query reformulations using CombSUM; neop/original refers to neop expansion over
original queries; neop+comd/original: refers to neop and comd expansions over original queries;
neop+gngm/original: refers to the neop and gngm expansions over original queries. Median refers to
the average median values of the Scientific Literature task and it is computed considering all the runs
submitted to the task. Bold values represent the highest scores among models and median.

(a) TREC PM 2019 Clinical Trials task

P@10 infNDCG Rprec

base 0.5053 0.6186 0.4337
neop/reduced 0.5237 0.5755 0.4135
solid/original 0.5368 0.6239 0.4386
solid/reduced 0.5316 0.5940 0.4264
qrefs/combined 0.5342 0.5706 0.4381

median 0.4658 0.5137 0.3477

(b) TREC PM 2019 Scientific Literature task

P@10 infNDCG Rprec

base 0.5125 0.4747 0.2977
neop/original 0.5150 0.4645 0.2982
neop+comd/original 0.5125 0.4636 0.2964
neop+gngm/original 0.5050 0.4740 0.2999
qrefs/combined 0.5075 0.4665 0.2986

median 0.5450 0.4559 0.2806

To better understand the performances of the considered query reformulations on the
Clinical Trials task, we performed a per-topic analysis that compares, for each measure, the
five models with the task median values. Figures 4–8 display, topic by topic, the difference
in performance between each model and the median values. For a positive difference
(model better than median), a green bar plot is shown, whereas for a negative difference
(model worse than median), a red bar plot is shown.

The analysis of Figures 4–8 highlights an interesting scenario. First, all the considered
models achieve performances higher than or equal to median values for most topics.
Second, different knowledge-enhanced models achieve top performances on different
topics. In other words, there does not exist a query reformulation that provides consistently
better results than all the others. This is an interesting outcome, as it shows that the use of
different knowledge-based query reformulations improves performances from different
angles. However, the results obtained using CombSUM (i.e., qrefs/combined) suggest
that more advanced techniques are required to effectively combine the different signals
provided by the considered query reformulations. Although effective, CombSUM does not
outperform all the individual models.
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Figure 4. Per-topic difference between base model and clinical trials median values. A topic is a
synthetic case built by precision oncologists. Inferred nDCG (infNDCG), R-precision (Rprec), and
precision at rank 10 (P@10) are shown. For a positive difference (model better than median), a green
bar plot is shown, whereas for a negative difference (model worse than median), a red bar plot
is shown.

Figure 5. Per-topic difference between neop/reduced model and clinical trials median values. A topic
is a synthetic case built by precision oncologists. Inferred nDCG (infNDCG), R-precision (Rprec),
and precision at rank 10 (P@10) are shown. For a positive difference (model better than median), a
green bar plot is shown, whereas for a negative difference (model worse than median), a red bar plot
is shown.
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Figure 6. Per-topic difference between solid/original model and clinical trials median values. A topic
is a synthetic case built by precision oncologists. Inferred nDCG (infNDCG), R-precision (Rprec),
and precision at rank 10 (P@10) are shown. For a positive difference (model better than median), a
green bar plot is shown, whereas for a negative difference (model worse than median), a red bar plot
is shown.

Figure 7. Per-topic difference between solid/reduced model and clinical trials median values. A topic
is a synthetic case built by precision oncologists. Inferred nDCG (infNDCG), R-precision (Rprec),
and precision at rank 10 (P@10) are shown. For a positive difference (model better than median), a
green bar plot is shown, whereas for a negative difference (model worse than median), a red bar plot
is shown.
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Figure 8. Per-topic difference between qrefs/combined model and clinical trials median values.
A topic is a synthetic case built by precision oncologists. Inferred nDCG (infNDCG), R-precision
(Rprec), and precision at rank 10 (P@10) are shown. For a positive difference (model better than
median), a green bar plot is shown, whereas for a negative difference (model worse than median), a
red bar plot is shown.

Regarding scientific literature retrieval, the results from Table 3b highlight a lower
impact of the considered query reformulations on retrieval performances. In particular,
none of the considered knowledge-enhanced models outperform the baseline for infNDCG.
A possible reason for the marginal impact of query reformulations could lie in the shift from
Whoosh to ElasticSearch for the indexing, retrieval, and filtering steps. Indeed, Whoosh and
ElasticSearch handle the various steps required by our procedure differently, in particular
query term weighting operations. However, further analyses are required to confirm this
intuition—which are out of scope given the objectives of this paper.

