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Abstract: Cryptographic hash functions play an essential role in various aspects of cryptography,
such as message authentication codes, pseudorandom number generation, digital signatures, and so
on. Thus, the security of their hardware implementations is an important research topic. Hao et al.
proposed an algebraic fault analysis (AFA) for the SHA-256 compression function in 2014. They
showed that one could recover the whole of an unknown input of the SHA-256 compression function
by injecting 65 faults and analyzing the outputs under normal and fault injection conditions. They
also presented an almost universal forgery attack on HMAC-SHA-256 using this result. In our
work, we conducted computer experiments for various fault-injection conditions in the AFA for the
SHA-256 compression function. As a result, we found that one can recover the whole of an unknown
input of the SHA-256 compression function by injecting an average of only 18 faults on average. We
also conducted an AFA for the SHACAL-2 block cipher and an AFA for the SHA-256 compression
function, enabling almost universal forgery of the chopMD-MAC function.

Keywords: algebraic fault analysis; SHA-256 compression function; SAT solver; MAC function

1. Introduction
1.1. Background

Side-channel attacks are severe threats to hardware implementations of cryptographic
algorithms. Fault attacks (FAs) are side-channel attacks that intentionally cause faults in
the cryptographic process on a hardware device and try to recover the secret information
from internal information that is not usually output. They can cause faults, for example, by
irradiating electromagnetic waves, such as lasers, or by manipulating the device’s voltage.
Fault attacks were first proposed by Boneh et al. in 1996 [1,2], and then Biham and Shamir
proposed a differential fault analysis (DFA) for DES in 1997 [3]. The basic principle of DFAs
is to recover the secret key by using the output difference between normal and fault-injected
executions and the cryptographic algorithm from the point of fault injection to the output.
DFAs were also applied to other ciphers [4–6]. In addition, DFAs on the compression
functions of cryptographic hash functions were studied. Hemme et al. proposed a DFA
against the SHA-1 compression function using a 32-bit random fault model [7]. Based on
this attack, DFAs were also applied to the HAS-160 [8] and MD5 [9] compression functions.
On the other hand, Courtois et al. proposed an algebraic fault analysis (AFA) for DES [10].
An AFA can analyze more information than a DFA and recover secret information with
fewer fault injections. AFAs were also applied to other ciphers [11,12].

When performing an AFA, a SAT solver and an SMT solver are used to solve algebraic
equations. A SAT solver is a program that judges whether a given problem is satisfiable or
not and outputs a solution if it is satisfiable. The problem is given in the form of a CNF
formula. An SMT solver is an extension of the SAT solver for propositional logic and deals
with predicate logic satisfiability problems. STP [13] is a kind of SMT solver, which solves
bit-vector theory. STP converts a given problem into a CNF equation and then calls a SAT
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solver to solve it. The SAT solver we used was CryptoMiniSat 5 [14], which is capable of
processing cryptographic problems quickly.

1.2. Related Work

SHA-2 is a family of cryptographic hash functions standardized by NIST in FIPS PUB
180-4 [15]. SHA-256 is included in the family. It is widely deployed and is one of the most
important cryptographic hash functions. HMAC is a MAC function standardized by NIST
in FIPS PUB 198-1 [16].

Jeong et al. [17] recovered the secret key of HMAC/NMAC-SHA-2 by injecting a
fault during the computation of HMAC/NMAC and reducing the number of steps in the
SHA-2 compression function. Their fault model assumes that an attacker can change the
number of steps in the SHA-2 compression function. Hao et al. [18] proposed an AFA for
the SHA-256 compression function using a 32-bit random fault model. They recovered the
whole of an unknown input of the SHA-256 compression function by injecting 65 faults.
They also presented an almost universal forgery attack on HMAC-SHA-256 based on this
result. Nejati et al. [19] assumed an advanced fault injection device and improved the AFA
by Hao et al. [18] in 2018. They recovered the whole of an unknown input message block
of the SHA-256 compression function with fewer fault injections.

