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Abstract: The widespread use of social networks has brought to the foreground a very important
issue, the veracity of the information circulating within them. Many natural language processing
methods have been proposed in the past to assess a post’s content with respect to its reliability;
however, end-to-end approaches are not comparable in ability to human beings. To overcome this,
in this paper, we propose the use of a more modular approach that produces indicators about a
post’s subjectivity and the stance provided by the replies it has received to date, letting the user
decide whether (s)he trusts or does not trust the provided information. To this end, we fine-tuned
state-of-the-art transformer-based language models and compared their performance with previous
related work on stance detection and subjectivity analysis. Finally, we discuss the obtained results.

Keywords: deep learning; stance detection; subjectivity analysis; transformers; natural language
processing, social media; misinformation

1. Introduction

Assessing a social media post’s veracity is a quite impossible task to handle directly
through the use of natural language processing [1], since the provided estimations cannot
be considered reliable. However, there are many ways in which machine-generated outputs
could provide useful insights to human beings and assist them in making decisions of their
own about a post’s veracity. For example, users could be provided with information about
social media content and context in an intermediary-free approach and in a way that assists
users in deriving their own conclusions regarding a social media post’s trustworthiness [2].
This information could act as an indicator of trustworthiness, derived by machine learning
algorithms trained on tasks such as subjectivity analysis and stance detection.

In particular, the spread of online misinformation has been linked to the presence of
subjective knowledge, especially when it comes to scientific topics, due to the fact that it
captures a person’s perceived own ability to understand research [3]. Moreover, recent
research work on the analysis of the subjectivity level in fake news fragments reinforces
the concept that misinformation is correlated with the use of subjective language [4,5]. In
general, subjectivity analysis is a classification task, which aims at categorising posts as
factual or opinionated and can be used as an indicator, providing social media users with
intuition about the trustworthiness of a selected post.

Another well-investigated indicator of a post’s trustworthiness/veracity is that of
stance detection, a multi-class classification task that captures the users’ reactions in social
media posts [1]. Given a source post (rumourous post) that includes a statement a and
a set of reply posts B (it can be only one reply), stance detection aims at classifying the
stance of the user who wrote post b towards post a. In particular, the stance detection task
categorises the replies to that using the following four categories (Figure 1):

• Support: the author of the response supports the veracity of the rumour to which they
are responding (e.g., “I’ve heard that also”).
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• Deny: the author of the response denies the veracity of the rumour to which they are
responding (e.g., “That’s a lie”).

• Query: the author of the response asks for additional evidence in relation to the
veracity of the rumour to which they are responding (e.g., “Really?”).

• Comment: the author of the response makes their own comment without a clear
contribution to assessing the veracity of the rumour to which they are responding
(e.g., “True tragedy”).

Figure 1. Example of tree-based structure used for SDQC stance detection.

In Figure 1, an example thread of posts is presented for the case of the SDQC (Support–
Deny–Query–Comment) stance detection task. It should be noted that an alternative stance
detection task is presented in the SemEval 2016 task 6 [6], which is another classification
task that labels tweets into the classes (a) favour, (b) against, and (c) neither. The main
reason for selecting the SDQC stance detection task is that it provides the classes Query
and Comment, which provide an indication of the conversational context surrounding
rumours. This may lead to the discovery of certain patterns of comments and questions
that can be indicative of false rumours and others indicative of rumours that turn out to be
true [1].

The main objective of this paper is to take advantage of the recent advances in deep-
learning-based natural language processing originated by the transformer architecture [7]
and implement a comparative analysis of their efficacy for subjectivity analysis and stance
detection. In the rest of the paper, we provide an overview of the following:

• Related work on subjectivity analysis and stance detection;
• An overview of the deep-learning models’ architectures we fine-tuned and evaluated;
• A description of the selected datasets that were used for training and evaluation;
• A presentation and discussion of the obtained results.