Comparison with TREC PM 2019 Top Systems

When looking at the detailed analysis in the TREC PM 2019 overview [22], we observe
that the best performances obtained by our models surpass the top 10 threshold in both
tasks for all the evaluation measures but one. For the Clinical Trials task, the model that
relies on “solid” expansion (i.e., solid/original) achieves the second best performance for
infNDCG and Rprec, and the third best for P@10 (see “BM25solid01o” in Table 6 Clinical
Trials of the TREC PM 2019 overview [22]). As for Scientific Literature, the baseline model
and the model employing neop and gngm expansions achieve top 10 performances for
infNDCG and Rprec, respectively (see “BM25” and “BM25neopgngm” in Table 6 Literature
Articles of the TREC PM 2019 overview [22]). On the other hand, all the proposed models
achieve performances lower than median values for P@10, which is consistent with the
results found in Section 5 for the 2018 Scientific Literature task.

Thus, the outcomes of this study highlight the effectiveness of the proposed query
reformulations for retrieving relevant clinical trials in top positions of the ranking list. This
is a promising result for at least two reasons. The first reason is that the proposed query
reformulations, along with the weighting scheme applied to expansion terms, prove to
be consistent across the years. The second reason regards the robustness of our approach.
Indeed, the variation of the performance across topics for solid/original is smaller than
any other top 10 system of TREC PM 2019 (see “BM25solid01o” in Figure 3 of the TREC



Information 2021, 12, 402 22 of 27

PM 2019 overview [22]). Therefore, the developed query reformulations can be used to
build knowledge-enhanced models that are robust to topic variations.

In the next section, given the consistent results achieved by the proposed query
reformulations for the Clinical Trials task across the three years of TREC PM, we performed
an a posteriori analysis focusing on clinical trials retrieval. The analysis provides an
overview of the effectiveness of such techniques over the three years of TREC PM and
aims to identify a robust subset of query reformulations specifically tailored to clinical
trials retrieval.

7. A Posteriori Analysis of Query Reformulations

Based on the results achieved for the Clinical Trials task in Sections 5 and 6, we per-
formed an a posteriori analysis on the effectiveness of the proposed query reformulations
for clinical trials retrieval over the three years of TREC PM. This systematic analysis com-
pares our approach and those proposed by the research groups that participated in all the
three years of TREC PM.

7.1. Experimental Setup
7.1.1. Test Collections and Knowledge Resources

We considered TREC PM 2017 (PM17) [20], 2018 (PM18) [21], and 2019 (PM19) [22]
Tracks. We performed experiments on Clinical Trials collections using the 30, 50, and 40
topics provided, respectively, in 2017, 2018, and 2019. For query expansion and reduction,
we considered the same knowledge resources used in Sections 5.1.1 and 6.1.1.

7.1.2. Evaluation Measures

We adopted the official measures used in the TREC PM Tracks, which are infNDCG,
Rprec, and P@10.

7.1.3. Experimental Procedure

For the 2017 and 2018 tasks, we relied on the top 5 query reformulations, ordered by
P@10, found in the in-depth analysis performed in Section 5. Then, we applied the top 3
reformulations found in the 2017 and 2018 tasks to the 2019 task.

7.1.4. Parameters

We adopted Whoosh to perform indexing, retrieval, and filtering, and we set the rest
of the parameters as in Sections 5.1.4 and 6.1.4.

7.2. Experimental Results

In Table 4, we report the results of our experiments on query reformulation (Part A)
and compare them with the results obtained by the research groups that participated at
TREC PM 2017, 2018, and 2019 (Part B). For 2017 and 2018 tasks, we presented the five
query reformulations with the highest P@10. Then, we reported the effectiveness of the
considered reformulations for the 2019 task. Each line shows a particular combination (yes
or no values) of semantic types (neop, comd, gngm), usage and expansion of <other> field
(oth, oth_exp), query reduction (orig), and expansion using the weighted “solid” (tumor)
keyword. We used the symbol ‘·’ to indicate that the features oth, oth_exp are not applicable
for the years 2018 and 2019 due to the absence of the <other> field in 2018 and 2019 topics.
We highlighted in bold the top 3 scores for each measure, and we used the symbol ‡ to
indicate a combination that performs well in all three years. For the TREC PM systems, we
selected systems from those participants who submitted runs in all three years and reached
top 10 performances in at least one edition for each measure [20–22]. The results reported
in part B of Table 4 indicate the best score obtained by a particular system for a specific
measure—again, note that the best results of a participant’s system are often related to
different runs. The symbol ‘−’ means that the measure is not available, while ‘<’ indicates
that none of the runs submitted by the participant achieved top 10 performances. For the
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sake of comparison, we added for each measure the lowest score required to enter the top
10 TREC results list, and the score obtained by our best combination. The combination is
indicated by the line number, which refers to its position in Part A of Table 4.