1.3. Our Contribution

We first conducted computer experiments on various fault injection conditions and
showed that one can recover the whole of an unknown input of the SHA-256 compression
function by injecting about 18 faults on average. While our AFA reduces the number of
fault injections compared to that of Hao et al., it requires more time to solve algebraic
equations. However, a standard PC can solve them in less than an hour, and it still seems
practical. Next, we performed an AFA for the block cipher SHACAL-2 [20]. It can recover
the secret key with 12 fault injections by using a standard PC to solve algebraic equations
in less than an hour. Finally, we performed an AFA for the SHA-256 compression function,
which enabled almost universal forgery of the chopMD-MAC function [21].

1.4. Organization

In Section 2, we describe the SHA-256 compression function, the block cipher SHACAL-2,
and the chopMD-MAC function. We also review the AFA for the SHA-256 compression
function of Hao et al. In Section 3, we first describe the results of computer experiments
on the AFA of Hao et al. and show that the number of injected faults can be greatly
reduced. Next, we present the results of the AFA for SHACAL-2 and the AFA for the
SHA-256 compression function, which enables almost universal forgery of the chopMD-
MAC function. Section 4 is the conclusion.

2. Materials and Methods

This section describes the SHA-256 compression function [15], the SHACAL-2 block
cipher [20], and the chopMD-MAC function [21]. We also review the AFA for the SHA-256
compression function of Hao et al. [18].

2.1. SHA-256 Compression Function

SHA-256 is an iterated hash function producing a 256-bit output. The SHA-256
compression function takes a 512-bit message block and a 256-bit intermediate hash value
as an input and produces a 256-bit new intermediate hash value as an output.

The algorithm of the SHA-256 compression function is described below. It is also
depicted in Figure 1. In the following description, the operation + denotes addition
modulo 232, ⊕ denotes bitwise XOR, ∧ denotes bitwise AND, ¬ denotes bitwise NOT, and
‖ denotes the concatenation of bit strings.
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Figure 1. SHA-256 compression function.

The SHA-256 compression function first divides a given 512-bit message block M
as follows:

M = m0 ‖ m1 ‖ m2 ‖ m3 ‖ · · · ‖ m14 ‖ m15

where mj ∈ {0, 1}32. Next, it computes wj ∈ {0, 1}32 (j = 0, 1, . . . , 63) using the following
message schedule:

wj =

{
mj
σ1
(
wj−2

)
+ wj−7 + σ0

(
wj−15

)
+ wj−16

if 0 ≤ j ≤ 15,
if 16 ≤ j ≤ 63.

σ0 and σ1 are defined as follows. ROTR(n, x) denotes the right n-bit cyclic shift of x,
and SHR(n, x) denotes the right n-bit shift of x.

σ0(x) = ROTR(7, x)⊕ROTR(18, x)⊕ SHR(3, x),

σ1(x) = ROTR(17, x)⊕ROTR(19, x)⊕ SHR(10, x).

Next, it assigns an input intermediate hash value to (a0, b0, . . . , h0) and calculates
the following steps for i = 0, 1, . . . , 63 (Figure 2). ai, bi, . . . , hi are called chaining values,
αi, βi are called auxiliary values, and ki is called a step constant.

αi = hi + Σ1(ei) + Ch(ei, fi, gi) + ki + wi,

βi = Σ0(ai) + Maj(ai, bi, ci),

ai+1 = αi + βi, bi+1 = ai,

ci+1 = bi, di+1 = ci,

ei+1 = di + αi, fi+1 = ei,

gi+1 = fi, hi+1 = gi,

where Ch, Maj, Σ0, Σ1 are defined as follows:

Ch(x, y, z) = (x ∧ y)⊕ (¬x ∧ z),

Maj(x, y, z) = (x ∧ y)⊕ (x ∧ z)⊕ (y ∧ z),

Σ0(x) = ROTR(2, x)⊕ROTR(13, x)⊕ROTR(22, x),

Σ1(x) = ROTR(6, x)⊕ROTR(11, x)⊕ROTR(25, x).
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Figure 2. Round function of SHA-256 compression function.