2. Related Work

One of the first studies on subjectivity analysis and text classification in general worth
mentioning is that of Wang and Manning [8]. They examined the benefit of dropout
training [9] without actually randomly sampling, thereby using all the data efficiently.
Their approach uses a Gaussian approximation that is justified by the central limit theorem
and empirical evidence, while it reduces the training time, also providing more stability.
They applied their approach to the subjectivity dataset v1.0 (SUBJ) [10] using logistic
regression for simplicity, achieving 93.60% accuracy.

A self-adaptive hierarchical sentence model, called AdaSent, is presented in [11].
AdaSent exploits recursive convolutional neural networks (gr-Conv) [12] while forming
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a multi-scale hierarchical representation instead of a fixed-length continuous vectorial
representation. The gated nature of AdaSent allows the information flow to vary with each
classification task, so there is no need for a predefined parse tree. Moreover, it uses the
intermediate representations at each level of the pyramid (i.e., not only the top one) to form
a multiscale summarization. This is achieved by applying a convex combination to each
level representation and adaptively giving more weight to some levels depending on the
sentence and the task. AdaSent achieved 95.50% accuracy on the SUBJ dataset.

Amplayo et al. [13] propose the use of a neural attention-based multiple context fixing
attachment (MCFA) that is used mainly for neural machine translation but is applicable
to classification tasks as well. MCFA’s main objective is to mitigate the possible problems
when using translated sentences as context; it uses all the sentence vectors of a trans-
lated sentence a as context to fix a translated sentence vector b, and vice versa, which is
accomplished by selectively moving the vectors to a location in the same vector space.
Using a convolutional neural network (CNN) attached to MCFA significantly improved
the classification performance of the CNN, achieving 94.80% accuracy on the SUBJ dataset.

Byte-level recurrent language models are explored in Radford et al. [14], which have
the advantage of learning representations in an unsupervised manner, including disen-
tangled features corresponding to high-level concepts when they are given huge amounts
of training data. The learned representations are able to achieve state-of-the-art results
given only a handful of labelled examples. The authors used a single-layer multiplicative
LSTM [15] model with 4096 units, instead of a regular one, because it converges faster,
and achieved 94.60% accuracy on the SUBJ dataset. Cer et al. [16] proposed the Universal
Sentence Encoder (USE) mechanism for encoding sentences into embedding vectors and
specifically targeted transfer learning for other NLP tasks, such as subjectivity analysis. It
is a transformer-based network [7] combined with a deep averaging network [17], where
input embeddings for words and bi-grams are averaged together and, afterwards, fed to a
feedforward deep neural network to produce sentence embeddings. The USE augments
unsupervised learning with training on the Stanford Natural Language Inference (SNLI)
dataset [18], which improves the transfer learning performance. Unsupervised training
data for the sentence encoding models are drawn from a variety of web sources (e.g.,
Wikipedia, web news, etc.). The performance of the USE on the SUBJ datasets is equal to
93.90%.

When it comes to stance detection, the model named EventAI [19] used an ensemble
approach for stance detection, which includes neural network models combined with the
traditional classification algorithms. This work combined message embeddings, which
were produced by word2vec embeddings [20] passed through an attentional LSTM, and
human-crafted features. The latter contain features such as whether there is a link in the
post or not, the type of the link (e.g., video), whether the current post is a reply to the source
message, the similarity with the source message, the content length, etc. The message
embeddings and other features were concatenated together and fed into the neural network
with two fully connected layers and a softmax layer for the final label output. Moreover,
they used a rule-based model to handle some special cases, such as if the source message
had a question mark and then should be a query. The EventAI team came third in the
SemEval 2019 Subtask 7A [21], with a macro F1-score equal to 0.5776.