7.2.1. Analysis of Query Reformulations

The results from Table 4 (Part A) highlight that the use of “solid” expansions, as
well as query gene reductions (orig = n), seems to consistently improve performances
in 2017—two of the three best combinations in terms of P@10 (lines 1 and 2) apply both
techniques. Regarding knowledge-based expansions, the semantic type gngm (lines 1
and 5) seems more effective than neop (line 3), whereas comd does not seem to have any
positive effect at all. All five combinations do not consider the <other> field (oth = n) nor
its expansion (oth_exp = n)—confirming our intuition that it might represent a potential
source of noise in retrieving precise information for patients. Similarly to 2017, two of the
three best combinations in 2018 do not use knowledge-based expansions and rely on “solid”
(tumor) expansion (lines 7 and 9). In particular, the reformulation combining query gene
reductions and “solid” expansion (marked as ‡) provide the best performances for all the
measures considered, both in 2017 and 2018. This suggests that removing over-specialized
information (i.e., the gene mutations) or adding general terms (e.g., solid) benefits the
retrieval. A possible reason is related to the different level of information contained within
clinical trials and queries, as clinical trials often contain general requirements to allow
patients to enroll—such as, the umbrella concept “solid tumor”—rather than specific con-
cepts, e.g., tumor types, as in queries [40]. The results obtained in 2019 with the top 3 query
reformulations from both 2017 and 2018 confirm this trend. The reformulation combining
query gene reductions and “solid” expansion (line 13‡) achieves top 3 performances in
2019, however two query reformulations from 2017 (line 14) and 2018 (line 11) provide
better performances. This result shows how difficult the task is. Indeed, even though we
found a particular query reformulation approach (marked as ‡) to be highly effective in all
three years—especially in 2017 and 2018—it was not the best approach for 2019.

Therefore, this analysis helps to identify a robust subset of query reformulations for
clinical trials retrieval. The selected query reformulations can be used at the early stages
of the IR pipeline to retrieve relevant clinical trials in top positions of the ranking list.
In this way, the different signals, that (knowledge-based) query reformulations provide,
can be used (and combined) by multi-stage IR systems to obtain a richer pool of relevant
documents, thus reducing the semantic gap between queries and documents.

7.2.2. Comparison with TREC PM Systems

The results from Table 4 (Part B) mark a clear division between the 2017 and 2018
tasks and the 2019 task. In 2017 and 2018, most of the participants’ runs do not reach the
top 10 threshold in any of the considered measures—the only exception is the research
group from Poznan University of Technology, whose best runs always belong to the
top 10 performing runs for the task. Conversely, in 2019 all the participants’ best runs
achieve results higher than the top 10 threshold. The reason behind the improvement
of participants’ runs in 2019 mostly relates to the use of supervised re-ranking models,
which exploit relevance judgments from previous years for training. Thus, participants’
approaches consist of expensive supervised multi-stage systems that, unlike ours, require
relevance labels to work.
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Table 4. Results of our experiments on query reformulation (Part A) and a comparison with the
results obtained by the research groups that participated at TREC PM 2017, 2018, and 2019 (Part B).
Each line shows a particular combination (yes or no values) of semantic types (neop, comd, gngm),
usage and expansion of <other> field (oth, oth_exp), query reduction (orig), and expansion using the
weighted “solid” (tumor) keyword. The symbol ‘·’ indicates that the features oth, oth_exp are not
applicable (for 2018 and 2019). We highlighted in bold the top 3 scores for each measure, and we
used the symbol ‡ to indicate a combination that performs well in all three years. The results reported
in part B indicate the best score obtained by a particular system for a specific measure. The symbol
‘−’ means that the measure is not available, while ‘<’ indicates that none of the runs submitted by the
participant achieved top 10 performances. For the sake of comparison, we added for each measure
the lowest score required to enter the top 10 TREC results list, and the score obtained by our best
combination. The combination is indicated by the line number, which refers to its position in Part A
of the table.