Finally, the SHA-256 compression function outputs H as a new intermediate hash value:

H = Ya ‖ Yb ‖ Yc ‖ Yd ‖ Ye ‖ Yf ‖ Yg ‖ Yh

where
Ya = a64 + a0, Yb = b64 + b0,

Yc = c64 + c0, Yd = d64 + d0,

Ye = e64 + e0, Yf = f64 + f0,

Yg = g64 + g0, Yh = h64 + h0.

2.2. SHACAL-2

SHACAL-2 [20] is a block cipher based on the SHA-256 compression function. A
plain text is given as an intermediate hash value, and a secret key as a message block. The
ciphertext is (a64, b64, . . . , h64). The key length is recommended to be at least 128 bits.

2.3. ChopMD-MAC

The chopMD-MAC function [21] adds a chop function to the output of the MD hash
function, whose initial value is the secret key. The chop function truncates an n-bit input
and outputs an s-bit output (Figure 3). In this work, we assume that chopMD-MAC uses
the SHA-256 compression function (n = 256) and s = 128.

Figure 3. chopMD-MAC function.

2.4. Algebraic Fault Analysis for the SHA-256 Compression Function by Hao et al.

This section reviews the AFA procedure for the SHA-256 compression function in the
study by Hao et al. [18]. It assumes that a 32-bit fault is injected into a specified chaining
value among ai, bi, . . . , hi (i = 0, 1, . . . , 63). When a fault is injected, the chaining value is
changed to a random value unknown to the attacker, and a faulty output is obtained after
the cryptographic operation. With the faulty output and the normal output, an algebraic
equation is constructed for the operations from the injected fault location to the output.
Through repeated fault injection into the same chaining value, multiple algebraic equations
are obtained for the same operations. STP is used to solve the algebraic equations.

The process of the AFA for the SHA-256 compression function can be divided into
two phases. Phase 1 recovers the chaining value p63 = (a63, b63, . . . , h63). Phase 2 recovers
the whole input to the SHA-256 compression function.
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2.4.1. Phase 1

In this phase, 14 faults are injected into c60, and the 14 corresponding faulty outputs
are obtained. Next, the algebraic equations are constructed based on the normal and faulty
outputs and the operations (including feed-forward operations) for the four steps from 60
to 63. STP solves the algebraic equations and returns a solution for p63. Hao et al. reported
that they succeeded in recovering p63 in all of the 100 trials of the procedure above. They
also reported that they always succeeded in recovering p63 in the same way by injecting
13 faults into c58 or c59.

In addition, they examined the number of chaining values pi’s recovered at the same
time and the computation time for the cases where 13 faults were injected into one of
a59, b59, . . . , h59. The results showed that there was a positive correlation between the
number of recovered chaining values and the percentage of computation time larger than
200 s.

2.4.2. Phase 2

First, from the non-faulty chaining value p63 obtained in Phase 1 and the correct
output Y, the faulty chaining value p∗63 = (a∗63, b∗63, . . . , h∗63) corresponding to a faulty
output Y∗ can be calculated as follows:

a∗63 = Y∗b −Yb + a63,

b∗63 = Y∗c −Yc + b63,

c∗63 = Y∗d −Yd + c63,

d∗63 = Y∗e −Ye − (T∗63 − T63) + d63

e∗63 = Y∗f −Yf + e63,

f ∗63 = Y∗g −Yg + f63,

g∗63 = Y∗h −Yh + g63,

h∗63 = T∗63 − T63 + f1(e∗63, f ∗63, g∗63)− f1(e63, f63, g63) + h63,

where
T∗63 = h∗63 + Σ1(e∗63) + Ch(e∗63, f ∗63, g∗63) + k63 + w63,

f1(e63, f63, g63) = Σ1(e63) + Ch(e63, f63, g63).