The authors in [22] proposed an LSTM-based sequential model (called BranchLSTM)
that models the whole conversational structure of tweets. The input at each time step i
of the LSTM layer is the vector representation of the tweet. They recorded the output of
each time step so as to attach a label to each tweet in a branch. As features, they used
word2vec embeddings, a lexicon (i.e., counting negation and swear words), the content
length, the presence of punctuation, the presence of attachments (e.g., URLs), and the
sentence similarity with previous posts. This model was the winner in the SemEval 2017
Subtask 8A [1] and was considered as the baseline in that of 2019, achieving a macro
F1-score equal to 0.4929, coming fourth.
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A fine-tuned BERT model was used in [23], without using any human-extracted
features. Similarly to our approach (see Section 3), the authors formulated the problem as a
stance classification, determining the rumour stance of a post with respect to the previous
thread post and the source thread post. They trained 100 models and constructed a BERT
ensemble, called TOP-Ns, where several BERT models were fused in order to increase
the F1 measure, and their pre-softmax scores were averaged to produce the output class
probabilities. The fine-tuned BERT model achieved an F1-score of 0.6167 on the provided
test data. Even though this approach is effective, it should be noted that using 100 BERT
models significantly increases the inference time.

Finally, Yang et al. [24] proposed an inference chain-based system, which fully utilizes
conversation structure-based knowledge. The model they used for the stance detection
task was a fine-tuned Generative Pretrained Transformer (GPT) [25]. Moreover, they
expanded the training data in minority categories (i.e., support, deny and query) to alleviate
class imbalance. For support and deny, they exploited fact verification datasets, such as
Emergent [26]. For query, the authors used passages as the conversation context, and
unanswerable questions as the target tweet in reading comprehension datasets, such as
SQuAD 2.0 [27]. This approach achieved the highest performance in the 2019 contest,
reaching a F1-score equal to 0.6187.

3. Methods

In this section, the architectures of the transformer-based architectures we evaluated
are described. The reason for selecting transformer-based models is that they can be fine-
tuned and obtain state-of-the-art results [28–30], by simply applying transfer learning (i.e.,
the model is already pretrained).

In general, transformers follow an encoder–decoder architecture. The encoder is
composed of a stack of N = 6 identical layers, where each layer has two sublayers: (a) a
multi-head self-attention mechanism, and (b) a position-wise fully connected feed-forward
network. A residual connection is employed around each of the two sublayers, followed
by a normalisation layer. On the other hand, the decoder is also composed of a stack of
N = 6 identical layers. Similar to the encoder, residual connections are employed around
each of the sublayers, followed by layer normalization. In addition to the two sublayers in
each encoder layer, the decoder inserts a third sublayer, performing multi-head attention
over the output of the encoder stack.

The attention mechanism that the transformer model employs is presented in the
following equation; it is a function that maps a query and a set of key-value pairs to
an output by computing their dot product (the query Q, keys K, values V and output
are all vectors). The output is computed as a weighted sum of the values, where the
weight assigned to each value is computed by a softmax function of the query with the
corresponding key.

A(Q, K, V) = so f tmax
(

Q · KT
√

d

)
·V (1)

where d is the dimensionality of the key vectors used as a scaling factor.
An effective alternative to the dot-product attention is multi-head attention that allows

the model to attend to information from different representation subspaces at different
positions.The following equations represent the multi-head attention mechanism having,
as input, the text x.

Qi = x ·WQ
i , Ki = x ·WK

i , Vi = x ·WV
i (2)

headi = Ai(Q, Ki, Vi) (3)

E(Q, K, V) = concat(head1, ..., headh)WA (4)

where WQ
i ∈ Rdmodel xdq , WK

i ∈ Rdmodel xdk , WVi ∈ Rdmodel xdv , WA
i ∈ Rdmodel xda and dq = dk = dv

= da = dmodel/h. After computing Ai, we concatenate the h dot products and transform
them into E using, again, a dense layer.
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3.1. BERT

Bidirectional Encoder Representations from Transformers (BERT) is designed to pre-
train deep bidirectional representations from unlabelled text by jointly conditioning on
both the left and right context in all the layers [28].