A: Analysis of Query Reformulations

Line Year Neop Comd Gngm oth oth_exp Orig Solid P@10 infNDCG Rprec

1 2017 n n y n n n 0.1 0.3931 − 0.3263
2 ‡ 2017 n n n n n n 0.1 0.4034 − 0.3361
3 2017 y n n n n n 0.1 0.3862 − 0.3202
4 2017 n n n n n n n 0.3931 − 0.3241
5 2017 n n y n n y n 0.3862 − 0.3243

6 2018 n n n · · y n 0.5680 0.5411 0.4197
7 2018 n n n · · y 0.1 0.5740 0.5403 0.4179
8 2018 y n n · · n n 0.5700 0.5345 0.4134

9 ‡ 2018 n n n · · n 0.1 0.5820 0.5446 0.4205
10 2018 y n y · · n n 0.5680 0.5393 0.4122

11 2019 n n n · · y 0.1 0.5368 0.6239 0.4386
12 2019 y n n · · n n 0.5237 0.5755 0.4135

13 ‡ 2019 n n n · · n 0.1 0.5316 0.5940 0.4264
14 2019 n n y · · n 0.1 0.5263 0.6070 0.4302
15 2019 n n n · · n n 0.5105 0.5853 0.4239

B: Comparison with TREC PM other Participants

Line Year TREC PM Participant Identifier P@10 infNDCG Rprec

1 2017 BiTeM 0.3586 − −
2 2017 cbnu < − −
3 2017 CSIROmed < − −
4 2017 ECNUica < − −
5 2017 Poznan 0.3690 − −

2017 Top 10 threshold 0.3586 − −

2017 Best combination of our approach (A.2 ‡)
0.4034 − 0.3361

6 2018 BiTeM < < <
7 2018 cbnu < < <
8 2018 CSIROmed < < <
9 2018 ECNUica < < <
10 2018 Poznan 0.5580 0.4894 0.4101

2018 Top 10 threshold 0.5240 0.4736 0.3658

2018 Best combination of our approach (A.9 ‡)
0.5820 0.5446 0.4205

11 2019 BiTeM 0.4711 0.4963 0.3698
12 2019 cbnu 0.4921 0.5568 0.4121
13 2019 CSIROmed 0.4921 0.4930 0.3586
14 2019 ECNUica 0.5053 0.5355 0.4001
15 2019 Poznan 0.4421 0.4810 0.3503

2019 Top 10 threshold 0.3658 0.4320 0.3230

2019 Best combination of our approach (A.11)
0.5368 0.6239 0.4386

When we consider the results obtained using the query reformulations from Table 4
(Part A), we see that all query reformulations obtain results higher than the top 10 threshold
for all the considered measures in all three years. Furthermore, query reformulations
consistently achieve better results than participants’ systems for each measure in all three
years. Besides, unlike participants’ systems, our approach operates only in the early stages
of the IR pipeline and does not require any labeled data to work. This is an indication of
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the robustness of our approach across the different collections and also of the effectiveness
of the proposed query reformulations for clinical trials retrieval. In particular, it is worth
mentioning that models using the (‡) query reformulation achieve performances that belong
to the top 3 of the best-performing systems in each year of the TREC PM Track [20–22].

8. Conclusions and Future Work

In this paper, we have investigated how to use external knowledge resources to
enhance bag-of-words representations and reduce the effect of the semantic gap between
queries and documents, focusing on an important use-case in Clinical Decision Support
(CDS): providing relevant information to clinicians treating cancer patients. To this end,
we have developed simple but effective knowledge-based query reformulations that can
be integrated within IR pipelines to help physicians and medical researchers performing
their work in a more efficient—and effective—way.

The main findings of these studies and analyses are listed below.

• Preliminary study: The study, conducted on the TREC PM 2018 Clinical Trials task,
showed that the proposed query expansion approach introduces noise and signifi-
cantly decreases retrieval performances. In particular, we found that the detrimental
effect of the query expansions depends on the lack of an appropriate weighting scheme
on query terms and the uncontrolled use of all the knowledge resources contained
within UMLS. Thus, the study highlighted what features are required to build effective
query expansions, and what instead should be avoided.

• In-depth analysis: The analysis, performed to investigate approaches that can be
effective in both scientific literature and clinical trials retrieval, showed that no strong
trend emerges for either task. However, we found query reformulations that perform
well in both tasks and achieve top results in several evaluation measures both in TREC
PM 2017 and in 2018.

• Validation study: The study, carried out to investigate whether the proposed query
reformulations also hold in TREC PM 2019, confirmed the effectiveness of the query
reformulations in the Clinical Trials task—with promising performances in precision-
oriented measures.

• A posteriori analysis: The analysis, based on the results achieved over the three years
of the Clinical Trials task, helped to identify a robust subset of query reformulations
for clinical trials retrieval. The selected query reformulations can be used at the early
stages of the IR pipeline to retrieve relevant clinical trials in top positions of the
ranking list.

As future work, we plan to explore the use of advanced rank fusion techniques based
on the combination of large amounts of automatically generated, knowledge-based query
reformulations. The aim is to build robust multi-stage IR systems, less sensitive to the
problem of topic drift, that combine the different signals provided by knowledge-based
query reformulations to obtain a richer pool of relevant documents, thus further reducing
the semantic gap between queries and documents.
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