Phase 2 proceeds as follows. First, 13 faults are injected into c56, and faulty outputs
are obtained. For each faulty output Y∗, the corresponding faulty chaining value p∗63 is cal-
culated. Based on these values, the algebraic equations for the seven steps from 56 to 62 are
constructed. Subsequently, STP solves them and finds the values of w59, w60, w61, w61, w62.
Hao et al. claimed that they were successful in all of their 100 trials.

Second, 13 faults are injected into c52. For each faulty output Y∗, the faulty chaining
value p∗63 is calculated in the same way as above. For faulty p∗63 and non-faulty p63, p∗59 and
p59 are calculated, respectively, with recovered w59, w60, w61, w62. Then, based on p∗59 and
p59, algebraic equations for the seven steps from 52 to 58 are constructed. STP solves them
and finds the values of w55, w56, w57, w58.

In a similar way, by injecting faults into c48 and c44, w51, w52, w53, w54 and w47, w48, w49,
w50 are recovered. The input message block m0 ‖ m1 ‖ · · · ‖ m15 can be calculated from the
recovered w47, . . . , w62 according to the message schedule. Once the input message block
is recovered, w63 can be calculated. Next, p64 can be calculated from p63 and w63, and the
input intermediate hash value p0 = H − p64 is recovered.

In summary, by injecting 65 32-bit random faults in total (13 faults are injected five
times), the whole input of the SHA-256 compression function can be recovered.
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3. Results
3.1. Detailed Examination of AFA

We conducted computer experiments on various fault-injection conditions in the AFA
for the SHA-256 compression function described in Section 2. In the experiments, we
implemented the SHA-256 compression function in the C language and simulated fault
injections. STP was used as an automatic tool, and CryptoMiniSat5 was used as a SAT
solver. The experiments were performed on a PC with Intel(R) Xeon(R) Silver 4110 CPU @
2.10 GHz, 32 G memory, and Ubuntu 18.04.3 LTS.

For Phase 1, we first injected 13 faults into each of the chaining values from a60 to h60,
and tried to recover as many chaining values pi = (ai, bi, . . . , hi) as possible. The results
are shown in Table 1. The computation time is the average of 100 trials. The results show
that the fault injections into e60 can recover more chaining values than the fault injections
into other positions.

Table 1. Recovered chaining values and computation time.

Fault Position Recovered Chaining Values Computation Time [s]

a60 none -
b60 none -
c60 p63 20.3
d60 p63, p62 176.5
e60 p63, p62, p61 66.7
f60 p63, p62 82.0
g60 p63 109.6
h60 p63, p62 110.0

Next, we changed the number of faults injected into c60 or e60 in Phase1 and c56
or e56 in Phase 2 and measured the number of times the correct chaining values were
recovered out of 100 trials. The results are shown in Tables 2 and 3 for Phase 1 and Phase 2,
respectively. For Phase 1, except for the cases where four or fewer faults were injected, the
correct chaining values were recovered with higher probabilities when faults were injected
into e60 than when faults were injected into c60. For Phase 2, even when only three faults
were injected into e56, all 100 trials were successful.

Table 2. Success rate and average time for each number of faults (Phase 1). “-” indicates that the
result was not output within 72 h.

Phase 1 Fault Position c60 Fault Position e60

Number of
Faults

Success Rate
[%]

Average Time
[s]

Success Rate
[%]

Average Time
[s]

14 100 11.6 100 39.9
13 97 11.0 100 41.7
12 98 10.9 100 41.0
11 100 11.2 100 37.4
10 96 10.5 99 47.4
9 93 11.2 100 45.5
8 88 10.8 100 59.3
7 80 10.3 96 44.5
6 75 12.6 89 88.0
5 50 13.7 82 123.9
4 30 31.3 - -
3 1 112.5 - -
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Table 3. Success rate and average time for each number of faults (Phase 2).