BERT relies only on the encoder part of the Transformer and uses two self-supervised
pretraining objectives for training, “masked language model” (MLM) and “next sentence
prediction” (NSP). In MLM, BERT randomly masks some of the tokens from the input, and
the objective is to predict the original vocabulary ID of the masked word (token) based
only on its context. In the case of NSP, BERT jointly pretrains text-pair representations and
classifies whether sentence a and sentence b are consecutive. For the pretraining corpus, the
authors used BooksCorpus (800 M words) [31] and English Wikipedia (2500 M words). Fine-
tuning BERT is quite simple since the self-attention mechanism in the Transformer allows
BERT to model many downstream tasks, such as classification tasks, Natural Language
Inference (NLI), Question Answering (QA) and Named Entity Recognition (NER).

BERT obtained state-of-the-art results in 2019 in eleven natural language processing
tasks, including increasing the GLUE [32] score to 80.5%. Devlin et al. evaluated two
versions of BERT, BERTBASE and BERTLARGE. The BERTBASE model has 12 attentional
blocks, 12 self-attentional heads, and its sublayers and the embedding layers; produces
outputs of dimension equal to 768; and contains 110M parameters. On the other hand,
BERTLARGE has 24 attentional blocks, 16 self-attentional heads, and its sublayers and the
embedding layers; produces outputs of dimension equal to 1024; and contains 340M
parameters.

3.2. RoBERTa

Robustly optimised BERT pretraining Approach (RoBERTa) is a replication study of
BERT pretraining that focuses on evaluating the effects of hyperparameter tuning and
training set size [29]. In particular, the authors applied the following modifications to
BERT:

1. The model was trained for longer, with bigger batches, over more data;
2. They removed the NSP objective;
3. It was trained on longer sequences;
4. The masking pattern applied to the training data was dynamically changed.

The main reason for not including the NSP objective is that it is designed to improve
performance on downstream tasks, such as NLI, which require reasoning about the relation-
ships between pairs of sentences, and does not generally benefit other NLP tasks. RoBERTa
surpassed BERT’s performance on almost eleven natural language processing tasks, in-
cluding increasing the GLUE score to 88.5%. The authors also evaluated two versions
of RoBERTa, RoBERTaBASE and RoBERTaLARGE, with both sharing the same parameter
size with the corresponding BERT architectures. Thus, the RoBERTaBASE model has 12
attentional blocks, 12 self-attentional heads, and its sublayers and the embedding layers;
produces outputs of dimension equal to 768; and contains 110M parameters. On the other
hand, RoBERTaLARGE has 24 attentional blocks, 16 self-attentional heads, and its sublayers
and the embedding layers; produces outputs of dimension equal to 1024; and contains
340M parameters.

3.3. ELECTRA

ELECTRA (Efficiently Learning an Encoder that Classifies Token Replacements Accu-
rately) proposes the use of a pretraining task called replaced token detection (RTD) that
is more sample-efficient than MLM [30]. MLM pretraining methods produce models that
generalize well in several NLP tasks; however, they generally require large amounts of
computation to be effective. RTD corrupts the input sentence by replacing some tokens
with plausible alternatives sampled from a small generator network. Thus, they train a
discriminative model that predicts whether each token in the corrupted input was replaced
by a generator sample or not.
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A key advantage of this discriminative task is that the model learns from all the input
tokens instead of just the small masked-out subset, making it more computationally effi-
cient. Moreover, although the proposed approach is similar to training the discriminator of
a generative adversarial network (GAN), it is not adversarial, since the generator producing
corrupted tokens is trained with maximum likelihood due to the difficulty of applying
GANs to text [33]. It should be noted that, in the ELECTRA pretraining architecture,
the authors used a relatively small Transformer for the generator and a large one for the
discriminator, after experimentation. ELECTRA surpassed both BERT’s and RoBERTa’s
performance in many tasks and achieved a GLUE score equal to 89.4%. The authors also
evaluated two versions of ELECTRA, ELECTRABASE and ELECTRALARGE, with both
sharing the same parameter size with the corresponding BERT and RoBERTa architectures.

4. Results
4.1. Experimental Set-Up

The experiments were executed on a computer workstation equipped with an NVIDIA
GTX 1080 Ti GPU featuring 11 gigabytes of RAM, 3584 CUDA cores and a bandwidth of
484 GB/s. We used Python as the programming language and, specifically, the Numpy
(https://numpy.org/, accessed on 2 August 2021) library for matrix multiplication, Re
(https://docs.python.org/3/library/re.html#module-re, accessed on 2 August 2021) li-
brary for text preprocessing (i.e., regular expression operations) and PyTorch (https://
pytorch.org/, accessed on 2 August 2021), transformers (https://github.com/huggingface/
transformers, accessed on 2 August 2021) and simple transformers (https://github.com/
ThilinaRajapakse/simpletransformers, accessed on 2 August 2021) libraries for retraining
and evaluating the deep-learning models (BERT, RoBERTa and ELECTRA). Moreover,
the wandb (https://wandb.ai/home, accessed on 11 August 2021) platform was used for
visualizing the results. In order to accelerate the tensor multiplications, we used the CUDA
Toolkit with support from the cuDNN (https://developer.nvidia.com/cudnn, accessed on
15 August 2021), which is the NVIDIA GPU-accelerated library for deep neural networks.
The workstation has the Ubuntu 16.04 Linux operating system.

4.2. Datasets
4.2.1. SUBJ

We used the Cornell movie review dataset [10], which is a publicly available dataset, to
retrain and evaluate the performance of the selected networks; it consists of 5000 subjective
(class label equal to 1) and 5000 objective (class label equal to 2) processed sentences. The
starting points for data acquisition were snippets of movie reviews from Rotten Tomatoes
(http://www.rottentomatoes.com/, accessed on 15 August 2021) and plot summaries for
movies from the Internet Movie Database (http://www.imdb.com, accessed on 15 August
2021). Since the class distribution in this dataset is balanced, we only used accuracy as an
evaluation metric. We split the dataset randomly into 8000 samples for training and 2000
for evaluation. An example of the text samples included in the SUBJ dataset is depicted in
Table 1.

Table 1. An example of the text samples included in the SUBJ dataset.

Text Label

Celebrities are talking about him on MTV and girls are fighting over him on
Jerry springer. Objective

Funny in a sick , twisted sort of way. Subjective

If Oscar had a category called best bad film you thought was going to be really
awful but wasn’t, guys would probably be duking it out with the queen of the
damned for the honor.

Subjective

Colt seeks the repair of a femininity damaged by an earlier incest. Objective

https://numpy.org/
https://docs.python.org/3/library/re.html#module-re
https://pytorch.org/
https://pytorch.org/
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/ThilinaRajapakse/simpletransformers
https://github.com/ThilinaRajapakse/simpletransformers
https://wandb.ai/home
https://developer.nvidia.com/cudnn
http://www.rottentomatoes.com/
http://www.imdb.com
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4.2.2. SemEval 2019 Subtask 7A

We used the public available dataset SemEval 2019 Subtask 7A. This dataset contains
Twitter and Reddit threads, and each one is part of a tree-structured thread, which is
categorised into one of the aforementioned four categories: Support, Deny, Query, and
Comment. Table 2 displays the label distribution of the used stance detection dataset. It is
observable that the dataset is too imbalanced since around 70% of the training labels are
equal to the Comment class, and the same goes for the test set labels.

Table 2. Stance detection dataset label distribution.

Set Support Deny Query Comment Total

Twitter Train 1004 415 464 3685 5568
Reddit Train 23 45 51 1015 1134

Total Train 1027 460 515 4700 6702

Twitter Test 141 92 62 771 1066
Reddit Test 16 54 31 705 806

Total Test 157 146 93 1476 1872

An example of the tree-based nature of the threads included in the dataset is depicted
in Figure 2.