Phase 2 Fault Position c56 Fault Position e56

Number of
Faults

Success Rate
[%]

Average Time
[s]

Success Rate
[%]

Average Time
[s]

14 100 1.00 100 81.34
13 97 0.93 100 83.48
12 98 0.91 100 89.20
11 100 0.86 100 95.11
10 96 0.84 100 67.34
9 93 0.76 100 72.71
8 88 0.77 100 102.73
7 80 0.73 100 98.08
6 75 0.70 100 102.01
5 50 0.64 100 87.25
4 30 0.77 100 121.75
3 1 0.78 100 492.76

From the experimental results described above, the procedure of AFA with the small-
est expected number of faults (with the cases of the colored parts in Tables 2 and 3) is
given below.

Phase 1: Inject five faults into e60 and recover the chaining value p63.
Phase 2:

(1) Inject three faults into e56 and recover w59, w60, w61, and w62.
(2) Inject three faults into e52 and recover w55, w56, w57, and w58.
(3) Inject three faults into e48 and recover w51, w52, w53, and w54.
(4) Inject three faults into e44 and recover w47, w48, w49, and w50.
(5) Calculate the input message block and intermediate hash value.

For the procedure, the expected number of faults is 18.1, and the computation time is
about 35 min.

3.2. AFA for SHACAL-2

Since SHACAL-2 feeds the key to the message input of the SHA-256 compression
function, the goal of the AFA is to recover the message input of the SHA-256 compression
function. SHACAL-2 outputs the chaining value (a64, b64, . . . , h64) as a ciphertext without
the feed-forward operation of the SHA-256 compression function. Thus, we can start the
AFA with Phase 2 in Section 2. The procedure is shown below:

(1) Inject three faults into e57 and recover w60, w61, w62, and w63.
(2) Inject three faults into e53 and recover w56, w57, w58, and w59.
(3) Inject three faults into e49 and recover w52, w53, w54, and w55.
(4) Inject three faults into e45 and recover w48, w49, w50, and w51.
(5) Calculate the input message.

For the procedure with 12 fault injections in total, all of 100 trials were successful. The
total computation time was about 33 min.

3.3. AFA for Almost Universal Forgery of chopMD-MAC

For almost universal forgery of the chopMD-MAC function, we recover the hash value
input (a0, b0, . . . , h0) of the SHA-256 compression function under the condition that the
message input and only 128 bits of the 256-bit output are known. Since (a0, b0, . . . , h0) can
be calculated from p63 and the message input, only p63 has to be recovered.

We assumed that the chop function outputs four words among the eight-word output
(Ya, Yb, . . . , Yh) of the SHA-256 compression function. We injected 14 faults into c60 and
analyzed the SHA-256 compression function under the condition mentioned above. Since
we found that the SHA-256 compression function does not propagate the faults to Yh, we
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excluded the cases that the chop function outputs Yh. We verified all the other 35 cases.
Table 4 shows all the successful cases (p63 was recovered). The success rate is for 10 trials.

Table 4. Average time and success rate of the analysis for chop-MD.

Output of Chop Function Average Time [s] Success Rate [%]

(Ya, Yb, Yd, Ye) 1072 100
(Ya, Yb, Yc, Ye) 46,344 80(
Ya, Yb, Ye, Yf

)
37,574 100(

Ya, Yb, Ye, Yg
)

49,950 70(
Yb, Yc, Ye, Yf

)
2012 90(

Yb, Yd, Ye, Yf

)
15,444 80

4. Conclusions

In this study, we changed the fault-injection condition of the AFA for the SHA-256
compression function in the study by Hao et al. and conducted computer experiments. We
found that the whole input of the SHA-256 compression function can be recovered with a
smaller number of faults. We also demonstrated the results of computer experiments on
the AFA for SHACAL-2 and the AFA for the SHA-256 compression, which enabled almost
universal forgery of chopMD-MAC. Future work should include an AFA for the SHA-512
compression function.
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