Figure 2. Post examples included in the SemEval 2019 Subtask 7A dataset.

4.3. Text Preprocessing

Since the posts contained many links to websites and media, we used the token “<url>”
to represent all of them, while we used the “@user” token to denote all the user names.
Moreover, emojis were converted into text using the emoji Python library, e.g., was
translated into “:slightly_smiling_face:”. Finally, we lowercased all the capital characters
(e.g., “New York” to “new york”).

4.4. Hyperparameter Tuning

For the case of subjectivity analysis, we used almost 1000 text samples of the training
set as a validation set, while for that for stance detection, we used almost one fourth
(around 1400 post pairs) of the training set as a validation set, which were already marked
as dev in the dataset.

These splits were performed for:

• Freezing the parameters of the model that achieved the highest F1-score in the valida-
tion set;

• Hyperparameter optimization (selecting the best hyperparameters).

Table 3 demonstrates the selected hyperparameters for the stance detection task.
Adam [34] was selected as a model optimizer. Moreover, it is worth mentioning that the
batch size was constrained by the GPU RAM memory.
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Table 3. Selected hyperparameters for subjectivity analysis and the stance detection tasks.

Hyperparameter Subjectivity Analysis Stance Detection

Learning rate α 1 × 10−5 2 × 10−5 (1 × 10−5 for ELECTRA)
Adam ε 1 × 10−8 1 × 10−8

Adam β1 0.9 0.9
Adam β2 0.999 0.999
Dropout 0.1 0.1

Batch size 16 8
Max. sequence length 128 128

4.5. Performance
4.5.1. Subjectivity Analysis

Table 4 presents the results obtained using the selected and fine-tuned transformer-
based models compared to other state-of-the-art subjectivity analysis models. As expected,
the performance of the transformer-based models exceeded the accuracy of previous
work, just as they did in the other tasks included in the GLUE benchmark. Moreover,
unsurprisingly, the large versions of these models achieved better results than the base
ones. ELECTRALARGE achieved the highest accuracy score, which was equal to 98.30%.

Table 4. Comparison of fine-tuned transformer-based models with other state-of-the-art subjectivity
analysis models.

Model Accuracy, %

AdaSent [11] 95.50
CNN+MCFA [13] 94.80
Byte mLSTM [14] 94.60

USE [16] 93.90
Fast Dropout [8] 93.60

BERTBASE 96.40
BERTLARGE 97.20

RoBERTaBASE 97.10
RoBERTaLARGE 97.75
ELECTRABASE 97.05

ELECTRALARGE 98.30

These results led to an almost perfect confusion matrix, displayed in Figure 3, where
it is worth noting that the ELECRALARGE model tends to misclassify more objective pieces
of text as subjective (24) than the other way around (10). The variation of true positives
(subjective) and true negatives (objective) during training is displayed in Figure 4. The
best equilibrium was accomplished around the 80th step (learning rate update), meaning
around the eighth training epoch.

Figure 3. Confusion matrix of the ELECTRALARGE model on the test SUBJ dataset.
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Figure 4. Variation of the results retrieved during training steps: (a) true negatives (objective) and (b)
true positives (subjective).

4.5.2. Stance Detection

The results we obtained for stance detection are included in Table 5. Apart from
selected fine-tuned transformer-based models, we include the most efficient deep-learning
models that have been submitted for the SemEval 2019 Subtask 7A challenge. In this
task, the best results (in terms of the Macro-averaged F1-score) were achieved by the
RoBERTaLARGE model. This is probably due to the fact the dataset has a lot of slang words
(e.g., LOL) and phrases, and RoBERTa contains a larger corpus (around 50,000 tokens)
and has been pretrained on Twitter/Reddit posts [29]. RoBERTaLARGE achieved a 0.6301
F1-score, which is state of the art but is not that high. On the other hand, upon having a
look at the confusion matrix (Figure 5), it is observable that the model misclassified only
two Support comments as Deny and none vice versa; thus, there were not many “extreme”
misclassifications; most of the misclassifications were due to the fact that the dataset is
highly imbalanced, and a lot of the posts are classified as Comment.

Table 5. Comparison of fine-tuned transformer-based models with other state-of-the-art stance
detection models.

Model Macro F1-Score %

EventAI [19] 0.5776
BranchLSTM [22] 0.4929

BUT-FIT [23] 0.6167
BLCU_NLP [24] 0.6187

BERTBASE 0.5324
BERTLARGE 0.5635

RoBERTaBASE 0.5715
RoBERTaLARGE 0.6301
ELECTRABASE 0.5424

ELECTRALARGE 0.5841

The variation of the experimental results of the six selected transformer-based models
with respect to the training loss, evaluation loss and macro-averaged F1-score are shown in
Figure 6. It is worth mentioning that the models were overfitted (i.e., the evaluation loss
increased while the training kept decreasing) after the third epoch to the training data, and
that resulted in acquiring the best F1-scores around the third epoch (step range: 25–45).
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Figure 5. Confusion matrix of the RoBERTaLARGE model on the test SemEval dataset. Label 1 stands
for Support; 2, for Deny; 3, for Comment; and 4, for Query.

Figure 6. Experimental results for the 6 selected transformer-based models for the stance detection
task: (a) training loss, (b) evaluation loss, and (c) macro-averaged F1-score.

4.6. Discussion

A common pattern noticed in all of the different models is that larger model versions
performed better in both of the examined tasks. That was somehow expected since larger
transformer-based architectures achieve higher performance in several NLP tasks [28–30],
and the overall scale of a language model is considered to be far more important than
finding its precise architectural hyperparameters [35]. Furthermore, previous studies have
shown that even the larger and longest-trained models appear to underfit the training
data and would benefit from additional training or from more parameters [29,36], while
fine-tuning the architectural hyperparameters is considered to be unimportant compared
to the overall scale of the language model.

Another observation is that BERT performs poorly when compared to RoBERTa and
ELECTRA; these two models were introduced after BERT and have obtained better results
in several NLP tasks [29,30], and especially, RoBERTa is an optimized version of BERT;
thus, achieving better results is expectable.

Another remarkable observation is that RoBERTa surpassed, by around 5%, the F1-
score achieved by ELECTRA in the SDQC stance detection task, which is extremely high
compared to the accuracy obtained on the SUBJ dataset and other previously reported
results [30]. This could be explained by the fact that RoBERTa is pretrained on many
datasets including OpenWebText, a dataset that comprises web content extracted from
URLs shared on Reddit. Posts on Reddit and Twitter contain arbitrary use of the English
language, informal words and expressions, and a lot of abbreviations. Thus, the fact that
RoBERTa has already been pretrained on such vocabulary is crucial. Finally, RoBERTa
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is also enforced when it comes processing effectively rare words since it has a subword
vocabulary of 50K units, while BERT’s and ELECTRA’s have 30K units.

5. Conclusions

In this paper, we performed a comparative study on exploiting different transformer-
based language models for subjectivity analysis and stance detection, using two pub-
lic available datasets. As expected, larger models led to greater performance, with
RoBERTaLARGE and ELECTRALARGE achieving the best F1-scores and accuracy for stance
detection and subjectivity analysis, respectively.

Future steps include further experimentation for stance detection, exploiting a more
tree-based structure of the replies included in a discussion thread such as the BranchLSTM
approach [22], but using a RoBERTaLARGE model. Furthermore, graph neural networks
could also be another option for finding relational dependencies between posts included in
large discussion threads and updating their hidden representations through graph-based
message passing [37]. Finally, we could examine the performance of modular approaches
(i.e., a model having, as features, trustworthiness indicators) against end-to-end model
architectures in veracity assessment.
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